1
|
Tang M, Teng S, Peng Y, Kim AY, Canoll P, Bruce JN, Faust PL, Adhikari K, De Vivo DC, Monani UR. A therapeutic role for a regulatory glucose transporter1 (Glut1)-associated natural antisense transcript. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.644647. [PMID: 40196663 PMCID: PMC11974780 DOI: 10.1101/2025.03.26.644647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The mammalian brain relies primarily on glucose for its energy needs. Delivery of this nutrient to the brain is mediated by the glucose transporter-1 (Glut1) protein. Low Glut1 thwarts glucose entry into the brain, causing an energy crisis and, triggering, in one instance, the debilitating neurodevelopmental condition - Glut1 deficiency syndrome (Glut1DS). Current treatments for Glut1DS are sub-optimal, as none address the root cause - low Glut1 - of the condition. Levels of this transporter must respond rapidly to the brain's changing energy requirements. This necessitates fine-tuning its expression. Here we describe a long-noncoding RNA (lncRNA) antisense to Glut1 and show that it is involved in such regulation. Raising levels of the lncRNA had a concordant effect on Glut1 in cultured human cells and transgenic mice; reducing levels elicited the opposite effect. Delivering the lncRNA to Glut1DS model mice via viral vectors induced Glut1 expression, enhancing brain glucose levels to mitigate disease. Direct delivery of such a lncRNA to combat disease has not been reported previously and constitutes a unique therapeutic paradigm. Moreover, considering the importance of maintaining homeostatic Glut1 levels, calibrating transporter expression via the lncRNA could become broadly relevant to the myriad conditions, including Alzheimer's disease, wherein Glut1 concentrations are perturbed.
Collapse
|
2
|
Kalantary-Charvadeh A, Morovat S, Aslani S, Ziamajidi N, Emami Razavi A, Abbasalipourkabir R. The role of long non-coding RNA LINC00839 in oral squamous cell carcinoma based on bioinformatics and experimental research. Sci Rep 2024; 14:31817. [PMID: 39738469 PMCID: PMC11686358 DOI: 10.1038/s41598-024-82922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
This study explores the role of LINC00839 and its potential interaction with the miR-195-5p/cyclin E1 (CCNE1) axis in oral squamous cell carcinoma (OSCC). Using The Cancer Genome Atlas, we analyzed lncRNA, miRNA, and mRNA sequencing data for OSCC. Different online tools were applied to detect lncRNA-related miRNAs and their target mRNAs, forming a lncRNA/miRNA/mRNA axis. Co-expression analysis determined the correlation between lncRNA and mRNA expression. Afterward, protein-protein interaction network and functional enrichment analyses disclosed the biological activity of target genes. The expression and correlations of LINC00839, miR-195-5p, and CCNE1 were examined in 30 pairs of OSCC and noncancerous tissues. A Chi-square test was used to determine clinicopathological associations, and ROC analysis estimated diagnostic value. A total of 66 differentially expressed lncRNAs, 80 miRNAs, and 1149 mRNAs were identified in OSCC versus non-tumor samples. After filtering lncRNAs based on novelty, and predicting lncRNA-miRNA, and miRNA-mRNA interactions, the LINC00839/miR-195-5p/CCNE1 axis was discovered. RT-qPCR showed upregulation of LINC00839 and CCNE1 was accompanied by the downregulation of miR-195-5p. A significant positive correlation was observed between LINC00839 and CCNE1 mRNA expression, along with a significant negative correlation between LINC00839 and miR-195-5p expression. Moreover, increased LINC00839 was associated with tumor grade and lymph node status, while decreased miR-195-5p was correlated with lymph, depth, and vascular invasion (p < 0.05). The combined ROC curve demonstrated a significant area under the curve of 0.93. This discovery reveals a novel regulatory mechanism underlying OSCC tumorigenesis and may provide effective diagnosis and potential therapeutic targets to cure this devastating cancer.
Collapse
Affiliation(s)
- Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saman Morovat
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Aslani
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Hu Y, Hu Y, Lu X, Luo H, Chen Z. LINC00839 in Human Disorders: Insights into its Regulatory Roles and Clinical Impact, with a Special Focus on Cancer. J Cancer 2024; 15:2179-2192. [PMID: 38495499 PMCID: PMC10937278 DOI: 10.7150/jca.93820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
LINC00839 has captured significant attention within a spectrum of human disorders, including acute lung injury, osteoarthritis, and childhood obesity. Notably, aberrant expression patterns of LINC00839 have been observed across diverse cancer tissues and cell lines. LINC00839 emerges as an oncogenic factor in tumorigenesis and exerts a positive influence on tumor-associated behaviors. Its therapeutic potential for various cancers is underscored by its modulatory impact on pivotal signaling pathways, such as PI3K/AKT, OXPHOS, and Wnt/β-catenin. Additionally, LINC00839's role in reducing sensitivity to drug and radiotherapy interventions presents opportunities for targeted intervention. Furthermore, elevated LINC00839 expression indicates advanced clinicopathological features and foretells unfavorable prognoses, as validated by publications and comprehensive analyses of tumor types using TCGA datasets. This review elucidates the multiple regulatory mechanisms and functional implications of LINC00839 in various diseases, especially malignancies, emphasizing its potential as a predictive biomarker and therapeutic target across multiple disease domains in humans.
Collapse
Affiliation(s)
- Yingqiu Hu
- Emergency Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yushan Hu
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Xuan Lu
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Ziwen Chen
- Department of Gastrointestinal Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
4
|
Wu X, Zhang Y, Liang G, Ye H. Cuproptosis-related lncRNAs potentially predict prognosis and therapy sensitivity of breast cancer. Front Pharmacol 2023; 14:1199883. [PMID: 37529698 PMCID: PMC10390311 DOI: 10.3389/fphar.2023.1199883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Background: Cuproptosis-related lncRNAs regulate the biological functions of various cancers. However, the role of cuproptosis-related lncRNAs in breast cancer remains unclear. In this study, we investigated the biological functions and clinical applications of cuproptosis-related lncRNAs in breast cancer. Methods: The Cancer Genome Atlas (TCGA) database and the GSE20685 dataset were used for screening cuproptosis-related lncRNAs. Colony formation and CCK-8 kit assays were performed for detecting the proliferative function of cuproptosis-related lncRNAs, whereas wound healing, migration, and invasion assays were performed for detecting the metastatic regulation of cuproptosis-related lncRNAs in breast cancer. Finally, a prognostic cuproptosis-related lncRNA model was constructed using LASSO Cox regression analysis for detecting survival and sensitivity to conventional treatment (endocrine therapy, chemotherapy, and radiotherapy) and novel therapy (PARP and CDK4/6 inhibitors). Results: In this study, we screened six cuproptosis-related lncRNAs associated with the survival of patients with breast cancer. Biofunctional experiments indicated that cuproptosis-related lncRNAs play essential roles in regulating the proliferation and metastasis of breast cancer cells. Finally, we applied a model of six cuproptosis-related lncRNAs to classify the patients into high- and low-risk groups. High-risk group patients exhibited worse survival rates (p < 0.001) and lower sensitivity to chemotherapy, endocrine therapy, and radiation therapy. Compared with high-risk patients, low-risk patients exhibited a lower expression of CDK4/6 inhibitor-resistant biomarkers (CCNE1, E2F1, and E2F2) and PARP inhibitor-resistant biomarkers (BRCA1/BRCA2), indicating that patients in the low-risk group were more suitable for PARP inhibitor and CDK4/6 inhibitor application. Conclusion: Cuproptosis-related lncRNAs are essential for regulating the biological functions of breast cancer, and they have the potential to predict prognosis and sensitivity of breast cancer to various therapies.
Collapse
Affiliation(s)
- Xiwen Wu
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Zhang
- Staff and Faculty Clinic, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gehao Liang
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huizhen Ye
- Staff and Faculty Clinic, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
5
|
Xu JL, Xu Q, Wang YL, Xu D, Xu WX, Zhang HD, Wang DD, Tang JH. Glucose metabolism and lncRNAs in breast cancer: Sworn friend. Cancer Med 2023; 12:5137-5149. [PMID: 36426411 PMCID: PMC9972110 DOI: 10.1002/cam4.5265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Glucose metabolism disorder is a common feature in cancer. Cancer cells generate much energy through anaerobic glycolysis, which promote the development of tumors. However, long non-coding RNA may play an important role in this process. Our aim is to explore a prognostic risk model based on the glucose metabolism-related lncRNAs which provides clues that lncRNAs predict a clinical outcome through glucose metabolism in breast cancer. METHODS 1222 RNA-seq were extracted from the TCGA database, and 74 glucose metabolism-related genes were loaded from the GSEA website. Then, 7 glucose metabolism-related lncRNAs risk score model was developed by univariate, Lasso, and multivariate regression analysis. The lncRNA risk model showed that high-risk patients predict a poor clinical outcome with high reliability (P=2.838×10-6). Univariate and multivariate independent prognostic analysis and ROC curve analysis proved that the risk score was an independent prognostic factor in breast cancer with an AUC value of 0.652. Finally, Gene set enrichment analysis showed that cell cycle-related pathways were significantly enriched in a high-risk group. RESULTS Our results showed that glucose metabolism-related lncRNAs can affect breast cancer progression. 7 glucose metabolism-related lncRNAs prognostic signature was established to evaluate the OS of patients with breast cancer. PICSAR, LINC00839, AP001505.1, LINC00393 were risk factors and expressed highly in the high-risk group. A Nomogram was made based on this signature to judge patients' living conditions and prognosis. CONCLUSION 7 glucose metabolism-related lncRNAs risk score model had a high prognostic value in breast cancer. PICSAR, LINC00839, AP001505.1, LINC00393 were risk factors. AP001505.1 expression was increased in most triple-negative breast cancer cells treated with high glucose, which may also take part in breast cancer progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Jia-Lin Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.,The First Clinical School of Nanjing Medical University, Nanjing, P.R. China
| | - Qi Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.,The First Clinical School of Nanjing Medical University, Nanjing, P.R. China
| | - Ya-Lin Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, P.R. China
| | - Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.,The First Clinical School of Nanjing Medical University, Nanjing, P.R. China
| | - Wen-Xiu Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - He-Da Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
6
|
LINC00839 promotes malignancy of liver cancer via binding FMNL2 under hypoxia. Sci Rep 2022; 12:18757. [PMID: 36335129 PMCID: PMC9637198 DOI: 10.1038/s41598-022-16972-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors in the world and metastasis is the leading cause of death associated with liver cancer. Hypoxia is a common feature of solid tumors and enhances malignant character of cancer cells. However, the exact mechanisms involved in hypoxia-driven liver cancer progression and metastasis have not been well clarified so far. The aim of this study was to investigate the contribution of long non-coding RNA (lncRNA) in hypoxia promoting liver cancer progression. We screened and revealed LINC00839 as a novel hypoxia-responsive lncRNA in liver cancer. LINC00839 expression was up-regulated in liver cancer tissues and cell lines, and the patients with high LINC00839 expression had shortened overall survival. LINC00839 further overexpressed under hypoxia and promoted liver cancer cell proliferation, migration, and invasion. Mechanistically, LINC00839 bound multiple proteins that were primarily associated with the metabolism and RNA transport, and positively regulated the expression of Formin-like protein 2 (FMNL2). LINC00839 could promote hypoxia-mediated liver cancer progression, suggesting it may be a clinically valuable biomarker and serve as a molecular target for the diagnosis, prognosis, and therapy of liver cancer.
Collapse
|
7
|
Chen J, Sun M, Huang L, Fang Y. The Long noncoding RNA LINC00200 Promotes the Malignant Progression of MYCN-Amplified Neuroblastoma via Binding to Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) to Enhance the Stability of of Zic family member 2 (ZIC2) mRNA. Pathol Res Pract 2022; 237:154059. [DOI: 10.1016/j.prp.2022.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022]
|
8
|
Liu X, Chen J, Zhang S, Liu X, Long X, Lan J, Zhou M, Zheng L, Zhou J. LINC00839 promotes colorectal cancer progression by recruiting RUVBL1/Tip60 complexes to activate NRF1. EMBO Rep 2022; 23:e54128. [PMID: 35876654 PMCID: PMC9442307 DOI: 10.15252/embr.202154128] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
The long noncoding RNA LINC00839 has been shown to be involved in the progression of some cancer types, such as bladder cancer, prostate cancer, breast cancer, and neuroblastoma. However, if LINC00839 has roles in colorectal cancer (CRC), it has not been elucidated so far. Here, we focus on the biological role and involved mechanisms of LINC00839 in CRC. We show that LINC00839 is selectively upregulated in CRC and locates to the nucleus. High expression of LINC00839 is associated with poor outcomes in CRC patients. Functional experiments show that LINC00839 promotes CRC proliferation, invasion, and metastasis in vitro and in vivo. Mechanistically, LINC00839 recruits Ruvb1 to the Tip60 complex and increases its acetylase activity. LINC00839 guides the complex to the NRF1 promoter and promotes acetylation of lysines 5 and 8 of histones H4, thereby upregulating the expression of NRF1. Subsequently, NRF1 activates mitochondrial metabolism and biogenesis, thereby promoting CRC progression. In summary, our study reports on a mechanism by which LINC00839 positively regulates NRF1, thus promoting mitochondrial metabolism and biogenesis, as well as CRC progression.
Collapse
Affiliation(s)
- Xiaoting Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sijing Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xunhua Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoli Long
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiawen Lan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Miao Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zheng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
LINC00839 Promotes Neuroblastoma Progression by Sponging miR-454-3p to Up-Regulate NEUROD1. Neurochem Res 2022; 47:2278-2293. [PMID: 35606572 DOI: 10.1007/s11064-022-03613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid malignancy in children. Increasing long non-coding RNAs (lncRNAs) are reported to be associated with NB tumorigenesis and aggressiveness. Here, we attempted to investigate the biological functions of LINC00839 in NB progression as well as its possible pathogenic mechanisms. Public microarray datasets were applied to unearth the abnormally expressed lncRNAs in NB. RT-qPCR analysis was used to measure the expression of LINC00839, miR-454-3p, and neuronal differentiation 1 (NEUROD1) mRNA. The protein level was determined by a western blot assay. CCK-8, plate clone formation, EdU, wound-healing scratch, and transwell assays were employed to evaluate cell proliferation, migration, and invasion. Xenografts were developed in nude mice to determine the effects of LINC00839 on NB tumor growth. Dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments were performed to identify the interaction between miR-454-3p and LINC00839 or NEUROD1. According to GSE datasets (GSE16237 and GSE16476), LINC00839 was found as a potential driver of NB progression. LINC00839 expression was higher in NB tumor tissues and cells. Also, LINC00839 expression was positively correlated with MYCN amplification, advanced INSS stages, and worse prognosis. Silencing of LINC00839 suppressed cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, LINC00839 could act as a sponge of miR-454-3p to facilitate the expression of its target NEUROD1. Moreover, miR-454-3p was demonstrated to exert an anti-cancer activity in NB. More importantly, the tumor-suppressive properties mediated by LINC00839 knockdown were significantly counteracted by the inhibition of miR-454-3p or overexpression of NEUROD1. Our study demonstrates that LINC00839 exerts an oncogenic role in NB through sponging miR-454-3p to up-regulate NEUROD1 expression, deepening our comprehension of lncRNA involved in NB and providing access to the possibility of LINC00839 as a therapeutic target for NB.
Collapse
|
10
|
Li J, Wei S, Zhang Y, Lu S, Zhang X, Wang Q, Yan J, Yang S, Chen L, Liu Y, Huang Z. Comprehensive Analyses of Mutation-Derived Long-Chain Noncoding RNA Signatures of Genome Instability in Kidney Renal Papillary Cell Carcinoma. Front Genet 2022; 13:874673. [PMID: 35547247 PMCID: PMC9082950 DOI: 10.3389/fgene.2022.874673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The role of long-chain noncoding RNA (lncRNA) in genomic instability has been demonstrated to be increasingly importance. Therefore, in this study, lncRNAs associated with genomic instability were identified and kidney renal papillary cell carcinoma (KIRP)-associated predictive features were analysed to classify high-risk patients and improve individualised treatment. Methods: The training (n = 142) and test (n = 144) sets were created using raw RNA-seq and patient’s clinical data of KIRP obtained from The Cancer Genome Atlas (TCGA).There are 27 long-chain noncoding RNAs (lncRNAs) that are connected with genomic instability, these lncRNAs were identified using the ‘limma’ R package based on the numbers of somatic mutations and lncRNA expression profiles acquired from KIRP TCGA cohort. Furthermore, Cox regression analysis was carried out to develop a genome instability-derived lncRNA-based gene signature (GILncSig), whose prognostic value was confirmed in the test cohort as well as across the entire KIRP TCGA dataset. Results: A GILncSig derived from three lncRNAs (BOLA3-AS1, AC004870, and LINC00839), which were related with poor KIRP survival, was identified, which was split up into high- and low-risk groups. Additionally, the GILncSig was found to be an independent prognostic predictive index in KIRP using univariate and multivariate Cox analysis. Furthermore, the prognostic significance and characteristics of GilncSig were confirmed in the training test and TCGA sets. GilncSig also showed better predictive performance than other prognostic lncRNA features. Conclusion: The function of lncRNAs in genomic instability and the genetic diversity of KIRP were elucidated in this work. Moreover, three lncRNAs were screened for prediction of the outcome of KIRP survival and novel insights into identifying cancer biomarkers related to genomic instability were discussed.
Collapse
Affiliation(s)
- Jian Li
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shimei Wei
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Zhang
- Department of Pediatrics, Shanxi Children's Hospital, Taiyuan, China
| | - Shuangshuang Lu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaoxu Zhang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qiong Wang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiawei Yan
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Sanju Yang
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Liying Chen
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Yunguang Liu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhijing Huang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
11
|
Fu Z, Wu X, Zheng F, Zhang Y. Sevoflurane anesthesia ameliorates LPS-induced acute lung injury (ALI) by modulating a novel LncRNA LINC00839/miR-223/NLRP3 axis. BMC Pulm Med 2022; 22:159. [PMID: 35473680 PMCID: PMC9044806 DOI: 10.1186/s12890-022-01957-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Sevoflurane is considered as a lung-protective factor in acute lung injury (ALI), but the underlying molecular mechanism remains largely unknown. The present study identified for the first time that sevoflurane ameliorated lipopolysaccharide (LPS)-induced ALI through regulating a novel long non-coding RNA LINC00839, and uncovered its regulatory mechanism. Methods LPS-induced ALI models were established in mice or mouse pulmonary microvascular endothelial cells (MPVECs), and they were administered with sevoflurane. Real-Time quantitative PCR, western blot and bioinformatics analysis were performed to screen the aberrantly expressed long non-coding RNA and the downstream molecules in sevoflurane-treated ALI models, and their roles in the protection effect of sevoflurane were verified by functional recovery experiments. Results Sevoflurane relieved LPS-induced lung injury, cell pyroptosis and inflammation in vitro and in vivo. LINC00839 was significantly suppressed by sevoflurane, and overexpression of LINC00839 abrogated the protective effects of sevoflurane on LPS-treated MPVECs. Mechanismly, LINC00839 positively regulated NOD-like receptor protein 3 (NLRP3) via sequestering miR-223. MiR-223 inhibitor reversed the inhibitory effects of LINC00839 knockdown on NLRP3-mediated pyroptosis in LPS-treated MPVECs. Furthermore, both miR-223 ablation and NLRP3 overexpression abrogated the protective effects of sevoflurane on LPS-treated MPVECs. Conclusion In general, our work illustrates that sevoflurane regulates the LINC00839/miR-223/NLRP3 axis to ameliorate LPS-induced ALI, which might provide a novel promising candidate for the prevention of ALI.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Fushuang Zheng
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|