1
|
Liu S, Guan H, Wang F. Genetic susceptibility and potential therapeutic targets of unruptured intracranial aneurysms: A genome-wide study based on Mendelian randomization. Clin Neurol Neurosurg 2025; 249:108749. [PMID: 39847889 DOI: 10.1016/j.clineuro.2025.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND At present, although some studies have offered certain insights into the genetic factors related to unruptured intracranial aneurysms (uIAs), the potential genetic targets associated with uIAs remain largely unknown. Thus, this research adopted Mendelian randomization (MR) analysis to study two genome-wide association studies on uIAs, aiming to determine the reliable genetic susceptibility and potential therapeutic targets for uIAs. METHODS This study summarizes the data of expression quantitative trait loci (eQTL) as exposure data. The outcome data of uIAs were derived from the study by Bakker et al. and the FinnGen Biobank (version R10). The reliable genetic susceptibility and potential therapeutic targets of uIAs were identified by means of Mendelian randomization (MR) methods, with the inverse variance weighting (IVW) method as the primary analytical approach. Simultaneously, sensitivity and pleiotropy analyses were carried out, and the results were visualized. Subsequently, drug predictions and molecular docking were conducted for the potential gene targets to verify their reliability. RESULTS The MR analysis of the training cohort identified 100 targets related to uIAs. Then, these 100 gene targets and eQTL data were verified by MR Analysis again with the testing cohort. Finally, 7 gene targets were selected, namely MTMR3, SERINC1, CITED2, NKX3-1, ATOX1, MYADM and SLC20A1-DT.GO/KEGG enrichment analysis confirmed that the 7 gene targets mainly participate in the process Biological functions and pathways such as art development, cellular response to hypoxia, male Gonad development, RNA polymerase II specific DNA binding transcription factor binding, DNA binding transcription factor binding, Mineral absorption, Inositol phase metabolism, Photoshatidylinositol signaling system, etc.The protein-protein interaction(PPI) network describes the interactions between seven gene targets and related proteins.The molecular docking diagram shows good binding between candidate drugs and proteins related to gene targets. CONCLUSIONS The study identified 7 reliable gene susceptibility and potential therapeutic targets associated with uIAs, offering new insights for clinical diagnosis and treatment of uIAs, and suggesting novel research directions for understanding the etiology and molecular mechanisms of uIAs.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Interventional Therapy, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyuan Guan
- Department of Breast Surgery,the Huzhou Maternal and Child Health Hospital, Huzhou, China
| | - Feng Wang
- Department of Interventional Therapy, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
3
|
Ping L, Zhi-Ming L, Bi-Shan Z, Lei Z, Bo Y, Yi-Chun Z, Ming-Jie W. S-propargyl-cysteine promotes the stability of atherosclerotic plaque via maintaining vascular muscle contractile phenotype. Front Cell Dev Biol 2024; 11:1291170. [PMID: 38328305 PMCID: PMC10847265 DOI: 10.3389/fcell.2023.1291170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction: Plaque rupture in atherosclerosis contributes to various acute cardiovascular events. As a new sulfide-containing donor, S-propargyl-cysteine (SPRC) has been reported to play a beneficial role in cardioprotection, potentially through its anti-inflammatory, anti-oxidative and anti-atherogenic activities. Our previous study observed an increase in eNOS phosphorylation in endothelial cells. However, it remains unclear whether SPRC influences vascular smooth muscle cells (VSMCs) within the plaque and if this effect contributes to plaque stabilization. Methods: An atherosclerotic unstable plaque mouse model was established by subjecting ApoE-/- mice to tandem stenosis of the right carotid artery along with a Western diet. Daily SPRC administration was conducted for 13 weeks. Plaque morphology and stability were assessed using MRI scanning and histopathological staining. In our in vitro studies, we stimulated human artery vascular smooth muscle cells (HAVSMCs) with platelet-derived growth factor-BB (PDGF-BB), both with and without 100 μM SPRC treatment. Cell phenotype was assessed using both Western blot and Real-time PCR. Cell proliferation was assessed using the BrdU cell proliferation kit and immunofluorescence of Ki-67, while cell migration was measured using scratch wound healing and transwell assay. MiR-143-3p overexpression and knockdown experiments were used to investigate whether it mediates the effect of SPRC on VSMC phenotype. Results and Discussion: SPRC treatment reduced plasma lipid levels, increased collagen content and decreased cell apoptosis in atherosclerotic plaques, indicating improved plaque stability. Both in vivo and in vitro studies elucidated the role of SPRC in preserving the contractile phenotype of VSMCs through up-regulation of miR-143-3p expression. Furthermore, SPRC suppressed the pro-proliferation and pro-migration effects of PDGF-BB on HAVSMCs. Overall, these findings suggest that the inhibitory effect of SPRC on phenotype switch from contractile to synthetic VSMCs may contribute to its beneficial role in enhancing plaque stability.
Collapse
Affiliation(s)
- Li Ping
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Li Zhi-Ming
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Zhang Bi-Shan
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Zhu Lei
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Bo
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhu Yi-Chun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Wang Ming-Jie
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Ghasemian M, Babaahmadi‐Rezaei H, Khedri A, Selvaraj C. The oncogenic role of SAMMSON lncRNA in tumorigenesis: A comprehensive review with especial focus on melanoma. J Cell Mol Med 2023; 27:3966-3973. [PMID: 37772815 PMCID: PMC10746942 DOI: 10.1111/jcmm.17978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023] Open
Abstract
LncRNA Survival Associated Mitochondrial Melanoma Specific Oncogenic Non-coding RNA (SAMMSON) is located on human chromosome 3p13, and its expression is upregulated in several tumours, including melanoma, breast cancer, glioblastoma and liver cancer and has an oncogenic role in malignancy disorders. It has been reported that SAMMSON impacts metabolic regulation, cell proliferation, apoptosis, EMT, drug resistance, invasion and migration. Also, SAMMSON is involved in regulating several pathways such as Wnt, MAPK, PI3K, Akt, ERK and p53. SAMMSON is considered a potential diagnostic and prognostic biomarker in several types of cancer and a suitable therapeutic target. In addition, the highly expressed SAMMSON is closely associated with clinicopathological features of various cancers. SAMMSON has a significant role in regulating epigenetic processes by regulating histone protein or the status of DNA methylation. Herein for the first time, we comprehensively summarized the currently available SAMMSON, molecular regulatory pathways, and clinical significance. We believe that clarifying all the molecular aspects of this lncRNA can be a good guide for cancer studies in the future.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Babaahmadi‐Rezaei
- Department of Clinical Biochemistry, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Azam Khedri
- Department of Clinical Biochemistry, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Chandrabose Selvaraj
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and HospitalsSaveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha UniversityChennaiTamil NaduIndia
| |
Collapse
|
5
|
Zhu H, Tan J, Wang Z, Wu Z, Zhou W, Zhang Z, Li M, Zhao Y. Bioinformatics analysis constructs potential ferroptosis-related ceRNA network involved in the formation of intracranial aneurysm. Front Cell Neurosci 2022; 16:1016682. [PMCID: PMC9612944 DOI: 10.3389/fncel.2022.1016682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIntracranial aneurysm (IA) causes more than 80% of nontraumatic subarachnoid hemorrhages (SAHs). The mechanism of ferroptosis involved in IA formation remains unclear. The roles played by competitive endogenous RNA (ceRNA) regulation networks in many diseases are becoming clearer. The goal of this study was to understand more fully the ferroptosis-related ceRNA regulation network in IA.Materials and methodsTo identify differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs), and differentially expressed lncRNAs (DELs) across IA and control samples, the GEO datasets GSE122897 and GSE66239 were downloaded and analyzed with the aid of R. Ferroptosis DEGs were discovered by exploring the DEGs of ferroptosis-related genes of the ferroptosis database. Potentially interacting miRNAs and lncRNAs were predicted using miRWalk and StarBase. Enrichment analysis was also performed. We utilized the STRING database and Cytoscape software to identify protein-protein interactions and networks. DAB-enhanced Prussian blue staining was used to detect iron in IA tissues.ResultsIron deposition was evident in IA tissue. In all, 30 ferroptosis DEGs, 5 key DEMs, and 17 key DELs were screened out for constructing a triple regulatory network. According to expression regulation of DELs, DEMs, and DEGs, a hub triple regulatory network was built. As the functions of lncRNAs are determined by their cellular location, PVT1-hsa-miR-4644-SLC39A14 ceRNA and DUXAP8-hsa-miR-378e/378f-SLC2A3 ceRNA networks were constructed.ConclusionCeRNA (PVT1-hsa-miR-4644-SLC39A14 and DUXAP8-hsa-miR-378e/378f-SLC2A3) overexpression networks associated with ferroptosis in IA were established.
Collapse
|
6
|
Xu J, Gao F. Circulating miR-130a-3p is elevated in patients with cerebral atherosclerosis and predicts 2-year risk of cerebrovascular events. BMC Neurol 2022; 22:308. [PMID: 35996079 PMCID: PMC9396884 DOI: 10.1186/s12883-022-02829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral atherosclerosis (AS) leads to high risk of cerebrovascular events. This study aims to evaluate the diagnostic performance of serum microRNA-130a-3p (miR-130a-3p) in cerebral AS patients, and construct a logistic risk model for 2-year cerebrovascular events on the basis of the prognostic potential of miR-130a-3p. Methods Serum samples were collected from 74 cerebral AS patients and 62 control individuals, and miR-130a-3p expression was investigated using reverse transcription quantitative PCR. Risk factors related with cerebral AS were assessed using a logistic regression analysis, and the receiver operating characteristic analysis was performed to evaluate the diagnostic value of miR-130a-3p. The relationship between miR-130a-3p and cerebrovascular events was analyzed using a Kaplan–Meier method, and a logistic risk model was constructed for 2-year cerebrovascular events. Results Cerebral AS patients had elevated serum miR-130a-3p compared with controls (P < 0.001). Serum miR-130a-3p had diagnostic value (AUC = 0.899), and could significantly improve the diagnostic accuracy of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in cerebral AS patients (AUC = 0.992). High serum miR-130a-3p was independently related with high probability of cerebrovascular events (HR = 1.993, 95% CI = 1.205–2.897, P = 0.006), and a logistic risk model was constructed based on serum miR-130a-3p, hs-CRP, TC and LDL-C. Conclusion All the findings indicated that high serum miR-130a-3p had diagnostic potential to screen cerebral AS, and predicted the probability of cerebrovascular events after AS. The logistic risk model based on miR-130a-3p may provide an efficient method to predict 2-year cerebrovascular events in AS patients.
Collapse
Affiliation(s)
- Jialei Xu
- Department of Neurology, Liaocheng People's Hospital, No. 45 Huashan Road, Liaocheng, 252000, Shandong, China
| | - Fengchao Gao
- Department of Neurology, Liaocheng People's Hospital, No. 45 Huashan Road, Liaocheng, 252000, Shandong, China.
| |
Collapse
|