1
|
Ferreira M, Marques JP, Raimundo M, Quental H, Castelo-Branco M. Improvements induced by retinal gene therapy with voretigene neparvovec depend on visual cortical hemispheric dominance mechanisms. COMMUNICATIONS MEDICINE 2025; 5:107. [PMID: 40204976 PMCID: PMC11982196 DOI: 10.1038/s43856-025-00820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND RPE65-associated retinal degeneration (RPE65-RD) causes severe visual deficits. Gene therapy with AAV2-hRPE65v2 is a breakthrough but it is currently unknown which visual pathways benefit from treatment and if cortical mechanisms can amplify retinal improvements. METHODS In this within-subject design, ten patients with biallelic RPE65-RD underwent sub-retinal injection of AAV2-hRPE65v2. Psychophysical full-field stimulus threshold determination and functional magnetic resonance imaging were performed before and 12 months after treatment. Population receptive fields (pRF) were computed in V1 and visual responses assessed using contrast-reversed checkerboards (3 contrast levels). RESULTS Here we show significant improvement in light sensitivity at low-luminance and neural response enhancements under low-luminance conditions specifically in the right hemisphere, which is known to show dominance in attentional and visual pooling of spatial information. Changes in pRF size also reflect known hemispheric spatial asymmetries (left/right biased for local/global analysis, respectively). CONCLUSIONS Our findings show a contribution of known early and high-level cortical dominance mechanisms on improvement, which constrain the effects of therapy and are therefore a target for neurorehabilitation. These findings provide insight into the limits of clinical benefits of gene therapy and suggest that neurorehabilitation approaches may be needed to enhance improvements, similarly to cochlear implants.
Collapse
Affiliation(s)
- Mariana Ferreira
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology (FCTUC), Coimbra, Portugal
| | - João Pedro Marques
- Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULSC), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Miguel Raimundo
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULSC), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Hugo Quental
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
- University of Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Posselli NR, Hwang ES, Olson ZJ, Nagiel A, Bernstein PS, Abbott JJ. Head-mounted surgical robots are an enabling technology for subretinal injections. Sci Robot 2025; 10:eadp7700. [PMID: 39970246 DOI: 10.1126/scirobotics.adp7700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Therapeutic protocols involving subretinal injection, which hold the promise of saving or restoring sight, are challenging for surgeons because they are at the limits of human motor and perceptual abilities. Excessive or insufficient indentation of the injection cannula into the retina or motion of the cannula with respect to the retina can result in retinal trauma or incorrect placement of the therapeutic product. Robotic assistance can potentially enable the surgeon to more precisely position the injection cannula and maintain its position for a prolonged period of time. However, head motion is common among patients undergoing eye surgery, complicating subretinal injections, yet it is often not considered in the evaluation of robotic assistance. No prior study has both included head motion during an evaluation of robotic assistance and demonstrated a significant improvement in the ability to perform subretinal injections compared with the manual approach. In a hybrid ex vivo and in situ study in which an enucleated eye was mounted on a human volunteer, we demonstrate that head-mounting a high-precision teleoperated surgical robot to passively reduce undesirable relative motion between the robot and the eye results in a bleb-formation success rate on moving eyes that is significantly higher than the manual success rates reported in the literature even on stationary enucleated eyes.
Collapse
Affiliation(s)
- Nicholas R Posselli
- Robotics Center and Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomechanical Engineering, University of Twente, 7522 NB Enschede, Netherlands
| | - Eileen S Hwang
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Zachary J Olson
- Robotics Center and Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Aaron Nagiel
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Paul S Bernstein
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Jake J Abbott
- Robotics Center and Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Maidana DE, Puente SP, Wang C, Chandra S, Gonzalez-Buendia L, Ilios EP, Kazlauskas A, Vavvas DG. Divergence in photoreceptor cell death and neuroinflammation in transvitreal and transscleral subretinal delivery in mice. J Inflamm (Lond) 2025; 22:5. [PMID: 39920719 PMCID: PMC11806547 DOI: 10.1186/s12950-025-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Subretinal injections provide direct access to photoreceptors and RPE, which is crucial for the delivery of gene therapy and neuroprotective approaches. To access the subretinal space, transvitreal (TV) and transscleral (TS) subretinal injections have been widely used in humans and animal models. In this work, we investigated recent trends and outcomes of utilizing TV and TS subretinal models of retinal detachment (RD). A literature review revealed an increasing utilization of both models over the past two decades, with TS emerging as the predominant model since 2012. Subretinal injection in CX3CR1 + /GFP CCR2 + /RFP mice revealed early inflammatory responses, with TS injections inducing higher infiltration of CD11b + CCR2 + cells compared to TV. Further leukocyte immunophenotyping indicated divergent infiltration patterns, with the TS approach exhibiting higher proportions of neutrophils and macrophages/microglia-like cells, while the TV injections had higher CD45hi CD11b + Ly6G- Ly6C + infiltration. Notably, late-stage analysis demonstrates higher photoreceptor cell death in the TS approach, paralleled by increased subretinal infiltration of CD11b + cells. Both models showed significant reactive gliosis, suggesting comparable late-stage wound healing responses. These findings underscore the utility of these approaches for subretinal delivery, offering insights into their distinctive leukocyte infiltration and late-stage tissue responses.
Collapse
Affiliation(s)
- Daniel E Maidana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Sara Pastor Puente
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Catherine Wang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Shivam Chandra
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia Gonzalez-Buendia
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Institute of Ocular Microsurgery (IMO) Miranza Group, Madrid, Spain
| | - Eleftherios Paschalis Ilios
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
- Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Pormehr LA, Manian KV, Cho HE, Comander J. Higher throughput assays for understanding the pathogenicity of variants of unknown significance (VUS) in the RPE65 gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635952. [PMID: 39975398 PMCID: PMC11838478 DOI: 10.1101/2025.01.31.635952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Purpose RPE65 is a key enzyme in the visual cycle that regenerates 11-cis retinal. Mutations in RPE65 cause a retinal dystrophy that is treatable with an FDA-approved gene therapy. Variants of unknown significance (VUS) on genetic testing can prevent patients from obtaining a firm genetic diagnosis and accessing gene therapy. Since most RPE65 mutations have a low protein expression level, this study developed and validated multiple methods for assessing the expression level of RPE65 variants. This functional evidence is expected to aid in reclassifying RPE65 VUS as pathogenic, which in turn can broaden the application of gene therapy for RPE65 patients. Methods 30 different variants of RPE65 (12 pathogenic, 13 VUS, 5 benign) were cloned into lentiviral expression vectors. Protein expression levels were measured after transient transfection or in stable cell lines, using Western blots and immunostaining with flow cytometry. Then, a pooled, high throughput, fluorescence-activated cell sorting (FACS) assay with an NGS-based sequencing readout was used to assay pools of RPE65 variants. Results There was a high correlation between protein levels measured by Western blot, flow cytometry, and the pooled FACS assay. Using these assays, we confirm and extend RPE65 variant data, including that Pro111Ser has a low, pathogenic expression level. There was a high correlation between RPE65 expression and previously reported enzyme activity levels; further development of a high throughput enzymatic activity assay would complement this expression data. Conclusion This scalable approach can be used to solve patient pedigrees with VUS in RPE65, facilitating treatment and providing RPE65 structure-function information.
Collapse
Affiliation(s)
- Leila Azizzadeh Pormehr
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Kannan Vrindavan Manian
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Ha Eun Cho
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Comander
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
He B, Wilson B, Chen SH, Sharma K, Scappini E, Cook M, Petrovich R, Martin NP. Molecular Engineering of Virus Tropism. Int J Mol Sci 2024; 25:11094. [PMID: 39456875 PMCID: PMC11508178 DOI: 10.3390/ijms252011094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Engineered viral vectors designed to deliver genetic material to specific targets offer significant potential for disease treatment, safer vaccine development, and the creation of novel biochemical research tools. Viral tropism, the specificity of a virus for infecting a particular host, is often modified in recombinant viruses to achieve precise delivery, minimize off-target effects, enhance transduction efficiency, and improve safety. Key factors influencing tropism include surface protein interactions between the virus and host-cell, the availability of host-cell machinery for viral replication, and the host immune response. This review explores current strategies for modifying the tropism of recombinant viruses by altering their surface proteins. We provide an overview of recent advancements in targeting non-enveloped viruses (adenovirus and adeno-associated virus) and enveloped viruses (retro/lentivirus, Rabies, Vesicular Stomatitis Virus, and Herpesvirus) to specific cell types. Additionally, we discuss approaches, such as rational design, directed evolution, and in silico and machine learning-based methods, for generating novel AAV variants with the desired tropism and the use of chimeric envelope proteins for pseudotyping enveloped viruses. Finally, we highlight the applications of these advancements and discuss the challenges and future directions in engineering viral tropism.
Collapse
Affiliation(s)
- Bo He
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Belinda Wilson
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Shih-Heng Chen
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Erica Scappini
- Fluorescent Microscopy and Imaging Center, Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Molly Cook
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Robert Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| |
Collapse
|
6
|
Sarmah D, Husson SM. A Novel Method for Separating Full and Empty Adeno-Associated Viral Capsids Using Ultrafiltration. MEMBRANES 2024; 14:194. [PMID: 39330535 PMCID: PMC11434191 DOI: 10.3390/membranes14090194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Adeno-associated viral vectors (AAVs) are the predominant viral vectors used for gene therapy applications. A significant challenge in obtaining effective doses is removing non-therapeutic empty viral capsids lacking DNA cargo. Current methods for separating full (gene-containing) and empty capsids are challenging to scale, produce low product yields, are slow, and are difficult to operationalize for continuous biomanufacturing. This communication demonstrates the feasibility of separating full and empty capsids by ultrafiltration. Separation performance was quantified by measuring the sieving coefficients for full and empty capsids using ELISA, qPCR, and an infectivity assay based on the live cell imaging of green fluorescent protein expression. We demonstrated that polycarbonate track-etched membranes with a pore size of 30 nm selectively permeated empty capsids to full capsids, with a high recovery yield (89%) for full capsids. The average sieving coefficients of full and empty capsids obtained through ELISA/qPCR were calculated as 0.25 and 0.49, indicating that empty capsids were about twice as permeable as full capsids. Establishing ultrafiltration as a viable unit operation for separating full and empty AAV capsids has implications for developing the scale-free continuous purification of AAVs.
Collapse
Affiliation(s)
- Deepraj Sarmah
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634, USA
| | - Scott M Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634, USA
| |
Collapse
|
7
|
Cetin B, Erendor F, Eksi YE, Sanlioglu AD, Sanlioglu S. Gene and cell therapy of human genetic diseases: Recent advances and future directions. J Cell Mol Med 2024; 28:e70056. [PMID: 39245805 PMCID: PMC11381193 DOI: 10.1111/jcmm.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Disruptions in normal development and the emergence of health conditions often result from the malfunction of vital genes in the human body. Decades of scientific research have focused on techniques to modify or substitute defective genes with healthy alternatives, marking a new era in disease treatment, prevention and cure. Recent strides in science and technology have reshaped our understanding of disorders, medication development and treatment recommendations, with human gene and cell therapy at the forefront of this transformative shift. Its primary objective is the modification of genes or adjustment of cell behaviour for therapeutic purposes. In this review, we focus on the latest advances in gene and cell therapy for treating human genetic diseases, with a particular emphasis on FDA and EMA-approved therapies and the evolving landscape of genome editing. We examine the current state of innovative gene editing technologies, particularly the CRISPR-Cas systems. As we explore the progress, ethical considerations and prospects of these innovations, we gain insight into their potential to revolutionize the treatment of genetic diseases, along with a discussion of the challenges associated with their regulatory pathways. This review traces the origins and evolution of these therapies, from conceptual ideas to practical clinical applications, marking a significant milestone in the field of medical science.
Collapse
Affiliation(s)
- Busra Cetin
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yunus E Eksi
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
Pham Q, Glicksman J, Chatterjee A. Chemical approaches to probe and engineer AAV vectors. NANOSCALE 2024; 16:13820-13833. [PMID: 38978480 PMCID: PMC11271820 DOI: 10.1039/d4nr01300j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
Adeno-associated virus (AAV) has emerged as the most promising vector for in vivo human gene therapy, with several therapeutic approvals in the last few years and countless more under development. Underlying this remarkable success are several attractive features that AAV offers, including lack of pathogenicity, low immunogenicity, long-term gene expression without genomic integration, the ability to infect both dividing and non-dividing cells, etc. However, the commonly used wild-type AAV capsids in therapeutic development present significant challenges, including inadequate tissue specificity and the need for large doses to attain therapeutic effectiveness, raising safety concerns. Additionally, significant preexisting adaptive immunity against most natural capsids, and the development of such anti-capsid immunity after the first treatment, represent major challenges. Strategies to engineer the AAV capsid are critically needed to address these challenges and unlock the full promise of AAV gene therapy. Chemical modification of the AAV capsid has recently emerged as a powerful new approach to engineer its properties. Unlike genetic strategies, which can be more disruptive to the delicate capsid assembly and packaging processes, "late-stage" chemical modification of the assembled capsid-whether at natural amino acid residues or site-specifically installed noncanonical amino acid residues-often enables a versatile approach to introducing new properties to the capsid. This review summarizes the significant recent progress in AAV capsid engineering strategies, with a particular focus on chemical modifications in advancing the next generation of AAV-based gene therapies.
Collapse
Affiliation(s)
- Quan Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Jake Glicksman
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
9
|
Suk Lee Y, Lee J, Fang K, Gee GV, Rogers B, McNally D, Yoon S. Separation of full, empty, and partial adeno-associated virus capsids via anion-exchange chromatography with continuous recycling and accumulation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124206. [PMID: 38908134 DOI: 10.1016/j.jchromb.2024.124206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The field of recombinant adeno-associated virus (rAAV) gene therapy has attracted increasing attention over decades. Within the ongoing challenges of rAAV manufacturing, the co-production of impurities, such as empty and partial capsids containing no or truncated transgenes, poses a significant challenge. Due to their potential impact on drug efficacy and clinical safety, it is imperative to conduct comprehensive monitoring and characterization of these impurities prior to the release of the final gene therapy product. Nevertheless, existing analytical techniques encounter notable limitations, encompassing low throughput, long turnaround times, high sample consumption, and/or complicated data analysis. Chromatography-based analytical methods are recognized for their current Good Manufacturing Practice (cGMP) alignment, high repeatability, reproducibility, low limit of detection, and rapid turnaround times. Despite these advantages, current anion exchange high pressure liquid chromatography (AEX-HPLC) methods struggle with baseline separation of partial capsids from full and empty capsids, resulting in inaccurate full-to-empty capsid ratio, as partial capsids are obscured within peaks corresponding to empty and full capsids. In this study, we present a unique analytical AEX method designed to characterize not only empty and full capsids but also partial capsids. This method utilizes continuous N-Rich chromatography with recycling between two identical AEX columns for the accumulation and isolation of partial capsids. The development process is comprehensively discussed, covering the preparation of reference materials representing full (rAAV-LacZ), partial (rAAV-GFP), and empty (rAAV-empty) capsids, N-rich method development, fraction analysis, determination of fluorescence response factors between capsid variants, and validation through comparison with other comparative techniques.
Collapse
Affiliation(s)
- Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Jaeweon Lee
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Kun Fang
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Gretchen V Gee
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Benjamin Rogers
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - David McNally
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
10
|
Loreto A, Merlini E, Coleman MP. Programmed axon death: a promising target for treating retinal and optic nerve disorders. Eye (Lond) 2024; 38:1802-1809. [PMID: 38538779 PMCID: PMC11226669 DOI: 10.1038/s41433-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 07/07/2024] Open
Abstract
Programmed axon death is a druggable pathway of axon degeneration that has garnered considerable interest from pharmaceutical companies as a promising therapeutic target for various neurodegenerative disorders. In this review, we highlight mechanisms through which this pathway is activated in the retina and optic nerve, and discuss its potential significance for developing therapies for eye disorders and beyond. At the core of programmed axon death are two enzymes, NMNAT2 and SARM1, with pivotal roles in NAD metabolism. Extensive preclinical data in disease models consistently demonstrate remarkable, and in some instances, complete and enduring neuroprotection when this mechanism is targeted. Findings from animal studies are now being substantiated by genetic human data, propelling the field rapidly toward clinical translation. As we approach the clinical phase, the selection of suitable disorders for initial clinical trials targeting programmed axon death becomes crucial for their success. We delve into the multifaceted roles of programmed axon death and NAD metabolism in retinal and optic nerve disorders. We discuss the role of SARM1 beyond axon degeneration, including its potential involvement in neuronal soma death and photoreceptor degeneration. We also discuss genetic human data and environmental triggers of programmed axon death. Lastly, we touch upon potential therapeutic approaches targeting NMNATs and SARM1, as well as the nicotinamide trials for glaucoma. The extensive literature linking programmed axon death to eye disorders, along with the eye's suitability for drug delivery and visual assessments, makes retinal and optic nerve disorders strong contenders for early clinical trials targeting programmed axon death.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
- School of Medical Sciences and Save Sight Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
11
|
Mylvara AV, Gibson AL, Gu T, Davidson CD, Incao AA, Melnyk K, Pierre-Jacques D, Cologna SM, Venditti CP, Porter FD, Pavan WJ. Optimization of systemic AAV9 gene therapy in Niemann-Pick disease type C1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597901. [PMID: 38895471 PMCID: PMC11185674 DOI: 10.1101/2024.06.07.597901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Niemann-Pick disease, type C1 (NPC1) is a rare, fatal neurodegenerative disorder caused by pathological variants in NPC1, which encodes a lysosomal cholesterol transport protein. There are no FDA approved treatments for this disorder. Both systemic and central nervous system delivery of AAV9-hNPC1 have shown significant disease amelioration in NPC1 murine models. To assess the impact of dose and window of therapeutic efficacy in Npc1 m1N mice, we systemically administered three different doses of AAV9-hNPC1 at 4 weeks old and the medium dose at pre-, early, and post-symptomatic timepoints. Higher vector doses and treatment earlier in life were associated with enhanced transduction in the nervous system and resulted in significantly increased lifespan. Similar beneficial effects were noted after gene therapy in Npc1 I1061T mice, a model that recapitulates a common human hypomorphic variant. Our findings help define dose ranges, treatment ages, and efficacy in severe and hypomorphic models of NPC1 deficiency and suggest that earlier delivery of AAV9-hNPC1 in a pre-symptomatic disease state is likely to yield optimal outcomes in individuals with NPC1.
Collapse
Affiliation(s)
- Avani V Mylvara
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - Alana L Gibson
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, CA
| | - Tansy Gu
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
- University of North Carolina, Chapel Hill, NC
| | - Cristin D Davidson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - Art A Incao
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - Katerina Melnyk
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | | | | | - Charles P Venditti
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| |
Collapse
|
12
|
Korn S, Al-Nosairy KO, Gopiswaminathan AV, João C, Scanferla L, Bach M, Hoffmann MB. Scotopic and Photopic Conventional Visual Acuity and Hyperacuity - Binocular Summation. Transl Vis Sci Technol 2024; 13:25. [PMID: 38639931 PMCID: PMC11037493 DOI: 10.1167/tvst.13.4.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Purpose The purpose of this study was to determine and compare binocular summation (BiS) of conventional visual acuity (cVA) versus hyperacuity (hVA) for photopic and scotopic luminance conditions as a potential biomarker to assess the outcome of interventions on binocular function. Methods Sixteen young adults (age range [years] = 21-31; 8 women; cVA logMAR < 0.0) participated in this study. The Freiburg Visual Acuity Test (FrACT) was used for VA testing and retested on another day. Both cVA and hVA were determined for dark grey optotypes on light grey background. Participants underwent 40 minutes of dark adaptation prior to scotopic VA testing. Binocular and monocular VA testing was performed. The eye with better VA over the 2 days of testing was selected, the BiS was quantified (binocular VA - better monocular VA) and repeated measures ANOVAs were performed. Results Binocular VA exceeded monocular VA for all luminance conditions, VA-types, and sessions. We report BiS estimates for photopic and scotopic cVA and hVA, (logMAR BiS ± SEM [decimal BiS]): photopic = -0.01 ± 0.01 [1.03] and -0.06 ± 0.03 [1.15]; and scotopic = -0.05 ± 0.01 [1.12] and -0.11 ± 0.04 [1.28], respectively). Improvement for binocular vision estimates ranged from 0.01 to 0.11 logMAR. A repeated-measures ANOVA (RM ANOVA) did not reveal significant effects of LUMINANCE or VA TYPE on BiS, albeit a trend for strongest BiS for scotopic hVA (15% vs. 28%, photopic versus scotopic, respectively) and weakest for photopic cVA (3% vs. 12%, photopic versus scotopic conditions, respectively). Conclusions Our results indicate that BiS of VA is relevant to scotopic and photopic hVA and cVA. It appears therefore a plausible candidate biomarker to assess the outcome of retinal therapies restoring rod or cone function on binocular vision. Translational Relevance Binocular summation of visual acuity might serve as a clinical biomarker to monitor therapy outcome on binocular rod and cone-mediated vision.
Collapse
Affiliation(s)
- Sophie Korn
- Department of Ophthalmology, Otto-von-Guericke-University, Magdeburg, Germany
| | | | | | - Catarina João
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, Groningen, The Netherlands
| | - Lorenzo Scanferla
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, Groningen, The Netherlands
| | - Michael Bach
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Michael B. Hoffmann
- Department of Ophthalmology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioural Brain Sciences, Magdeburg, Germany
| |
Collapse
|
13
|
Sai H, Ollington B, Rezek FO, Chai N, Lane A, Georgiadis T, Bainbridge J, Michaelides M, Sacristan-Reviriego A, Perdigão PR, Leung A, van der Spuy J. Effective AAV-mediated gene replacement therapy in retinal organoids modeling AIPL1-associated LCA4. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102148. [PMID: 38439910 PMCID: PMC10910061 DOI: 10.1016/j.omtn.2024.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Biallelic variations in the aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) gene cause Leber congenital amaurosis subtype 4 (LCA4), an autosomal recessive early-onset severe retinal dystrophy that leads to the rapid degeneration of retinal photoreceptors and the severe impairment of sight within the first few years of life. Currently, there is no treatment or cure for AIPL1-associated LCA4. In this study, we investigated the potential of adeno-associated virus-mediated AIPL1 gene replacement therapy in two previously validated human retinal organoid (RO) models of LCA4. We report here that photoreceptor-specific AIPL1 gene replacement therapy, currently being tested in a first-in-human application, effectively rescued molecular features of AIPL1-associated LCA4 in these models. Notably, the loss of retinal phosphodiesterase 6 was rescued and elevated cyclic guanosine monophosphate (cGMP) levels were reduced following treatment. Transcriptomic analysis of untreated and AAV-transduced ROs revealed transcriptomic changes in response to elevated cGMP levels and viral infection, respectively. Overall, this study supports AIPL1 gene therapy as a promising therapeutic intervention for LCA4.
Collapse
Affiliation(s)
- Hali Sai
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bethany Ollington
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Farah O. Rezek
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Niuzheng Chai
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | | - James Bainbridge
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- NIHR Moorfields Biomedical Research Centre, London EC1V 2PD, UK
| | - Michel Michaelides
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- NIHR Moorfields Biomedical Research Centre, London EC1V 2PD, UK
| | - Almudena Sacristan-Reviriego
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Institute of Clinical Trials and Methodology, University College London, London WC1V 6LJ, UK
| | - Pedro R.L. Perdigão
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Amy Leung
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Jacqueline van der Spuy
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
14
|
Chaqour B, Duong TT, Yue J, Liu T, Camacho D, Dine KE, Esteve-Rudd J, Ellis S, Bennett J, Shindler KS, Ross AG. AAV2 vector optimization for retinal ganglion cell-targeted delivery of therapeutic genes. Gene Ther 2024; 31:175-186. [PMID: 38200264 DOI: 10.1038/s41434-023-00436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Recombinant adeno-associated virus (AAV)-2 has significant potential as a delivery vehicle of therapeutic genes to retinal ganglion cells (RGCs), which are key interventional targets in optic neuropathies. Here we show that when injected intravitreally, AAV2 engineered with a reporter gene driven by cytomegalovirus (CMV) enhancer and chicken β-actin (CBA) promoters, displays ubiquitous and high RGC expression, similar to its synthetic derivative AAV8BP2. A novel AAV2 vector combining the promoter of the human RGC-selective γ-synuclein (hSNCG) gene and woodchuck hepatitis post-transcriptional regulatory element (WPRE) inserted upstream and downstream of a reporter gene, respectively, induces widespread transduction and strong transgene expression in RGCs. High transduction efficiency and selectivity to RGCs is further achieved by incorporating in the vector backbone a leading CMV enhancer and an SV40 intron at the 5' and 3' ends, respectively, of the reporter gene. As a delivery vehicle of hSIRT1, a 2.2-kb therapeutic gene with anti-apoptotic, anti-inflammatory and anti-oxidative stress properties, this recombinant vector displayed improved transduction efficiency, a strong, widespread and selective RGC expression of hSIRT1, and increased RGC survival following optic nerve crush. Thus, AAV2 vector carrying hSNCG promoter with additional regulatory sequences may offer strong potential for enhanced effects of candidate gene therapies targeting RGCs.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Thu T Duong
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Jipeng Yue
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tehui Liu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | - David Camacho
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly E Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | - Scott Ellis
- Gyroscope Therapeutics Limited, a Novartis Company, London, N7 9AS, UK
| | - Jean Bennett
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Gemayel J, Chebly A, Kourie H, Hanna C, Mheidly K, Mhanna M, Karam F, Ghoussaini D, Najjar PE, Khalil C. Genome Engineering as a Therapeutic Approach in Cancer Therapy: A Comprehensive Review. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300201. [PMID: 38465225 PMCID: PMC10919288 DOI: 10.1002/ggn2.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 03/12/2024]
Abstract
Cancer is one of the foremost causes of mortality. The human genome remains stable over time. However, human activities and environmental factors have the power to influence the prevalence of certain types of mutations. This goes to the excessive progress of xenobiotics and industrial development that is expanding the territory for cancers to develop. The mechanisms involved in immune responses against cancer are widely studied. Genome editing has changed the genome-based immunotherapy process in the human body and has opened a new era for cancer treatment. In this review, recent cancer immunotherapies and the use of genome engineering technology are largely focused on.
Collapse
Affiliation(s)
- Jack Gemayel
- Faculty of SciencesBalamand UniversityBeirutLebanon
- FMPS Holding BIOTECKNO s.a.l. Research and Quality SolutionsNaccashBeirut60 247Lebanon
| | - Alain Chebly
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of MedicineSaint Joseph UniversityBeirutLebanon
- Higher Institute of Public HealthSaint Joseph UniversityBeirutLebanon
| | - Hampig Kourie
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of MedicineSaint Joseph UniversityBeirutLebanon
- Faculty of MedicineSaint Joseph UniversityBeirutLebanon
| | - Colette Hanna
- Faculty of MedicineLebanese American University Medical CenterRizk HospitalBeirutLebanon
| | | | - Melissa Mhanna
- Faculty of MedicineParis Saclay University63 Rue Gabriel PériLe Kremlin‐Bicêtre94270France
| | - Farah Karam
- Faculty of MedicineBalamand UniversityBeirutLebanon
| | | | - Paula El Najjar
- FMPS Holding BIOTECKNO s.a.l. Research and Quality SolutionsNaccashBeirut60 247Lebanon
- Department of Agricultural and Food Engineering, School of EngineeringHoly Spirit University of KaslikJounieh446Lebanon
| | - Charbel Khalil
- Reviva Regenerative Medicine CenterBsalimLebanon
- Bone Marrow Transplant UnitBurjeel Medical CityAbu DhabiUAE
- Lebanese American University School of MedicineBeirutLebanon
| |
Collapse
|
16
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, Danino T. Bacterial therapies at the interface of synthetic biology and nanomedicine. NATURE REVIEWS BIOENGINEERING 2024; 2:120-135. [PMID: 38962719 PMCID: PMC11218715 DOI: 10.1038/s44222-023-00119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 07/05/2024]
Abstract
Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Rodriguez D, Church KA, Smith CT, Vanegas D, Cardona SM, Muzzio IA, Nash KR, Cardona AE. Therapeutic Delivery of Soluble Fractalkine Ameliorates Vascular Dysfunction in the Diabetic Retina. Int J Mol Sci 2024; 25:1727. [PMID: 38339005 PMCID: PMC10855319 DOI: 10.3390/ijms25031727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.
Collapse
Affiliation(s)
- Derek Rodriguez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Kaira A. Church
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Chelsea T. Smith
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Sandra M. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Isabel A. Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA;
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA;
| | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| |
Collapse
|
18
|
Fischer MD, Simonelli F, Sahni J, Holz FG, Maier R, Fasser C, Suhner A, Stiehl DP, Chen B, Audo I, Leroy BP. Real-World Safety and Effectiveness of Voretigene Neparvovec: Results up to 2 Years from the Prospective, Registry-Based PERCEIVE Study. Biomolecules 2024; 14:122. [PMID: 38254722 PMCID: PMC10813228 DOI: 10.3390/biom14010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Voretigene neparvovec (VN) is the first available gene therapy for patients with biallelic RPE65-mediated inherited retinal dystrophy who have sufficient viable retinal cells. PERCEIVE is an ongoing, post-authorization, prospective, multicenter, registry-based observational study and is the largest study assessing the real-world, long-term safety and effectiveness of VN. Here, we present the outcomes of 103 patients treated with VN according to local prescribing information. The mean (SD) age was 19.5 (10.85) years, 52 (50.5%) were female, and the mean (SD) duration of the follow up was 0.8 (0.64) years (maximum: 2.3 years). Thirty-five patients (34%) experienced ocular treatment-emergent adverse events (TEAEs), most frequently related to chorioretinal atrophy (n = 13 [12.6%]). Eighteen patients (17.5%; 24 eyes [13.1%]) experienced ocular TEAEs of special interest, including intraocular inflammation and/or infection related to the procedure (n = 7). The mean (SD) changes from baseline in full-field light-sensitivity threshold testing (white light) at month 1, month 6, year 1, and year 2 were -16.59 (13.48) dB (51 eyes), -18.24 (14.62) dB (42 eyes), -15.84 (14.10) dB (10 eyes), and -13.67 (22.62) dB (13 eyes), respectively. The change in visual acuity from baseline was not clinically significant. Overall, the outcomes of the PERCEIVE study are consistent with the findings of VN pivotal clinical trials.
Collapse
Affiliation(s)
- M. Dominik Fischer
- Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Via S. Pansini, 5, 80131 Napoli, Italy;
| | - Jayashree Sahni
- Novartis Pharma AG, 4056 Basel, Switzerland; (J.S.); (A.S.); (D.P.S.)
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Straße 2, 53127 Bonn, Germany;
| | - Rainer Maier
- Novartis Pharma AG, 4056 Basel, Switzerland; (J.S.); (A.S.); (D.P.S.)
| | - Christina Fasser
- Retina International, D02 TW98 Dublin, Ireland; Retina Suisse, 8005 Zürich, Switzerland;
| | - Andrea Suhner
- Novartis Pharma AG, 4056 Basel, Switzerland; (J.S.); (A.S.); (D.P.S.)
| | - Daniel P. Stiehl
- Novartis Pharma AG, 4056 Basel, Switzerland; (J.S.); (A.S.); (D.P.S.)
| | - Bee Chen
- Novartis Pharmaceutical Corporation, East Hanover, NJ 7936, USA;
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France;
- 15–20 Hôpital National de la Vision, National Rare Disease Center REFERET, INSERM-DGOS CIC1423, 75012 Paris, France
| | - Bart P. Leroy
- Department of Ophthalmology & Center for Medical Genetics Ghent, Ghent University & Ghent University Hospital, 9000 Ghent, Belgium;
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Aziz AA, Khan H, Khanani ZA, Thomas MJ, Khan H, Ahmed A, Gahn GM, Khanani AM. Review of Gene Therapy Clinical Trials for Retinal Diseases. Int Ophthalmol Clin 2024; 64:141-151. [PMID: 38146887 DOI: 10.1097/iio.0000000000000517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
|
20
|
Finocchio L, Zeppieri M, Gabai A, Toneatto G, Spadea L, Salati C. Recent Developments in Gene Therapy for Neovascular Age-Related Macular Degeneration: A Review. Biomedicines 2023; 11:3221. [PMID: 38137442 PMCID: PMC10740940 DOI: 10.3390/biomedicines11123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifactorial disease and a leading cause of irreversible blindness in the elderly population. The anti-vascular endothelial growth factor (anti-VEGF) therapy has revolutionized the management and prognosis of neovascular AMD (nAMD) and is currently the standard of care for this disease. However, patients are required to receive repeated injections, imposing substantial social and economic burdens. The implementation of gene therapy methods to achieve sustained delivery of various therapeutic proteins holds the promise of a single treatment that could ameliorate the treatment challenges associated with chronic intravitreal therapy, and potentially improve visual outcomes. Several early-phase trials are currently underway, evaluating the safety and efficacy of gene therapy for nAMD; however, areas of controversy persist, including the therapeutic target, route of administration, and potential safety issues. In this review, we assess the evolution of gene therapy for nAMD and summarize several preclinical and early-stage clinical trials, exploring challenges and future directions.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Giacomo Toneatto
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
21
|
Toualbi L, Toms M, Almeida PV, Harbottle R, Moosajee M. Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia. Int J Mol Sci 2023; 24:15225. [PMID: 37894906 PMCID: PMC10607001 DOI: 10.3390/ijms242015225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Richard Harbottle
- cDNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.V.A.)
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
22
|
Jong ED, Hacibekiroglu S, Guo L, Sawula E, Li B, Li C, Ho MT, Shoichet MS, Wallace VA, Nagy A. Soluble CX3CL1-expressing retinal pigment epithelium cells protect rod photoreceptors in a mouse model of retinitis pigmentosa. Stem Cell Res Ther 2023; 14:212. [PMID: 37605279 PMCID: PMC10441732 DOI: 10.1186/s13287-023-03434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is an inherited retinal disease that results in photoreceptor degeneration, leading to severe vision loss or blindness. Due to its genetic heterogeneity, developing a new gene therapy to correct every genetic mutation contributing to its progression is infeasible. Photoreceptor transplantation can be harnessed to restore vision; however, this approach is limited by poor cell survival and synaptic integration into the neural retina. Thus, we developed a combined cell and gene therapy that is expected to protect photoreceptors in most, if not all, cases of RP. METHODS Human embryonic stem cells (hESCs) modified with our FailSafe™ system were genetically engineered to overexpress sCX3CL1, an inhibitor of microglia activation that has been shown to preserve photoreceptor survival and function in mouse models of RP, independent of the genetic cause. These cells were differentiated into human retinal pigment epithelium (hRPE) cells and used as therapeutic cells due to their longevity and safety, both of which have been demonstrated in preclinical and clinical studies. Transgenic hRPE were delivered into the subretinal space of immunodeficient mice and the rd10 mouse model of RP to evaluate donor cell survival and retention of transgene expression. The outer nuclear layer was quantified to assess photoreceptor protection. RESULTS Transgenic FailSafe™ hRPE (FS-hRPE) cells can survive for at least four months in the retina of immunodeficient mice and retain transgene expression. However, these cells do not persist beyond two weeks post-injection in the retina of immunocompetent rd10 recipients, despite Cyclosporine A treatment. Nevertheless, sCX3CL1-expressing FailSafe™ hRPE cells prevented photoreceptor degeneration in a local acting manner during the duration of their presence in the subretinal space. CONCLUSIONS Transgenic hESCs differentiate into hRPE cells and retain sCX3CL1 transgene expression both in vitro and in vivo. Moreover, hRPE cells delivered to the subretinal space of rd10 mice prevented photoreceptor degeneration in a local-acting manner, suggesting that this approach could have applications for preserving photoreceptors in specific subregions of the retina, such as the macula. Overall, our study not only reveals the potential of a combined cell and gene therapy for the treatment of RP, but also the possibility of using hRPE cells to deliver therapeutic biologics in situ to treat diseases over long-term.
Collapse
Affiliation(s)
- Eric D Jong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sabiha Hacibekiroglu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Lily Guo
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Evan Sawula
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Biao Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Chengjin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Margaret T Ho
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Nilles JP, Roberts D, Salmon JH, Song L, O’Dea C, Marjoram LT, Bower JJ, Hirsch ML, Gilger BC. AAV-mediated expression of HLA-G for the prevention of experimental ocular graft vs. host disease. Mol Ther Methods Clin Dev 2023; 29:227-235. [PMID: 37090476 PMCID: PMC10119803 DOI: 10.1016/j.omtm.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Ocular graft versus host disease (OGvHD) develops after allogeneic hematopoietic stem cell transplantation (HSCT) and manifests as ocular surface inflammatory disease. This study evaluated the efficacy of adeno-associated virus (AAV) gene therapy encoding human leukocyte antigen G (HLA-G) to inhibit OGvHD. A major histocompatibility mismatch chronic OGvHD murine model was evaluated. 7 days after HSCT, mice were dosed subconjunctivally with scAAV8-HLA-G1/5 (1 x 109 vg/eye), topical cyclosporine (twice daily), or left untreated. Body weights and tear production (red thread test) were recorded, and eyelid, corneal opacity, and corneal fluorescein retention were scored through day 44 after HSCT. Tissues were collected for vector biodistribution, ocular histology, and immunofluorescence. Compared with untreated HSCT eyes, those dosed with scAAV8-HLA-G1/5 had significantly reduced clinical inflammatory signs of OGvHD. On histology, eyes that received scAAV8-HLA-G1/5 or cyclosporine had a significantly lower mean limbal mononuclear cell count when compared with non-treated HSCT eyes. HLA-G immunofluorescence was detected in the subconjunctiva and peripheral cornea in HSCT animals treated with scAAV8-HLA-G1/5. Vector genomes were detected in the lacrimal gland, but not in the other tested organs. These results provide evidence that subconjunctival AAV targets ocular surface and corneal disease and support that HLA-G-based gene therapy may be an effective treatment for OGvHD.
Collapse
Affiliation(s)
- Jacob P. Nilles
- Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Darby Roberts
- Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jacklyn H. Salmon
- Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Liujiang Song
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
| | - Carly O’Dea
- Powered Research, Research Triangle Park, NC, USA
| | | | | | - Matthew L. Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Brian C. Gilger
- Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
24
|
Yan AL, Du SW, Palczewski K. Genome editing, a superior therapy for inherited retinal diseases. Vision Res 2023; 206:108192. [PMID: 36804635 PMCID: PMC10460145 DOI: 10.1016/j.visres.2023.108192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/17/2023]
Abstract
Gene augmentation and genome editing are promising strategies for the treatment of monogenic inherited retinal diseases. Although gene augmentation treatments are commercially available for inherited retinal diseases, there are many shortcomings that need to be addressed, like progressive retinal degeneration and diminishing efficacy over time. Innovative CRISPR-Cas9-based genome editing technologies have broadened the proportion of treatable genetic disorders and can greatly improve or complement treatment outcomes from gene augmentation. Progress in this relatively new field involves the development of therapeutics including gene disruption, ablate-and-replace strategies, and precision gene correction techniques, such as base editing and prime editing. By making direct edits to endogenous DNA, genome editing theoretically guarantees permanent gene correction and long-lasting treatment effects. Improvements to delivery modalities aimed at limiting persistent gene editor activity have displayed an improved safety profile and minimal off-target editing. Continued progress to advance precise gene correction and associated delivery strategies will establish genome editing as the preferred treatment for genetic retinal disorders. This commentary describes the applications, strengths, and drawbacks of conventional gene augmentation approaches, recent advances in precise genome editing in the retina, and promising preclinical strategies to facilitate the use of robust genome editing therapies in human patients.
Collapse
Affiliation(s)
- Alexander L Yan
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Program in Neuroscience, Amherst College, Amherst, MA 01002, USA
| | - Samuel W Du
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
25
|
Perdigão PRL, Ollington B, Sai H, Leung A, Sacristan-Reviriego A, van der Spuy J. Retinal Organoids from an AIPL1 CRISPR/Cas9 Knockout Cell Line Successfully Recapitulate the Molecular Features of LCA4 Disease. Int J Mol Sci 2023; 24:ijms24065912. [PMID: 36982987 PMCID: PMC10057647 DOI: 10.3390/ijms24065912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is expressed in photoreceptors where it facilitates the assembly of phosphodiesterase 6 (PDE6) which hydrolyses cGMP within the phototransduction cascade. Genetic variations in AIPL1 cause type 4 Leber congenital amaurosis (LCA4), which presents as rapid loss of vision in early childhood. Limited in vitro LCA4 models are available, and these rely on patient-derived cells harbouring patient-specific AIPL1 mutations. While valuable, the use and scalability of individual patient-derived LCA4 models may be limited by ethical considerations, access to patient samples and prohibitive costs. To model the functional consequences of patient-independent AIPL1 mutations, CRISPR/Cas9 was implemented to produce an isogenic induced pluripotent stem cell line harbouring a frameshift mutation in the first exon of AIPL1. Retinal organoids were generated using these cells, which retained AIPL1 gene transcription, but AIPL1 protein was undetectable. AIPL1 knockout resulted in a decrease in rod photoreceptor-specific PDE6α and β, and increased cGMP levels, suggesting downstream dysregulation of the phototransduction cascade. The retinal model described here provides a novel platform to assess functional consequences of AIPL1 silencing and measure the rescue of molecular features by potential therapeutic approaches targeting mutation-independent pathogenesis.
Collapse
Affiliation(s)
- Pedro R L Perdigão
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bethany Ollington
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Hali Sai
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Amy Leung
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | |
Collapse
|
26
|
Jánossy Á, Vizvári E, Lőrincz M, Pál S, Nagy D, Benedek G, Tóth-Molnár E, Janáky M. Long-Term Follow-Up of a Family with Retinal Dystrophy Caused by RPE65 Mutation. Case Rep Ophthalmol 2023; 14:454-461. [PMID: 37901629 PMCID: PMC10601797 DOI: 10.1159/000530086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/10/2023] [Indexed: 10/31/2023] Open
Abstract
We present here the case histories of two siblings, a boy and a girl, with Leber's congenital amaurosis (LCA). The diagnosis was based on non-recordable full-field electroretinogram (ffERG). The long-term ophthalmologic follow-up included kinetic perimetry (Goldmann), visual evoked potentials with flash stimulation, optical coherence tomography (OCT: B-scan images at the area of fovea), and multifocal ERG. The boy (sibling 1, born in 1986) was sent for electrophysiological examination at the age of four because he had nystagmus from birth. The diagnosis would be LCA based on non-recordable ffERG. Four years later, his visual acuity decreased rapidly due to vitreous opacification, caused by the autoimmune reaction of the retinal pigment epithelial cells. This was treated successfully with steroid injections, administered parabulbarly. Retinal autoimmune panel was not performed. Genetic testing became available only in 2019, and it revealed a RPE65 gene mutation: (NM_000329.2) c.{442G>A};{442G>A} (p.{Glu148Lys}; {Glu148Lys}). His sister (sibling 2, born in 1993) showed similar symptoms, caused by the same genetic mutation. Even though their parents were free of symptoms, it appeared that they were heterozygous carriers of the same mutation. Research of the family tree revealed a consanguineous marriage four generations before. Both siblings received successful gene therapy relatively late in their age: sibling 1 was 35 and sibling 2 was 28 years old, meaning that they were at an advanced stage of the disease. Nevertheless, follow-up examinations showed measurable improvements in their retinal function. The study shows that electrophysiological examinations, including flash-evoked responses, are useful in the objective evaluation of the progression in the central photoreceptor loss during the follow-up of LCA. The results also show that gene therapy can have beneficial effects even at an advanced stage of the disease.
Collapse
Affiliation(s)
- Ágnes Jánossy
- Department of Ophthalmology, Faculty of Medicine/University of Szeged, Szeged, Hungary
| | - Eszter Vizvári
- Department of Ophthalmology, Faculty of Medicine/University of Szeged, Szeged, Hungary
| | - Máté Lőrincz
- Department of Ophthalmology, Faculty of Medicine/University of Szeged, Szeged, Hungary
| | - Szilvia Pál
- Department of Ophthalmology, Faculty of Medicine/University of Szeged, Szeged, Hungary
| | - Dóra Nagy
- Department of Clinical Genetics, Faculty of Medicine/University of Szeged, Szeged, Hungary
| | - György Benedek
- Department of Physiology, Faculty of Medicine/University of Szeged, Szeged, Hungary
| | - Edit Tóth-Molnár
- Department of Ophthalmology, Faculty of Medicine/University of Szeged, Szeged, Hungary
| | - Márta Janáky
- Department of Ophthalmology, Faculty of Medicine/University of Szeged, Szeged, Hungary
| |
Collapse
|
27
|
Rybarikova M, Almacellas Barbanoj A, Schorge S, Déglon N. CNS gene therapy: present developments and emerging trends accelerating industry-academia pathways. Hum Gene Ther 2022; 33:913-922. [PMID: 36070435 DOI: 10.1089/hum.2022.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recent success of first central nervous system gene therapies has reinvigorated the growing community of gene therapy researchers and strengthened the field's market position. We are witnessing an increase of clinical trials with long-term efficiency mainly for neurometabolic, neurodegenerative and neurodevelopmental diseases caused by loss-of-function mutations. The ever-expanding knowledge and accessibility to the most advanced tools allow enrichment of applications to more complex diseases. This gradually contributes towards sealing the gap between top diseases impacting current global health and those towards which gene therapy development is currently aimed. Here, we highlight innovative therapeutic approaches that have reached the clinics and outline the latest improvements of vector design and targeting. Finally, we address the pressing challenges faced by clinical trials and the direction they are heading.
Collapse
Affiliation(s)
- Margareta Rybarikova
- Lausanne University Hospital, Department of Clinical Neurosciences, Lausanne, Vaud, Switzerland.,Lausanne University Hospital, Neuroscience Research Center , Lausanne, Vaud, Switzerland;
| | - Amanda Almacellas Barbanoj
- University College London, Institute of Neurology (IoN), Department of Clinical and Experimental Epilepsy (DCEE), London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Stephanie Schorge
- University College London, Institute of Neurology (IoN), Department of Clinical and Experimental Epilepsy (DCEE), London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Nicole Déglon
- Lausanne University Hospital, Department of Clinical Neurosciences, Lausanne, Vaud, Switzerland.,Lausanne University Hospital, Neuroscience Research Center, Lausanne, Vaud, Switzerland;
| |
Collapse
|
28
|
Polikarpova AV, Egorova TV, Bardina MV. Genetically modified animal models of hereditary diseases for testing of gene-directed therapy. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.82618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disease-causing genes have been identified for many severe muscular and neurological genetic disorders. Advances in the gene therapy field offer promising solutions for drug development to treat these life-threatening conditions. Depending on how the mutation affects the function of the gene product, different gene therapy approaches may be beneficial. Gene replacement therapy is appropriate for diseases caused by mutations that result in the deficiency of the functional protein. Gene suppression strategy is suggested for disorders caused by the toxic product of the mutant gene. Splicing modulators, genome editing, and base editing techniques can be applied to disorders with different types of underlying mutations. Testing potential drugs in animal models of human diseases is an indispensable step of development. Given the specific gene therapy approach, appropriate animal models can be generated using a variety of technologies ranging from transgenesis to precise genome editing. In this review, we discuss technologies used to generate small and large animal models of the most common muscular and neurological genetic disorders. We specifically focus on animal models that were used to test gene therapies based on adeno-associated vectors and antisense nucleotides.
Collapse
|
29
|
Elhani I, Hentgen V, Grateau G, Georgin-Lavialle S. Neurological manifestations in mevalonate kinase deficiency: A systematic review. Mol Genet Metab 2022; 136:85-93. [PMID: 35525811 DOI: 10.1016/j.ymgme.2022.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Mevalonate kinase deficiency (MKD) is a monogenic auto-inflammatory disease. Its manifestations range from partial MKD to mevalonic aciduria (MVA). All patients display a periodic fever, and MVA patients additionally exhibit severe neurological involvement. The objective of this work was to describe neurological manifestations of MKD. METHODS A systematic literature review was performed from January 1990 to January 2022. Forty-five patients from 18 case reports and five cohort studies were included in the analysis. RESULTS In cohort studies, the most-reported manifestations were headaches (41%) and fatigue (31%). Serious involvements including ataxia and developmental delay were described less than 1% of patients but 22-31% of case reports. They consistently appeared in the first years of life. Retinal dystrophy was frequently reported (31%) in case reports. Other manifestations, including uveitis, aseptic meningitis, and stroke remained rare. DISCUSSION Severe neurological manifestations are rare in MKD but are responsible for major functional disabilities. They are present at onset and never appear at follow-up of patients with mild MKD. Conversely, headaches and fatigue are frequent symptoms that should be investigated. Visual examinations should be performed on the appearance of visual symptoms. The efficacy of anti-IL-1β therapy on neurological manifestations should be further investigated.
Collapse
Affiliation(s)
- Inès Elhani
- Sorbonne University, Department of Internal Medicine, AP-HP, Hôpital Tenon, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses Inflammatoire (CEREMAIA), Paris, France; Department of Pediatrics, National Reference Center for Auto-inflammatory Diseases and Amyloidosis, CEREMAIA, Versailles Hospital, Versailles, France
| | - Véronique Hentgen
- Department of Pediatrics, National Reference Center for Auto-inflammatory Diseases and Amyloidosis, CEREMAIA, Versailles Hospital, Versailles, France
| | - Gilles Grateau
- Sorbonne University, Department of Internal Medicine, AP-HP, Hôpital Tenon, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses Inflammatoire (CEREMAIA), Paris, France
| | - Sophie Georgin-Lavialle
- Sorbonne University, Department of Internal Medicine, AP-HP, Hôpital Tenon, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses Inflammatoire (CEREMAIA), Paris, France.
| |
Collapse
|
30
|
Liang Q, Li Q, Ren B, Yin ZQ. Intravenous infusion of small umbilical cord mesenchymal stem cells could enhance safety and delay retinal degeneration in RCS rats. BMC Ophthalmol 2022; 22:67. [PMID: 35144581 PMCID: PMC8832832 DOI: 10.1186/s12886-021-02171-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background Human umbilical cord mesenchymal stem cells (UCMSCs) transplantation is a promising therapy for the treatment of retinitis pigmentosa (RP). However, intravenously infused cells may be blocked in the lung, increasing the risk of vascular obstruction, which needs to be optimized to further improve safety and efficacy. Methods We derived small UCMSCs (S-UCMSCs) from filtering UCMSCs with a 10-μm filter, and compared with UCMSCs by flow cytometry, directional differentiation culture and transcriptome sequencing. Then the S-UCMSCs and UCMSCs were intravenously infused in the Royal College Surgeons (RCS) rats to evaluate the safety and the efficacy. Results The diameter of S-UCMSCs ranged from 5.568 to 17.231 μm, with an average diameter of 8.636 ± 2.256 μm, which was significantly smaller than that of UCMSCs. Flow cytometry, immunofluorescence and transcriptome sequencing demonstrated that the S-UCMSCs and UCMSCs were the same kind of MSCs, and the S-UCMSCs were more proliferative. After the S-UCMSCs and UCMSCs were intravenously infused into the Royal College of Surgeons (RCS) rats at a dose of 1 × 106 cells/rat, the S-UCMSCs blocked in the lungs were significantly fewer and disappeared more quickly than UCMSCs. The b wave of the flash electroretinogram was improved at 7 d, and the retinal outer nuclear layer thickness was thicker at 7 d and 14 d. The expression level of inflammation was inhibited, and the expression level of neurotrophic factors was upregulated in the retina and serum after transplantation. Conclusions S-UCMSCs intravenous infusion was safer than UCMSCs and could delay retinal degeneration and protect visual function in RCS rats, which may be a preferable therapeutic approach for RP. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-021-02171-3.
Collapse
Affiliation(s)
- Qingling Liang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration, Chongqing, 400038, China.
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration, Chongqing, 400038, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration, Chongqing, 400038, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration, Chongqing, 400038, China.
| |
Collapse
|
31
|
Khanani AM, Thomas MJ, Aziz AA, Weng CY, Danzig CJ, Yiu G, Kiss S, Waheed NK, Kaiser PK. Review of gene therapies for age-related macular degeneration. Eye (Lond) 2022; 36:303-311. [PMID: 35017696 PMCID: PMC8807824 DOI: 10.1038/s41433-021-01842-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
Gene therapies aim to deliver a therapeutic payload to specified tissues with underlying protein deficiency. Since the 1990s, gene therapies have been explored as potential treatments for chronic conditions requiring lifetime care and medical management. Ocular gene therapies target a range of ocular disorders, but retinal diseases are of particular importance due to the prevalence of retinal disease and the current treatment burden of such diseases on affected patients, as well as the challenge of properly delivering these therapies to the target tissue. The purpose of this review is to provide an update on the most current data available for five different retinal gene therapies currently undergoing clinical trials for use against age-related macular degeneration (AMD) and the development of novel delivery routes for the administration of such therapies. Research has been performed and compiled from PubMed and the select authors of this manuscript on the treatment and effectiveness of five current retinal gene therapies: Luxturna, ADVM-022, RGX-314, GT-005, and HMR59. We present the available data of current clinical trials for the treatment of neovascular and dry age-related macular degeneration with different AAV-based gene therapies. We also present current research on the progress of developing novel routes of administration for ocular gene therapies. Retinal gene therapies offer the potential for life-changing treatment for chronic conditions like age-related macular degeneration with a single administration. In doing so, gene therapies change the landscape of treatment options for these chronic conditions for both patient and provider.
Collapse
Affiliation(s)
- Arshad M. Khanani
- grid.492896.8Sierra Eye Associates, Reno, NV USA ,grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Mathew J. Thomas
- grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Aamir A. Aziz
- grid.492896.8Sierra Eye Associates, Reno, NV USA ,grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Christina Y. Weng
- grid.39382.330000 0001 2160 926XDepartment of Ophthalmology, Baylor College of Medicine, Houston, TX USA
| | - Carl J. Danzig
- Rand Eye Institute, Deerfield Beach, FL USA ,grid.255951.fFlorida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL USA
| | - Glenn Yiu
- grid.27860.3b0000 0004 1936 9684Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA USA
| | - Szilárd Kiss
- grid.413734.60000 0000 8499 1112Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY USA
| | - Nadia K. Waheed
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Tufts University School of Medicine, Boston, MA USA
| | - Peter K. Kaiser
- grid.239578.20000 0001 0675 4725Cole Eye Institute, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
32
|
Olufsen ME, Spindler L, Sørensen NB, Christiansen AT, Alberti M, Heegaard S, Kiilgaard JF. Controlled subretinal injection pressure prevents damage in pigs. Ophthalmologica 2022; 245:285-294. [PMID: 35073557 DOI: 10.1159/000522110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
Abstract
Introduction Administration of retinal gene- and stem cell therapy in patients with retinal degenerative diseases (RDD) is in many cases dependent of a subretinal approach. It has been indicated that manual subretinal injection is associated with outer retinal damage, which may be explained be high flow rate in the injection cannula. In the present porcine study, we evaluated flow-related retinal damage after controlled subretinal injection at different flow rates. Methods Flow rate through a 41G cannula was estimated at different injection pressures (6-48 PSI (pounds per square inch)) in an in-vitro setup. A linear correlation between flow rate and injection pressure was found from 6-32 PSI. In full anesthesia, 12 pigs were vitrectomized and received a controlled subretinal injection of 300 microliters balanced saline solution at injection pressures of either 14, 24 and 32 PSI (four in each group). Prior to surgery and two and four weeks after surgery, the eyes where examined by multifocal electroretinogram (mfERG) and fundus photographs. At the end of follow-up, the eyes were enucleated for histology. Results The in vitro flow study determined that the flow in a 41 G cannula shift from laminar to tubular at 32 PSI, and that the manual injection flow is tubular. In the porcine study we showed a significant difference in retinal pigment epithelium (RPE) damage between the three pressure groups (p = 0.0096). There was no significant difference in damage to the outer retina (p = 0.1526), but the high-pressure group (32 PSI) had most outer retinal damage. The middle-pressure group (24 PSI) showed minimum retinal damage. There was no significant change in the mfERG ratios during follow-up. Discussion/Conclusion This study indicates that an injection pressure at approximately 24 PSI might be safe for subretinal delievery. Retinal damage at low injection pressures may be explained by mechanical damage to the RPE due to prolonged needle time in the subretinal space, whilst retinal damage at high pressures can be related to high flow in the injection cannula. Controlled subretinal injection pressure of 24 PSI showed minimum mechanical and flow-related damage to the porcine retina.
Collapse
Affiliation(s)
- Madeline Evers Olufsen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark,
| | - Liva Spindler
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Nina Buus Sørensen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Mark Alberti
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
33
|
Deng C, Zhao PY, Branham K, Schlegel D, Fahim AT, Jayasundera TK, Khan N, Besirli CG. Real-world outcomes of voretigene neparvovec treatment in pediatric patients with RPE65-associated Leber congenital amaurosis. Graefes Arch Clin Exp Ophthalmol 2022; 260:1543-1550. [PMID: 35001204 PMCID: PMC9010358 DOI: 10.1007/s00417-021-05508-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To investigate real-world safety and efficacy of voretigene neparvovec gene therapy administration in pediatric patients with biallelic RPE65 disease-causing variants. METHODS A retrospective study of 27 eyes of 14 patients with RPE65-associated Leber congenital amaurosis examined postoperative complications and longitudinal changes in photoreceptor function following treatment with subretinal injection of voretigene neparvovec. Full-field stimulus threshold testing (FST), Goldmann visual fields (GVF), best-corrected visual acuity (BCVA), and central subfield thickness (CST) on optical coherence tomography (OCT) scans were collected preoperatively and up to 12 months posttreatment. RESULTS Baseline through 6-12 month follow-up FST and GVF data were obtained for 13 eyes of 7 patients. FST improved for each eye after treatment with a mean improvement of 2.1 log-units (P < 0.001) and GVF improved for each eye with a mean improvement of 221 sum degrees (P < 0.001). BCVA improved from logMAR 0.98 at baseline to logMAR 0.83 at last follow-up (P < 0.001). Across 19 eyes of 10 patients included in CST analysis, there was a small but statistically significant 9-μ decrease in mean CST from baseline to last follow-up (P < 0.001). The most common postoperative issues included elevation in intraocular pressure (59%), persistent intraocular inflammation (15%), and vitreous opacities (26%) that resolved over a period of months. CONCLUSIONS This report provides some of the earliest longitudinal real-world evidence of the pediatric safety and efficacy of voretigene neparvovec using multiple functional and structural measures of the retina. Outcomes demonstrate significant improvements in visual function consistent with clinical trial results.
Collapse
Affiliation(s)
- Callie Deng
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Peter Y Zhao
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Dana Schlegel
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Thiran K Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Naheed Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Kadyshev VV, Zolnikova IV, Khalanskaya OV, Stepanova AA, Kutsev SI. [Inherited retinal dystrophy: first results of RPE65 gene replacement therapy in Russia]. Vestn Oftalmol 2022; 138:48-57. [PMID: 36004591 DOI: 10.17116/oftalma202213804148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE To present the main aspects of interdisciplinary diagnostics of patients with hereditary retinal diseases and the first results of the follow-up of patients with inherited retinal dystrophies (IRD) caused by biallelic mutations in the gene RPE65 after gene replacement therapy in Russia. MATERIAL AND METHODS The cohort of patients consisted of six children (5-15 years old) with the diagnosis of Leber amaurosis type 2. All patients underwent a multi-disciplinary examination using conventional clinical, instrumental and molecular-genetic methods. Genetic diagnosis was established based on the results of two-stage DNA diagnostics using high-performance parallel sequencing of a custom panel and family segregation analysis by Sanger sequencing. RESULTS In the Research Centre for Medical Genetics the first group of Russian patients with an orphan inherited retinal disease was verified, they underwent subretinal injection of the gene replacement drug Voretigene neparvovec (12 eyes) in the Helmholtz National Medical Research Center of Eye Diseases. According to the regulated terms of monitoring gene therapy patients, they were examined in the Research Centre for Medical Genetics after 1, 3, 6 and 12 months, and then once per year. Thus, the available data allows us to analyze the first results 3 months after the treatment. CONCLUSION The presented data on inherited retinal dystrophies caused by biallelic mutations in the RPE65 gene emphasize the need to change the diagnostic algorithm in the ophthalmic practice. The use of clinical instrumental and molecular genetic diagnostic methods makes it possible to apply etiotropic treatment to patients with a disabling disease that was previously considered untreatable. The gene replacement drug Voretigene neparvovec registered in Russia showed irrefutable first positive results in all targeted patients.
Collapse
Affiliation(s)
- V V Kadyshev
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - I V Zolnikova
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - O V Khalanskaya
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - A A Stepanova
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - S I Kutsev
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
35
|
Sengillo JD, Gregori NZ, Sisk RA, Weng CY, Berrocal AM, Davis JL, Mendoza-Santiesteban CE, Zheng DD, Feuer WJ, Lam BL. Visual Acuity, Retinal Morphology, and Patients' Perceptions after Voretigene Neparvovec-rzyl for RPE65-Associated Retinal Disease. Ophthalmol Retina 2021; 6:273-283. [PMID: 34896323 DOI: 10.1016/j.oret.2021.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To explore the effect of patient's age, baseline visual acuity, and intraoperative foveal detachment on outcomes of subretinal voretigene neparvovec-rzyl (VN, Luxturna®) therapy and to assess patients' perceptions of the treatment effect. DESIGN Multicenter, retrospective, consecutive case series and cross-sectional prospective survey. SUBJECTS All 41 consecutive patients treated with VN after FDA approval at three institutions between January 2018 and May 2020. METHODS Retrospective chart review of operative reports, clinical notes, ancillary testing and complications, comparing data at baseline and 1, 2-3, 6-9, and 10-15 months after subretinal surgery. A survey was administered to adult patients and parents of pediatric patients. MAIN OUTCOME MEASURES Changes in BCVA and retinal morphology, and patients' perceptions. RESULTS 77 eyes of 41 patients (16 adults and 25 children, range 2-44 years, mean follow-up 10 months, range 1 week to 18.5 months) were analyzed. There was no statistically significant vision change for the adults, whereas there was a trend of improvement for children that reached statistical significance for some time points but not all. At the last follow-up, 14/48 (29%) pediatric and 3/26 (12%) adult eyes improved ≥2 lines (p=0.15). Baseline VA did not have an effect on post-therapy VA (p=0.23). Central foveal thickness decreased mildly in both children and adults, without significant difference between the populations. The fovea was detached by VN in 62 eyes (81%). Inner segment-outer segment junction remained unchanged in 91% of 54 eyes with gradable OCTs, with or without foveal detachment. Thirty-two patients (78%) were reached for the survey an average of 1.15±0.50 years (range 0.31 to 2.31) after surgery in the first eye. Improvement in night, day, and/or color vision was reported by 23 (72%), 22 (69%), and 18 (56%) patients respectively. CONCLUSIONS This study is limited by large variability in follow-up time. There were no persistent statistical significant vision changes. A decrease in foveal thickness was noted in most eyes. The long-term significance of this remains to be determined.
Collapse
Affiliation(s)
| | | | - Robert A Sisk
- Cincinnati Eye Institute and Cincinnati Children's Hospital, Cincinnati, OH
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Moraru AD, Costin D, Iorga RE, Munteanu M, Moraru RL, Branisteanu DC. Current trends in gene therapy for retinal diseases (Review). Exp Ther Med 2021; 23:26. [PMID: 34815778 PMCID: PMC8593927 DOI: 10.3892/etm.2021.10948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
The eye is considered an effective target for genetic therapy, as it has a privileged immune status, it is easily accessed for medication delivery and it is affected by a number of inherited disorders. In particular, the retina is considered for gene therapy due to the fact that it can be visualized with ease, it does not have lymphatic vessels, nor a direct blood network for the outer layers and its cells do not divide after birth, and thus transgene expression is not affected. As gene therapy is currently on a continuously progressive development trend, this emerging field of gene manipulation techniques has yielded promising results. This involves the development of treatments for a number of debilitating and blinding diseases, which were to date considered intractable. However, numerous unanswered questions remain as regards the long-term efficacy and safety profile of these treatments. The present review article discusses the current research status regarding genetic manipulation techniques aimed at addressing visual impairment related to retinal disorders, both inherited and degenerative.
Collapse
Affiliation(s)
- Andreea Dana Moraru
- Department of Ophthalmology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania.,Department of Ophthalmology, 'N. Oblu' Clinical Hospital, 700309 Iași, Romania
| | - Dănuț Costin
- Department of Ophthalmology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania.,Department of Ophthalmology, 'N. Oblu' Clinical Hospital, 700309 Iași, Romania
| | - Raluca Eugenia Iorga
- Department of Ophthalmology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania.,Department of Ophthalmology, 'N. Oblu' Clinical Hospital, 700309 Iași, Romania
| | - Mihnea Munteanu
- Department of Ophthalmology, 'Victor Babeș' University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Radu Lucian Moraru
- Department of Otorhinolaryngology, 'Transmed Expert' Medical Center, 700011 Iași, Romania
| | - Daniel Constantin Branisteanu
- Department of Ophthalmology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania.,Department of Ophthalmology, 'Retina Center' Eye Clinic, 700126 Iași, Romania
| |
Collapse
|
37
|
Ledri M, Sørensen AT, Kokaia M, Woldbye DPD, Gøtzsche CR. Editorial: Gene Therapy in the CNS - Progress and Prospects for Novel Therapies. Front Mol Neurosci 2021; 14:778134. [PMID: 34744628 PMCID: PMC8564008 DOI: 10.3389/fnmol.2021.778134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marco Ledri
- Laboratory of Molecular Neurophysiology and Epilepsy, Department of Clinical Sciences, Epilepsy Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Andreas T Sørensen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Merab Kokaia
- Experimental Epilepsy Group, Department of Clinical Sciences, Epilepsy Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - David P D Woldbye
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Casper R Gøtzsche
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Martinez Velazquez LA, Ballios BG. The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. Int J Mol Sci 2021; 22:ijms222111542. [PMID: 34768969 PMCID: PMC8583900 DOI: 10.3390/ijms222111542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal degenerations (IRDs) are a diverse group of conditions that are often characterized by the loss of photoreceptors and blindness. Recent innovations in molecular biology and genomics have allowed us to identify the causative defects behind these dystrophies and to design therapeutics that target specific mechanisms of retinal disease. Recently, the FDA approved the first in vivo gene therapy for one of these hereditary blinding conditions. Current clinical trials are exploring new therapies that could provide treatment for a growing number of retinal dystrophies. While the field has had early success with gene augmentation strategies for treating retinal disease based on loss-of-function mutations, many novel approaches hold the promise of offering therapies that span the full spectrum of causative mutations and mechanisms. Here, we provide a comprehensive review of the approaches currently in development including a discussion of retinal neuroprotection, gene therapies (gene augmentation, gene editing, RNA modification, optogenetics), and regenerative stem or precursor cell-based therapies. Our review focuses on technologies that are being developed for clinical translation or are in active clinical trials and discusses the advantages and limitations for each approach.
Collapse
Affiliation(s)
| | - Brian G. Ballios
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3A9, Canada
- Correspondence:
| |
Collapse
|
39
|
Dinculescu A, Link BA, Saperstein DA. Retinal Gene Therapy for Usher Syndrome: Current Developments, Challenges, and Perspectives. Int Ophthalmol Clin 2021; 61:109-124. [PMID: 34584048 PMCID: PMC8478317 DOI: 10.1097/iio.0000000000000378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
da Palma MM, de Vasconcellos CFC, Sallum JMF. Rare disease day and Ophthalmology. Arq Bras Oftalmol 2021; 84:406-407. [PMID: 34287519 PMCID: PMC11826610 DOI: 10.5935/0004-2749.202100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mariana Matioli da Palma
- Department of Ophthalmology, Escola Paulista de Medicina,
Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Instituto de Genética Ocular, São Paulo, SP, Brazil
| | | | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Escola Paulista de Medicina,
Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Instituto de Genética Ocular, São Paulo, SP, Brazil
| |
Collapse
|
41
|
Tarach P, Janaszewska A. Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. Int J Mol Sci 2021; 22:2912. [PMID: 33805602 PMCID: PMC7999260 DOI: 10.3390/ijms22062912] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Carriers of genetic material are divided into vectors of viral and non-viral origin. Viral carriers are already successfully used in experimental gene therapies, but despite advantages such as their high transfection efficiency and the wide knowledge of their practical potential, the remaining disadvantages, namely, their low capacity and complex manufacturing process, based on biological systems, are major limitations prior to their broad implementation in the clinical setting. The application of non-viral carriers in gene therapy is one of the available approaches. Poly(amidoamine) (PAMAM) dendrimers are repetitively branched, three-dimensional molecules, made of amide and amine subunits, possessing unique physiochemical properties. Surface and internal modifications improve their physicochemical properties, enabling the increase in cellular specificity and transfection efficiency and a reduction in cytotoxicity toward healthy cells. During the last 10 years of research on PAMAM dendrimers, three modification strategies have commonly been used: (1) surface modification with functional groups; (2) hybrid vector formation; (3) creation of supramolecular self-assemblies. This review describes and summarizes recent studies exploring the development of PAMAM dendrimers in anticancer gene therapies, evaluating the advantages and disadvantages of the modification approaches and the nanomedicine regulatory issues preventing their translation into the clinical setting, and highlighting important areas for further development and possible steps that seem promising in terms of development of PAMAM as a carrier of genetic material.
Collapse
MESH Headings
- Biocompatible Materials/administration & dosage
- Biocompatible Materials/chemical synthesis
- Dendrimers/administration & dosage
- Dendrimers/chemical synthesis
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Genetic Therapy/methods
- Government Regulation
- Humans
- MicroRNAs/administration & dosage
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nanomedicine/legislation & jurisprudence
- Nanomedicine/methods
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Plasmids/administration & dosage
- Plasmids/chemistry
- Plasmids/metabolism
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Surface Properties
Collapse
Affiliation(s)
- Piotr Tarach
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|