1
|
Zhuang SZ, Chen PJ, Han J, Xiao WH. Beneficial Effects and Potential Mechanisms of Tai Chi on Lower Limb Osteoarthritis: A Biopsychosocial Perspective. Chin J Integr Med 2021; 29:368-376. [PMID: 34921649 DOI: 10.1007/s11655-021-3529-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 01/15/2023]
Abstract
Lower limb osteoarthritis (OA) is a chronic, multifactorial disease characterized by impaired physical function, chronic pain, compromised psychological health and decreased social functioning. Chronic inflammation plays a critical role in the pathophysiology of OA. Tai Chi is a type of classical mind-body exercise derived from ancient Chinese martial arts. Evidence supports that Tai Chi has significant benefits for relieving lower limb OA symptoms. Using a biopsychosocial framework, this review aims to elucidate the beneficial effects of Tai Chi in lower limb OA and disentangle its potential mechanisms from the perspective of biology, psychology, and social factors. Complex biomechanical, biochemical, neurological, psychological, and social mechanisms, including strengthening of muscles, proprioception improvement, joint mechanical stress reduction, change of brain activation and sensitization, attenuation of inflammation, emotion modulation and social support, are discussed.
Collapse
Affiliation(s)
- Shu-Zhao Zhuang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Pei-Jie Chen
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Jia Han
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Wei-Hua Xiao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
2
|
Zhu Y, Zhong W, Peng J, Wu H, Du S. Study on the Mechanism of Baimai Ointment in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking with Experimental Verification. Front Genet 2021; 12:750681. [PMID: 34868222 PMCID: PMC8635803 DOI: 10.3389/fgene.2021.750681] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose: The external preparation of the Tibetan medicine formula, Baimai ointment (BMO), has great therapeutic effects on osteoarthritis (OA). However, its molecular mechanism remains almost elusive. Here, a comprehensive strategy combining network pharmacology and molecular docking with pharmacological experiments was adopted to reveal the molecular mechanism of BMO against OA. Methods: The traditional Chinese medicine for systems pharmacology (TCMSP) database and analysis platform, traditional Chinese medicine integrated database (TCMID), GeneCards database, and DisGeNET database were used to screen the active components and targets of BMO in treating OA. A component-target (C-T) network was built with the help of Cytoscape, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment through STRING. Autodock Tools which was used to dock the key components and key target proteins was analyzed. Animal experiments were performed to verify the key targets of BMO. Hematoxylin-eosin and toluidine blue staining were used to observe the pathology of joints. Protein expression was determined using enzyme-linked immunosorbent assay. Results: Bioactive compounds and targets of BMO and OA were screened. The network analysis revealed that 17-β-estradiol, curcumin, licochalone A, quercetin, and glycyrrhizic acid were the candidate key components, and IL6, tumor necrosis factor (TNF), MAPK1, VEGFA, CXCL8, and IL1B were the candidate key targets in treating OA. The KEGG indicated that the TNF signaling pathway, NF-κB signaling pathway, and HIF-1 signaling pathway were the potential pathways. Molecular docking implied a strong combination between key components and key targets. The pathology and animal experiments showed BMO had great effects on OA via regulating IL6, TNF, MAPK1, VEGFA, CXCL8, and IL1B targets. These findings were consistent with the results obtained from the network pharmacology approach. Conclusion: This study preliminarily illustrated the candidate key components, key targets, and potential pathways of BMO against OA. It also provided a promising method to study the Tibetan medicine formula or external preparations.
Collapse
Affiliation(s)
- Yingyin Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huichao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Liu JF, Chi MC, Lin CY, Lee CW, Chang TM, Han CK, Huang YL, Fong YC, Chen HT, Tang CH. PM2.5 facilitates IL-6 production in human osteoarthritis synovial fibroblasts via ASK1 activation. J Cell Physiol 2021; 236:2205-2213. [PMID: 32808296 DOI: 10.1002/jcp.30009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disorder characterized by synovial inflammation. Interleukin-6 (IL-6) is a key proinflammatory cytokine in OA progression. Particulate matter 2.5 (PM2.5) exposure increases the risk of different diseases, including OA. Up until now, no studies have described any association between PM2.5 and IL-6 expression in human OA synovial fibroblasts (OASFs). Here, our data show that PM2.5 concentration- and time-dependently promoted IL-6 synthesis in human OASFs. We also found that reactive oxygen species (ROS) generation potentiated the effects of PM2.5 on IL-6 production. ASK1, ERK, p38, and JNK inhibitors reduced PM2.5-induced increases of IL-6 expression. Treatment of OASFs with PM2.5 promoted phosphorylation of these signaling cascades. We also found that PM2.5 enhanced c-Jun phosphorylation and its translocation into the nucleus. Thus, PM2.5 increases IL-6 production in human OASFs via the ROS, ASK1, ERK, p38, JNK, and AP-1 signaling pathways. Our evidence links PM2.5 with OA progression.
Collapse
Affiliation(s)
- Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Miao-Ching Chi
- Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Taoyuan, Chiayi County, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Puzi City, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Chih-Yang Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Tsung-Ming Chang
- School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|