1
|
Chen Y, Lin T, Tang L, He L, He Y. MiRNA signatures in nasopharyngeal carcinoma: molecular mechanisms and therapeutic perspectives. Am J Cancer Res 2023; 13:5805-5824. [PMID: 38187072 PMCID: PMC10767356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/10/2023] [Indexed: 01/09/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent cancerous tumor that affects the head and neck region. Recent studies have provided compelling evidence indicating the significant involvement of microRNAs (miRNAs) in the development and progression of NPC. This review aims to present a comprehensive summary of the current knowledge regarding miRNA signatures in NPC, encompassing their expression patterns, molecular mechanisms, and potential therapeutic implications. Initially, the article outlines the aberrant expression of miRNAs in NPC and elucidates their roles in tumor initiation, invasion, and metastasis. Subsequently, the underlying molecular mechanisms of miRNA-mediated regulation of NPC-associated signaling pathways are discussed. Additionally, the review highlights the potential clinical applications of miRNAs as diagnostic and prognostic biomarkers, as well as their therapeutic potential in NPC treatment. In conclusion, this review underscores the critical involvement of miRNAs in NPC pathogenesis and underscores their promise as novel therapeutic targets for combating this devastating disease.
Collapse
Affiliation(s)
- Yan Chen
- School of Medicine, Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Ting Lin
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
- Hunan Provincial Key Lab for The Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese MedicineChangsha 410208, China
| | - Le Tang
- School of Medicine, Hunan University of Chinese MedicineChangsha, Hunan, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
| | - Lan He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
- The First Affiliated Hospital of Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Yingchun He
- School of Medicine, Hunan University of Chinese MedicineChangsha, Hunan, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
- Hunan Provincial Key Lab for The Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese MedicineChangsha 410208, China
| |
Collapse
|
2
|
Luo X, Jiang Q, Liu L, Liao Q, Yu J, Xiang Z, Gong Y. METTL3-mediated m6A modification promotes processing and maturation of pri-miRNA-19a to facilitate nasopharyngeal carcinoma cell proliferation and invasion. Physiol Genomics 2022; 54:337-349. [PMID: 35759451 DOI: 10.1152/physiolgenomics.00007.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interplay between N6-methyladenosine (m6A) modification and microRNAs (miRs) participates in cancer progression. This study is conducted to explore the role of miR-19a-3p in nasopharyngeal carcinoma (NPC) cell proliferation and invasion. RT-qPCR and western blot showed that miR-19a-3p was upregulated in NPC tissues and cells and related to poor prognosis, methyltransferase-like 3 (METTL3) was highly expressed while BMP and activin membrane-bound inhibitor (BAMBI) was weakly expressed in NPC tissues and cells. miR-19a-3p downregulation inhibited cell proliferation and invasion while miR-19a-3p overexpression played an opposite role. m6A quantification and m6A RNA immunoprecipitation assays showed that METTL3-mediated m6A modification promoted the processing and maturation of pri-miR-19a via DGCR8. Dual-luciferase assay showed that BAMBI was a target of miR-19a-3p. The rescue experiments showed that BAMBI downregulation reversed the role of miR-19a-3p inhibition in NPC cells. A xenograft tumor model showed that METTL3 downregulation inhibited tumor growth via the miR-19a-3p/BAMBI in vivo. Overall, our findings elicited that METTL3-mediated m6A modification facilitated the processing and maturation of pri-miR-19a via DGCR8 to upregulate miR-19a-3p, and miR-19a-3p inhibited BAMBI expression to promote NPC cell proliferation and invasion, thus driving NPC progression.
Collapse
Affiliation(s)
- Xinggu Luo
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingyun Liao
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jing Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zheng Xiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongqian Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Yanshen Z, Lifen Y, Xilian W, Zhong D, Huihong M. miR-92a promotes proliferation and inhibits apoptosis of prostate cancer cells through the PTEN/Akt signaling pathway. Libyan J Med 2021; 16:1971837. [PMID: 34431444 PMCID: PMC8405065 DOI: 10.1080/19932820.2021.1971837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/19/2021] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in the development of prostate cancer (PCa). Recent studies have shown that miR-92a expression is significantly increased in various cancers including PCa. However, its specific mechanism in PCa remains unknown. The goal of this study was to investigate the effect of miR-92a expression on the function and mechanism of PCa. PCa cell lines PC-3 and LNCap were transfected with miR-92a inhibitor to reduce the expression of miR-92a, respectively. The cell proliferation, cell viability, apoptosis, cell invasion and migration ability of PCa cells were examined by CCK8 assay, cell cloning, flow cytometry, Transwell assay and scratch assay, respectively. The effects of miR-92a on PTEN/Akt signaling pathway-related factors (PI3k, Akt, p-PI3k, p-Akt, PTEN) were also observed by RT-qPCR and Western blot. Compared with the control group and NC inhibitor group, the viability, cell migration and invasion ability of PC-3 and LNCap cells were decreased and apoptosis was significantly increased after interference with miR-92a expression. In addition, the mRNA and protein levels of PTEN in PC-3 and LNCap cells in the miR-92a inhibitor group were significantly increased, while the phosphorylation levels of PI3K and AKT were significantly decreased. MiR-92a might play a key role in regulating the proliferation, migration and invasion of PCa cells through the PTEN/Akt signaling pathway. Inhibition of miR-92a expression has practical value against PCa and provides ideas for further clinical treatment of patients with PCa.
Collapse
Affiliation(s)
- Zheng Yanshen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| | - Yang Lifen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| | - Wu Xilian
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| | - Dong Zhong
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| | - Mai Huihong
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| |
Collapse
|
4
|
Current Status and Future Perspectives about Molecular Biomarkers of Nasopharyngeal Carcinoma. Cancers (Basel) 2021; 13:cancers13143490. [PMID: 34298701 PMCID: PMC8305767 DOI: 10.3390/cancers13143490] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is a serious major public health problem in its endemic countries. Up to 80% of NPC patients with locally advanced disease or distant metastasis at diagnosis were associated with poor prognosis and with median survival less than 4 months. The mortality rate of NPC metastasis is up to 91%. To date, there is no available curative treatment or reliable early diagnosis or prognosis for NPC. Discovery and development of reliable early diagnosis and prognosis biomarkers for nasopharyngeal carcinoma are urgent needed. Hence, we have here listed the potential early diagnosis and prognosis biomarker candidates for nasopharyngeal carcinoma. This review will give an insight to readers on the progress of NPC biomarker discovery to date, as well as future prospective biomarker development and their translation to clinical use. Abstract Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein–Barr virus infection, individual’s genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
Collapse
|
5
|
Li L, Feng Y, Hu S, Du Y, Xu X, Zhang M, Peng X, Chen F. ZEB1 serves as an oncogene in acute myeloid leukaemia via regulating the PTEN/PI3K/AKT signalling pathway by combining with P53. J Cell Mol Med 2021; 25:5295-5304. [PMID: 33960640 PMCID: PMC8178252 DOI: 10.1111/jcmm.16539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukaemia is a complex, highly aggressive hematopoietic disorder. Currently, in spite of great advances in radiotherapy and chemotherapy, the prognosis for AML patients with initial treatment failure is still poor. Therefore, the need for novel and efficient therapies to improve AML treatment outcome has become desperately urgent. In this study, we identified the expression of ZEB1 (a transcription factor) and focused on its possible role and mechanisms in the progression of AML. According to the data provided by the Gene Expression Profiling Interactive Analysis (GEPIA), high expression of ZEB1 closely correlates with poor prognosis in AML patients. Additionally, the overexpression of ZEB1 was observed in both AML patients and cell lines. Further functional experiments showed that ZEB1 depletion can induce AML differentiation and inhibit AML proliferation in vitro and in vivo. Moreover, ZEB1 expression was negatively correlated with tumour suppressor P53 expression and ZEB1 can directly bind to P53. Our results also revealed that ZEB1 can regulate PTEN/PI3K/AKT signalling pathway. The inhibitory effect of ZEB1 silencing on PTEN/PI3K/AKT signalling pathway could be significantly reversed by P53 small interfering RNA treatment. Overall, the present data indicated that ZEB1 may be a promising therapeutic target for AML treatment or a potential biomarker for diagnosis and prognosis.
Collapse
Affiliation(s)
- Lanlan Li
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yubin Feng
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuang Hu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yan Du
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoling Xu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Meiju Zhang
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoqing Peng
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
6
|
Su XY, Zhao Q, Ke JM, Wu DH, Zhu X, Lin J, Deng ZQ. Circ_0002232 Acts as a Potential Biomarker for AML and Reveals a Potential ceRNA Network of Circ_0002232/ miR-92a-3p/ PTEN. Cancer Manag Res 2020; 12:11871-11881. [PMID: 33239917 PMCID: PMC7682446 DOI: 10.2147/cmar.s278499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/17/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose Our research aimed to investigate the expression level of circ_0002232, which is transcribed from PTEN, and find out the association of circ_0002232/miR-92a-3p/PTEN network in acute myeloid leukemia (AML). Methods Circ_0002232 expression in 115 AML patients and 48 controls was detected by using real-time quantitative PCR. The diagnostic value of circ_0002232 expression was evaluated by receiver operating characteristic curve. Kaplan–Meier curves were used to analyse the impact of circ_0002232 for overall survival. Associated network of circ_0002232 was predicted by using interaction prediction websites. Results Compared with controls, circ_0002232 was notably low-expressed in AML (P<0.001). According to the result of receiver operating characteristic curve, circ_0002232 expression could distinguish AML patients from controls (P<0.001). There were significant differences in patients’ age (P=0.004), FAB classifications (P=0.036), white blood cell count (P=0.041) and platelet count (P=0.021) between low-expressed circ_0002232 group and high-expressed circ_0002232 group. Moreover, there was a positive correlation between circ_0002232 expression and patients’ age (Pearson r=0.256, P=0.0057). Interestingly, we found that patients in low-expressed circ_0002232 group had better overall survival both in whole AML (P=0.030) and non-APL AML (P=0.014). Remarkably, the expression of circ_0002232 was positively correlated with PTEN (Spearman r=0.678, P<0.001). Furthermore, there was a negative correlation in AML between circ_0002232 and miR-92a-3p (Spearman r=−0.301, P=0.016), miR-92a-3p and PTEN (Spearman r=−0.324, P=0.034). Interaction prediction websites revealed that circ_0002232 might affect the expression of PTEN and the process of AML through sponging miR-92a-3p. Conclusion Circ_0002232, one of the circRNAs transcribed from PTEN, was remarkably down-regulated in AML and could act as a promising biomarker for the diagnosis of AML. In addition, there might be a potential association network of circ_0002232/miR-92a-3p/PTEN in AML.
Collapse
Affiliation(s)
- Xiao-Yu Su
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Zhao
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jin-Ming Ke
- Faculty of Forestry, Zhejiang A&F University, Hangzhou, Zhejiang, People's Republic of China
| | - De-Hong Wu
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin Zhu
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Kang Y, He W, Ren C, Qiao J, Guo Q, Hu J, Xu H, Jiang X, Wang L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct Target Ther 2020; 5:245. [PMID: 33093441 PMCID: PMC7582884 DOI: 10.1038/s41392-020-00340-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck region which mainly distributes in southern China and Southeast Asia and has a crucial association with the Epstein-Barr virus. Based on epidemiological data, both incidence and mortality of NPC have significantly declined in recent decades grounded on the improvement of living standard and medical level in an endemic region, in particular, with the clinical use of individualized chemotherapy and intensity-modulated radiotherapy (IMRT) which profoundly contributes to the cure rate of NPC patients. To tackle the challenges including local recurrence and distant metastasis in the current NPC treatment, we discussed the implication of using targeted therapy against critical molecules in various signal pathways, and how they synergize with chemoradiotherapy in the NPC treatment. Combination treatment including targeted therapy and IMRT or concurrent chemoradiotherapy is presumably to be future options, which may reduce radiation or chemotherapy toxicities and open new avenues for the improvement of the expected functional outcome for patients with advanced NPC.
Collapse
Affiliation(s)
- Yuanbo Kang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Weihan He
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Jincheng Qiao
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuyong Guo
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyu Hu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongjuan Xu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
8
|
Chen L, Li X, Lu C, Zhao Y, Zhu J, Yang L. The long non‑coding RNA CASC7 inhibits growth and invasion of non‑small cell lung cancer cells through phosphatase and tensin homolog upregulation via sequestration of miR‑92a. Int J Oncol 2020; 57:466-477. [PMID: 32626930 PMCID: PMC7307594 DOI: 10.3892/ijo.2020.5076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has demonstrated the crucial roles of long non-coding RNAs (lncRNAs) in various human cancers, including non-small cell lung cancer (NSCLC). However, to the best of our knowledge, the role of the lncRNA cancer susceptibility candidate 7 (CASC7) in NSCLC has not been clearly determined. The aim of the present study was to investigate the involvement of CASC7 in NSCLC. Marked downregulation of CASC7 was observed in NSCLC tissues and cell lines, and this downregulation of CASC7 was closely associated with distant metastasis, lymph node involvement and poor overall survival in NSCLC patients. Furthermore, overexpression of CASC7 significantly suppressed the proliferation, invasion and migration of the NSCLC cells A549 and H358, and promoted cell apoptosis in vitro. In addition, CASC7 was shown to act as a competing endogenous RNA by sponging miR-92a, which was proven to be an oncogenic miRNA in our previous study. The expression of miR-92a was upregulated in NSCLC tissues and cell lines, and was found to be inversely associated with CASC7 expression in NSCLC tissues. It was also demonstrated that CASC7 upregulated the expression of the tumor suppressor gene phosphatase and tensin homolog (a well-known target of miR-92a) by sequestration of miR-92a. Moreover, the tumor-suppressive effects of CASC7 were partly reversed by miR-92a overexpression in NSCLC cells. Collectively, the results of the present study indicated that CASC7 may act as a tumor-suppressive lncRNA that inhibits NSCLC progression by sponging miR-92a. These findings may improve our understanding of the potential mechanisms through which gain of CASC7 expression represses NSCLC progression.
Collapse
Affiliation(s)
- Ling Chen
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Xin Li
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Chaojing Lu
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Ji Zhu
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Lixin Yang
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
9
|
Sun S, Hang T, Zhang B, Zhu L, Wu Y, Lv X, Huang Q, Yao H. miRNA-708 functions as a tumor suppressor in colorectal cancer by targeting ZEB1 through Akt/mTOR signaling pathway. Am J Transl Res 2019; 11:5338-5356. [PMID: 31632515 PMCID: PMC6789274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Colon cancer, or colorectal cancer (CRC), is a type of cancer that develops from large bowel. Previous data has demonstrated that microRNAs (miRNAs) may be involved in the formation and progression of CRC. The deregulation of miR-708 has been identified in multiple types of cancer. However, to the best of our knowledge, there are no data concerning the expression and role of miR-708 in CRC. METHODS In this study, RT-PCR and Flow Cytometry were used to examine the expression and role of miR-708 and ZEB1 in proliferation and apoptosis. Transwell was used to examine the role of miR-708 and ZEB1 in invasion and migration. Western blot and qRT-PCR were conducted to determine the alteration of protein and miR-708 levels, respectively. RESULTS MiR-708 was significantly downregulated in CRC tissues and cell lines. The restoration of the expression of miR-708 suppressed cell proliferation, induced apoptosis, and reduced metastasis in CRC in vitro. Additionally, bioinformatics analysis predicted ZEB1 as a novel target gene of miR-708. Furthermore, ZEB1 was upregulated in CRC, which was negatively correlated with miR-708 expression. Further studies showed that the overexpression of miR-708 and silence of ZEB1 inhibited stage of CRC via inhibiting AKT/mTOR signaling pathway in CRC cells. CONCLUSION Taken together, these results indicate that miR-708 plays an important role in suppressing the development of CRC by directly targeting ZEB1 through AKT/mTOR signaling pathway, suggesting that miR-708 is a novel, effective therapeutic target for treating patients with CRC.
Collapse
Affiliation(s)
- Sinan Sun
- Medical College of Shandong UniversityJinan, Shandong Province, P. R. China
| | - Tianyi Hang
- Department of Health Management Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui Province, P. R. China
| | - Boyu Zhang
- The Second Hospital of Anhui Medical UniversityHefei, Anhui Province, P. R. China
| | - Liang Zhu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui Province, P. R. China
| | - Yang Wu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui Province, P. R. China
| | - Xiangwei Lv
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui Province, P. R. China
| | - Qiang Huang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui Province, P. R. China
| | - Hanhui Yao
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui Province, P. R. China
| |
Collapse
|
10
|
Multifaceted Regulation of PTEN Subcellular Distributions and Biological Functions. Cancers (Basel) 2019; 11:cancers11091247. [PMID: 31454965 PMCID: PMC6770588 DOI: 10.3390/cancers11091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene frequently found to be inactivated in over 30% of human cancers. PTEN encodes a 54-kDa lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase pathway involved in the promotion of multiple pro-tumorigenic phenotypes. Although the PTEN protein plays a pivotal role in carcinogenesis, cumulative evidence has implicated it as a key signaling molecule in several other diseases as well, such as diabetes, Alzheimer's disease, and autism spectrum disorders. This finding suggests that diverse cell types, especially differentiated cells, express PTEN. At the cellular level, PTEN is widely distributed in all subcellular compartments and organelles. Surprisingly, the cytoplasmic compartment, not the plasma membrane, is the predominant subcellular location of PTEN. More recently, the finding of a secreted 'long' isoform of PTEN and the presence of PTEN in the cell nucleus further revealed unexpected biological functions of this multifaceted molecule. At the regulatory level, PTEN activity, stability, and subcellular distribution are modulated by a fascinating array of post-translational modification events, including phosphorylation, ubiquitination, and sumoylation. Dysregulation of these regulatory mechanisms has been observed in various human diseases. In this review, we provide an up-to-date overview of the knowledge gained in the last decade on how different functional domains of PTEN regulate its biological functions, with special emphasis on its subcellular distribution. This review also highlights the findings of published studies that have reported how mutational alterations in specific PTEN domains can lead to pathogenesis in humans.
Collapse
|
11
|
Peng Y, Huang D, Qing X, Tang L, Shao Z. Investigation of MiR-92a as a Prognostic Indicator in Cancer Patients: a Meta-Analysis. J Cancer 2019; 10:4430-4441. [PMID: 31413763 PMCID: PMC6691717 DOI: 10.7150/jca.30313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/23/2019] [Indexed: 12/30/2022] Open
Abstract
Background: MiR-92a has been discovered to be involved in the malignant behavior of various types of cancers. However, the particular clinical and prognostic roles of miR-92a in tumors still need to be identified more precisely. The current meta-analysis assessed the prognostic value of miR-92a in various carcinomas. Methods: Systematic literature searches of PubMed, PMC, Web of Science (WOS), Embase in English and Wanfang, SinoMed and the China National Knowledge Infrastructure (CNKI) in Chinese up to Jan 15th 2019 were conducted for eligible studies. Twenty studies involving a total of 2573 patients were included in the analysis. Pooled hazard ratios (HR) for overall survival (OS) and disease-free survival (DFS), progression-free survival (PFS) and recurrence-free survival (RFS) were assessed using fixed-effects and random-effects models. Meta-regression and subgroup analyses were carried out to explore the source of heterogeneity. Odds ratio (OR) and 95%CIs were applied to evaluate the relationship between miR-92a expression levels and clinicopathological characteristics. Results: A significant association between miR-92a levels and OS (HR=2.18) was identified. The random pooling model also revealed significance of consistency (HR=2.14), indicating that the stability of the results. Subgroup analyses were performed and the corresponding significance was recognized in Chinese cancer patients (HR=2.35), studies of specimen derived from tissues (HR=2.43), non-hematological cancer (HR=2.35), osteosarcoma (HR=2.54), non-small cell lung cancer (HR=2.33), hepatocellular carcinoma (HR=2.40) and so on. There were significant relations observed of the expression level of miR-92a to tumor size (≥5 vs <5 cm) (OR=2.13), lymph node metastasis (present vs. absent) (OR=1.87), distant metastasis (present vs. absent) (OR=2.99) and so on. Conclusions: the over expression of miR-92a is associated with unfavorable prognosis of Chinese cancer patients. In addition, patients of elevated miR-92a expression level are likely to develop the cancers of more malignant behaviors.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Tang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Thivierge C, Tseng HW, Mayya VK, Lussier C, Gravel SP, Duchaine TF. Alternative polyadenylation confers Pten mRNAs stability and resistance to microRNAs. Nucleic Acids Res 2019; 46:10340-10352. [PMID: 30053103 PMCID: PMC6212768 DOI: 10.1093/nar/gky666] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Fine regulation of the phosphatase and tensin homologue (PTEN) phosphatase dosage is critical for homeostasis and tumour suppression. The 3'-untranslated region (3'-UTR) of Pten mRNA was extensively linked to post-transcriptional regulation by microRNAs (miRNAs). In spite of this critical regulatory role, alternative 3'-UTRs of Pten have not been systematically characterized. Here, we reveal an important diversity of Pten mRNA isoforms generated by alternative polyadenylation sites. Several 3'-UTRs are co-expressed and their relative expression is dynamically regulated. In spite of encoding multiple validated miRNA-binding sites, longer isoforms are largely refractory to miRNA-mediated silencing, are more stable and contribute to the bulk of PTEN protein and signalling functions. Taken together, our results warrant a mechanistic re-interpretation of the post-transcriptional mechanisms involving Pten mRNAs and raise concerns on how miRNA-binding sites are being validated.
Collapse
Affiliation(s)
- Caroline Thivierge
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | - Hsin-Wei Tseng
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | - Vinay K Mayya
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | - Carine Lussier
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | | | - Thomas F Duchaine
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| |
Collapse
|
13
|
Wang Z, Zhu Z, Lin Z, Luo Y, Liang Z, Zhang C, Chen J, Peng P. miR-429 suppresses cell proliferation, migration and invasion in nasopharyngeal carcinoma by downregulation of TLN1. Cancer Cell Int 2019; 19:115. [PMID: 31068760 PMCID: PMC6492405 DOI: 10.1186/s12935-019-0831-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background miR-429 and TLN1 have been shown to affect the biological behaviours of many carcinomas. However, their effects in nasopharyngeal carcinoma (NPC) are not yet clear. Here, we investigated their regulatory relationships and effects on NPC cells. Methods TargetScan was used to predict the regulatory relationships of miR-429 and TLN1 in NPC cells. Then, Western blotting and quantitative real-time PCR (qPCR) were performed to examine TLN1 levels, and qPCR was used to determine miR-429 levels in NPC cell lines with different metastatic characteristics (5-8F, CNE-2, CNE-1, 6-10B and NP69), to investigate whether TLN1 and miR-429 are correlated with the metastatic characteristics of these cells. Next, we upregulated or downregulated miR-429 in 5-8F and 6-10B cells, which have different tumourigenicity and transferability, and examined TLN1 expression by western blotting and qPCR after transfection. QPCR was also performed to confirm successful transfection of miR-429 mimic into 5-8F and 6-10B cells. Dual luciferase reporter gene assay was performed to investigate whether miR-429 regulates TLN1 by binding to its 3′UTR. After transfection, Cell Counting Kit-8 (CCK8) and IncuCyte were used to examine the proliferation of these cells, and wound-healing assay, Transwell migration assay, and invasion assays were performed to investigate the changes in migration and invasion after transfection. Results Western blotting and qPCR analyses showed that the protein level of TLN1 was negatively correlated with miR-429 in NPC cell lines (P < 0.05), while the mRNA level showed no relation with miR429 expression (P > 0.05). In addition, cells with high transferability showed high TLN1 expression at the protein level, while miR429 expression showed the opposite trend (P < 0.05), but there were no differences at the mRNA level between the different cell lines. Overexpression of miR429 in 5-8F and 6-10B cells was accompanied by downregulation of TLN1 at the protein level (P < 0.05), while there were no significant differences at the mRNA level (P > 0.05). In addition, transferability, proliferation, and invasion were downregulated by miR429 overexpression (P < 0.05). However, dual-luciferase reporter gene assay indicated that TLN1 was not a direct target of miR-429. Conclusion This study showed that miR-429 functions as a tumour suppressor in NPC by downregulation of TLN1, although the relationship is not direct.
Collapse
Affiliation(s)
- Zhihui Wang
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Zhiquan Zhu
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Zhong Lin
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Youli Luo
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Zibin Liang
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Caibin Zhang
- 2Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Jianxu Chen
- 3Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Peijian Peng
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| |
Collapse
|
14
|
Cao S, Jiang L, Shen L, Xiong Z. Role of microRNA-92a in metastasis of osteosarcoma cells in vivo and in vitro by inhibiting expression of TCF21 with the transmission of bone marrow derived mesenchymal stem cells. Cancer Cell Int 2019; 19:31. [PMID: 30804710 PMCID: PMC6373113 DOI: 10.1186/s12935-019-0741-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background This study aims to investigate the role of microRNA-92a (miR-92a) in metastasis of osteosarcoma (OS) cells in vivo and in vitro by regulatingTCF21 with the transmission of bone marrow derived mesenchymal stem cells (BMSCs). Methods BMSCs were isolated, purified and cultured from healthy adult bone marrow tissues. The successfully identified BMSCs were co-cultured with OS cells, and the effects of BMSCs on the growth metastasis of OS cells in vitro and in vivo were determined. qRT-PCR and western blot analysis was used to detect the expression of miR-92a and TCF21 in OS cells and OS cells co-cultured with BMSCs. Proliferation, invasion and migration of OS cells transfected with miR-92a mimics and miR-92a inhibitors was determined, and the tumorigenesis and metastasis of OS cells in nude mice were observed. Expression of miR-92a and TCF21 mRNA in tissue specimens as well as the relationship between the expression of miR-92a and the clinicopathological features of OS was analyzed. Results BMSCs promoted proliferation, invasion and migration of OS cells in vitro together with promoted the growth and metastasis of OS cells in vivo. Besides, high expression of miR-92a was found in OS cells co-cultured with BMSCs. Meanwhile, overexpression of miR-92a promoted proliferation, invasion and migration of OS cells in vitro as well as promoted growth and metastasis of OS cells in vivo. The expression of miR-92a increased significantly, and the expression of TCF21 mRNA and protein decreased significantly in OS tissues. Expression of miR-92a was related to Ennecking staging and distant metastasis in OS patients. Conclusion Collectively, this study demonstrates that the expression of miR-92a is high in OS and BMSCs transfers miR-92a to inhibit TCF21 and promotes growth and metastasis of OS in vitro and in vivo.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopedics, Renhe Hospital, Beijing, 102600 People's Republic of China
| | - Liangde Jiang
- Department of Orthopedics, Renhe Hospital, Beijing, 102600 People's Republic of China
| | - Lulu Shen
- Department of Orthopedics, Renhe Hospital, Beijing, 102600 People's Republic of China
| | - Zhizheng Xiong
- Department of Orthopedics, Yueyang Second People's Hospital, Yueyang, 414000 People's Republic of China
| |
Collapse
|
15
|
Sabarimurugan S, Kumarasamy C, Baxi S, Devi A, Jayaraj R. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in nasopharyngeal carcinoma. PLoS One 2019; 14:e0209760. [PMID: 30735523 PMCID: PMC6368411 DOI: 10.1371/journal.pone.0209760] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nasopharyngeal cancer (NPC), despite being one of the most malignant head and neck carcinomas (HNC), lacks comprehensive prognostic biomarkers that predict patient survival. Therefore, this systematic review and meta-analysis is aimed to evaluate the potential prognostic value of miRNAs as prognostic biomarkers in NPC. METHODS PRISMA guidelines were used to conduct this systematic review and meta-analysis study. Permutations of multiple "search key-words" were used for the search strategy, which was limited to articles published between January 2012 and March 2018. The retrieved articles were meticulously searched with multi-level screening by two reviewers and confirmed by other reviewers. Meta-analysis was performed using Hazard Ratios (HR) and associated 95% Confidence Interval (CI) of survival obtained from previously published studies. Publication bias was assessed by Egger's bias indicator test and funnel plot symmetry. RESULTS A total of 5069 patients across 21 studies were considered eligible for inclusion in the systematic review, with 65 miRNAs being evaluated in the subsequent meta-analysis. Most articles included in this study originated from China and one study from North Africa. The forest plot was generated using cumulated survival data, resulting in a pooled HR value of 1.196 (95% CI: 0.893-1.601) indicating that the upregulated miRNAs increased the likelihood of death of NPC patients by 19%. CONCLUSION To our knowledge, this is the first meta-analysis that examines the prognostic effectiveness of miRNAs as biomarkers in NPC patients. We noted that the combined effect estimate of HR across multiple studies indicated that increased miRNA expression in NPC potentially leads to poor overall survival. However, further large-scale prospective studies on the clinical significance of the miRNAs, with sizable cohorts are necessary in order to obtain conclusive results.
Collapse
Affiliation(s)
- Shanthi Sabarimurugan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Chellan Kumarasamy
- University of Adelaide, North Terrace Campus, Adelaide South Australia, Australia
| | | | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattangulathur, Tamilnadu, India
| | - Rama Jayaraj
- Clinical Sciences, College of Health and Human Sciences, Charles Darwin University, Ellengowan Drive, Casuarina, Northern Territory, Australia
| |
Collapse
|
16
|
Wang M, Jia M, Yuan K. MicroRNA-663b promotes cell proliferation and epithelial mesenchymal transition by directly targeting SMAD7 in nasopharyngeal carcinoma. Exp Ther Med 2018; 16:3129-3134. [PMID: 30250517 DOI: 10.3892/etm.2018.6576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/23/2018] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRs) serve important roles in the development of various types of human cancer, including nasopharyngeal carcinoma (NPC). In the present study, the expression levels of miR-663b in NPC were investigated and its role and underlying mechanisms were examined. Reverse transcription-quantitative polymerase chain reaction was performed to assess miR-663b expression levels in NPC tissues and C666-1 cells. TargetScan was applied to predict the putative targets of miR-663b and the dual luciferase reporter assay was used to confirm the predictions. To investigate the role of miR-663b in NPC, the NPC C666-1 cell line was transfected with miR-663b mimics, miR-663b inhibitors or negative control. The Cell Counting kit-8 assay was performed for cell proliferation detection and western blot analysis was applied to determine the expression levels of epithelial mesenchymal transition (EMT)-associated proteins. Results indicated that when compared with the adjacent normal tissues and the normal nasopharyngeal epithelial cells, miR-663b expression levels were significantly upregulated in the NPC tissues and the NPC cells (P<0.01). Notably, SMAD7 is a target gene of miR-663b and may be inhibited by miR-663b. Results indicated that NPC cell proliferation was significantly promoted by miR-663b mimics and significantly inhibited by miR-663b inhibitors (P<0.05 and P<0.01). In addition, the results indicated that, when compared with the negative control group the expression levels of E-cadherin were significantly decreased, whereas the expression levels of N-cadherin, Vimentin and matrix metalloproteinase-9 were significantly increased in the cells of the miR-663b mimics group (P<0.05 and P<0.01). However, cells in the miR-663b inhibitors group exhibited the opposite effects. In conclusion, the results of the present study indicated that miR-663b functions as a tumor promoter in NPC via promoting NPC cell proliferation and EMT by directly targeting SMAD7.
Collapse
Affiliation(s)
- Meirong Wang
- Department of ENT, Tongji Medical College, Huazhong University of Science and Technology, The Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| | - Min Jia
- Department of ENT, Tongji Medical College, Huazhong University of Science and Technology, The Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| | - Kun Yuan
- Department of ENT, Tongji Medical College, Huazhong University of Science and Technology, The Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
17
|
Tian X, Yu C, Shi L, Li D, Chen X, Xia D, Zhou J, Xu W, Ma C, Gu L, An Y. MicroRNA-199a-5p aggravates primary hypertension by damaging vascular endothelial cells through inhibition of autophagy and promotion of apoptosis. Exp Ther Med 2018; 16:595-602. [PMID: 30116316 PMCID: PMC6090226 DOI: 10.3892/etm.2018.6252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the expression of microRNA (miRNA or miR)-199a-5p in the peripheral blood of patients with primary hypertension, and examined its mechanism of action in vascular endothelial cell injury induced by hypertension. A total of 57 patients with primary hypertension, who were treated at the Affiliated Hospital of Qingdao University (Qingdao, China) between December 2014 and November 2015 were included in the present study. Peripheral blood was collected from all patients. The expression of miR-199a-5p was measured using reverse-transcription quantitative polymerase chain reaction analysis. Human umbilical vein endothelial cells (HUVECs) were divided into negative control, miR-199a-5p mimics and rescue (co-transfected with miR-199a-5p mimics and inhibitor) groups. After transfection, the proliferation and apoptosis of HUVECs were evaluated by a Cell Counting Kit-8 assay, a bromodeoxyuridine incorporation assay and flow cytometry. Western blot analysis was used to determine the expression of proteins involved in autophagy-associated and adenosine monophosphate kinase (AMPK)/unc-51 like autophagy activating kinase 1 (ULK1) signaling pathways. Laser scanning confocal microscopy and electron microscopy were used to observe the autophagy of HUVECs. The expression of miR-199a-5p was elevated in peripheral blood of patients with hypertension, and was correlated with the progression of hypertension. Overexpression of miR-199a-5p inhibited the proliferation and promoted the apoptosis of HUVECs. Upon expression of miR-199a-5p, the transition between microtubule-associated proteins 1A/1B light chain 3B (LC3B)I and LC3BII proteins was inhibited, the expression of p62 protein was upregulated. In addition, miR-199a-5p decreased the numbers of autophagosomes and autolysosomes in HUVECs. The present study demonstrated that expression of miR-199a-5p is positively correlated with the severity of hypertension. Expression of miR-199a-5p aggravated vascular endothelial injury by inhibiting autophagy and promoting the apoptosis of HUVECs via downregulation of the AMPK/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Xintao Tian
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Chunpeng Yu
- Department of Intervention, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Lei Shi
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Dan Li
- Department of Cardiovascular Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Xiaoxue Chen
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Di Xia
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Jingwei Zhou
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Wanqun Xu
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Chengtai Ma
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Lihua Gu
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Yi An
- Department of Cardiovascular Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| |
Collapse
|
18
|
Mo X, Yin W, Huang Y, Guo W, Zhou M, Ye H. Expression of miR-3182 and EBV-miR-BART8-3p in nasopharyngeal carcinoma is correlated with distant metastasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3134-3140. [PMID: 31938442 PMCID: PMC6958091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/11/2018] [Indexed: 06/10/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is an EBV associated carcinoma showing prevalence in southeast China. Distant metastasis is the major cause of death. Herein, we investigated the expressions of microRNA-3182 (miR-3182) and EBV-miR-BART8-3p in 89 cases of NPC and evaluated their correlation with clinical outcomes. Fifty-one percent of NPC showed high level expression of miR-3182. Its expression was significantly correlated with distant metastasis (P=0.005). Fifty-two percent of NPC demonstrated high level expression of EBV-miR-BART8-3p and its expression was significantly correlated with distant metastasis (P=0.006). The overall survival was influenced by the expression of miR-3182 and EBV-miR-BART8-3p. The patients with a high-level expression of miR-3182 and EBV-miR-BART8-3p had worse overall survival (P=0.005 and P=0.007). Multivariable analysis demonstrated that EBV-miR-BART8-3p was an independent prognostic factor for overall survival (P=0.018). The expression of miR-3182 was significantly correlated with EBV-miR-BART8-3p (P=0.045). In conclusion, this is the first study examining the potential clinical utility of miR-3182 and EBV-miR-BART8-3p as prognostic biomarkers in NPC. EBV infection may promote NPC progression by disrupting the expression of miR-3182.
Collapse
Affiliation(s)
- Xianglan Mo
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Wu Yin
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Yongta Huang
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Wenwen Guo
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Minyan Zhou
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Hongtao Ye
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
- Department of Histopathology, Royal National Orthopaedic Hospital NHS TrustBrockley Hill, Stanmore, Middlesex, HA7 4LP, United Kingdom
| |
Collapse
|
19
|
Bissey PA, Law JH, Bruce JP, Shi W, Renoult A, Chua MLK, Yip KW, Liu FF. Dysregulation of the MiR-449b target TGFBI alters the TGFβ pathway to induce cisplatin resistance in nasopharyngeal carcinoma. Oncogenesis 2018; 7:40. [PMID: 29795279 PMCID: PMC5966388 DOI: 10.1038/s41389-018-0050-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/26/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
Despite the improvement in locoregional control of nasopharyngeal carcinoma (NPC), distant metastasis (DM), and chemoresistance persist as major causes of mortality. This study identified a novel role for miR-449b, an overexpressed gene in a validated four-miRNA signature for NPC DM, leading to chemoresistance via the direct targeting of transforming growth factor beta-induced (TGFBI). In vitro shRNA-mediated downregulation of TGFBI induced phosphorylation of PTEN and AKT, increasing cisplatin resistance. Conversely, the overexpression of TGFBI sensitized the NPC cells to cisplatin. In NPC patients treated with concurrent chemoradiotherapy (CRT), the overall survival (OS) was significantly inversely correlated with miR-449b, and directly correlated with both TGFBI mRNA and protein expression, as assessed by RNA sequencing and immunohistochemistry (IHC). Mechanistically, co-immunoprecipitation demonstrated that TGFBI competes with pro-TGFβ1 for integrin receptor binding. Decreased TGFBI led to increased pro-TGFβ1 activation and TGFβ1 canonical/noncanonical pathway-induced cisplatin resistance. Thus, overexpression of miR-449b decreases TGFBI, thereby altering the balance between TGFBI and pro-TGFβ1, revealing a novel mechanism of chemoresistance in NPC.
Collapse
Affiliation(s)
| | - Jacqueline H Law
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aline Renoult
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Melvin L K Chua
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada.,Division of Radiation Oncology, National Cancer Centre, Singapore, Singapore.,Duke-NUS Graduate School, Singapore, Singapore
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Wang Q, Teng Y, Wang R, Deng D, You Y, Peng Y, Shao N, Zhi F. The long non-coding RNA SNHG14 inhibits cell proliferation and invasion and promotes apoptosis by sponging miR-92a-3p in glioma. Oncotarget 2018; 9:12112-12124. [PMID: 29552296 PMCID: PMC5844732 DOI: 10.18632/oncotarget.23960] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma is one of the most common types of primary brain tumours. Long non-coding RNAs (lncRNAs) have recently emerged as a new class of therapeutic targets for many cancers. In this study, we aimed to explore the functional involvement of small nucleolar RNA host gene 14 (SNHG14) and its potential regulatory mechanism in glioma progression. SNHG14 was found to be downregulated in human glioma tissues and cell lines. SNHG14 significantly inhibited cell viability, reduced cell invasion, and induced apoptosis in glioma cell lines. Furthermore, a correlation analysis demonstrated that there was a negative correlation between SNHG14 expression and miR-92a-3p expression. Bioinformatics prediction and luciferase reporter assays demonstrated that miR-92a-3p could directly bind to SNHG14. miR-92a-3p was significantly upregulated in glioma and acted as an oncogene in glioma cells by inhibiting Bim. Moreover, mechanistic investigations showed that miR-92a-3p could reverse the tumour suppressive effects induced by SNHG14 in glioma, indicating that SNHG14 may act as an endogenous sponge that competes for binding to miR-92a-3p. Our results suggest that SNHG14 and miR-92a-3p may be promising molecular targets for glioma therapy.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yiwan Teng
- Changzhou Center for Biotech Development, Changzhou, Jiangsu, China
| | - Rong Wang
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Danni Deng
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yijie You
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
21
|
Low concentration of formononetin promotes proliferation of estrogen receptor-positive cells through an ERα-miR-375-PTEN-ERK1/2-bcl-2 pathway. Oncotarget 2017; 8:100045-100055. [PMID: 29245959 PMCID: PMC5725001 DOI: 10.18632/oncotarget.21923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022] Open
Abstract
A low dose of formononetin accelerates the proliferation of nasopharyngeal carcinoma cells in vitro; however, the underlying mechanism remains unknown. Here, we investigated the molecular mechanism of formononetin in CNE2 cell proliferation. CNE2 cells were treated with 0 to 1 μM formononetin. To inhibit mitogen activated protein kinase / extracellular regulate kinase (MAPK/ERK) kinase (MEK) and microRNA (miR)-375, cells were pretreated with either PD98059 or a miR-375 inhibitor, respectively, followed by co-treatment with formononetin (0.3 μM) plus an inhibitor. Female rats were ovariectomized (OVX), and some OVX rats received formononetin or estrogen (E2) injections. Sham operated animals were used as controls. Compared to control, 0.3 μM formononetin accelerated proliferation and decreased late apoptosis of CNE2 cells. However, formononetin-induced pro-growth and anti-apoptosis activity was abolished by PD98059 and the miR-375 inhibitor. In addition, 0.1 and 0.3 μM formononetin significantly increased estrogen receptor-α (ERα) and bcl-2, but decreased protein-phosphatase and tensin homologue (PTEN) protein expression, all of which was reversed by the miR-375 inhibitor. Additionally, formononetin treatment resulted in a transient upregulation of phosphorylated (p)-ERK1/2. In vivo studies indicated that formononetin significantly increased endometrium thickness and down-regulated ERα expression in OVX rats. Taken together, our study demonstrates that a low concentration of formononetin can promote growth of CNE2 cells and uterine tissues, possibly through regulating the ERα-miR-375-PTEN-ERK1/2-bcl-2 signaling pathway.
Collapse
|
22
|
Regev K, Healy BC, Khalid F, Paul A, Chu R, Tauhid S, Tummala S, Diaz-Cruz C, Raheja R, Mazzola MA, von Glehn F, Kivisakk P, Dupuy SL, Kim G, Chitnis T, Weiner HL, Gandhi R, Bakshi R. Association Between Serum MicroRNAs and Magnetic Resonance Imaging Measures of Multiple Sclerosis Severity. JAMA Neurol 2017; 74:275-285. [PMID: 28114622 DOI: 10.1001/jamaneurol.2016.5197] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance MicroRNAs (miRNAs) are promising multiple sclerosis (MS) biomarkers. Establishing the association between miRNAs and magnetic resonance imaging (MRI) measures of disease severity will help define their significance and potential impact. Objective To correlate circulating miRNAs in the serum of patients with MS to brain and spinal MRI. Design, Setting, and Participants A cross-sectional study comparing serum miRNA samples with MRI metrics was conducted at a tertiary MS referral center. Two independent cohorts (41 and 79 patients) were retrospectively identified from the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital. Expression of miRNA was determined by locked nucleic acid-based quantitative real-time polymerase chain reaction. Spearman correlation coefficients were used to test the association between miRNA and brain lesions (T2 hyperintense lesion volume [T2LV]), the ratio of T1 hypointense lesion volume [T1LV] to T2LV [T1:T2]), brain atrophy (whole brain and gray matter), and cervical spinal cord lesions (T2LV) and atrophy. The study was conducted from December 2013 to April 2016. Main Outcomes and Measures miRNA expression. Results Of the 120 patients included in the study, cohort 1 included 41 participants (7 [17.1%] men), with mean (SD) age of 47.7 (9.5) years; cohort 2 had 79 participants (26 [32.9%] men) with a mean (SD) age of 43.0 (7.5) years. Associations between miRNAs and MRIs were both protective and pathogenic. Regarding miRNA signatures, a topographic specificity differed for the brain vs the spinal cord, and the signature differed between T2LV and atrophy/destructive measures. Four miRNAs showed similar significant protective correlations with T1:T2 in both cohorts, with the highest for hsa.miR.143.3p (cohort 1: Spearman correlation coefficient rs = -0.452, P = .003; cohort 2: rs = -0.225, P = .046); the others included hsa.miR.142.5p (cohort 1: rs = -0.424, P = .006; cohort 2: rs = -0.226, P = .045), hsa.miR.181c.3p (cohort 1: rs = -0.383, P = .01; cohort 2: rs = -0.222, P = .049), and hsa.miR.181c.5p (cohort 1: rs = -0.433, P = .005; cohort 2: rs = -0.231, P = .04). In the 2 cohorts, hsa.miR.486.5p (cohort 1: rs = 0.348, P = .03; cohort 2: rs = 0.254, P = .02) and hsa.miR.92a.3p (cohort 1: rs = 0.392, P = .01; cohort 2: rs = 0.222, P = .049) showed similar significant pathogenic correlations with T1:T2; hsa.miR.375 (cohort 1: rs = -0.345, P = .03; cohort 2: rs = -0.257, P = .022) and hsa.miR.629.5p (cohort 1: rs = -0.350, P = .03; cohort 2: rs = -0.269, P = .02) showed significant pathogenic correlations with brain atrophy. Although we found several miRNAs associated with MRI outcomes, none of these associations remained significant when correcting for multiple comparisons, suggesting that further validation of our findings is needed. Conclusions and Relevance Serum miRNAs may serve as MS biomarkers for monitoring disease progression and act as surrogate markers to identify underlying disease processes.
Collapse
Affiliation(s)
- Keren Regev
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian C Healy
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts2Biostatistics Center, Massachusetts General Hospital, Boston
| | - Fariha Khalid
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Renxin Chu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shahamat Tauhid
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Subhash Tummala
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Camilo Diaz-Cruz
- Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria A Mazzola
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Felipe von Glehn
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pia Kivisakk
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sheena L Dupuy
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gloria Kim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rohit Bakshi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts4Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|