1
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Gupta MK, Kushwah AS, Singh R, Srivastava K, Banerjee M. Genetic and epigenetic alterations in MGMT gene and correlation with concomitant chemoradiotherapy (CRT) in cervical cancer. J Cancer Res Clin Oncol 2023; 149:15159-15170. [PMID: 37634205 DOI: 10.1007/s00432-023-05305-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE The MGMT (O6-methylguanine-DNA methyltransferase) gene plays a crucial role in repairing DNA damage caused by alkylating agents, including those used in chemotherapy. Genetic and epigenetic alterations can influence the regulation of MGMT gene, which in turn may impact the response to concomitant chemoradiotherapy (CRT) in cervical cancer. The present study was undertaken to evaluate the correlation of such variations in MGMT gene with the treatment outcome of concomitant chemoradiotherapy (CRT) in cervical cancer. METHODS A total of 460 study subjects (240 controls and 220 patients) were subjected to genotypic analysis of MGMT gene variants rs12917(T/C) and rs2308327(A/G) by Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR). Out of them, 48 each of controls and patients were analyzed for promoter methylation and expression by methylation-specific PCR and real-time PCR, respectively. Patients (n = 48) were followed up and evaluated for treatment (CRT) outcome. Statistical analyses were done using GraphPad (9.0) and SPSS version 18.0. RESULTS Individuals with GG genotype, G allele of rs2308327, and haplotype 'TA' of both variants showed a significant increase in the development of cervical cancer (P ≤ 0.05). In epigenetic regulation, there was a significant hypermethylation of MGMT gene and down-regulation of their expression in patients compared to control individuals. In treatment outcome of CRT, GG genotype of rs2308327(A/G) gene variant showed better response and GG + AG was significantly associated with vital status (alive). Unmethylated MGMT gene showed better median overall survival up to 25 months significant in comparison to methylated MGMT promoter. CONCLUSION Gene variant rs2308327(A/G) and promoter hypermethylation regulated MGMT gene can be a good prognostic for treatment response in cervical cancer patients.
Collapse
Affiliation(s)
- Maneesh Kumar Gupta
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Atar Singh Kushwah
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Renu Singh
- Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, 226003, India
| | - Kirti Srivastava
- Department of Radiotherapy, King George's Medical University, Lucknow, 226003, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
3
|
De Marco K, Sanese P, Simone C, Grossi V. Histone and DNA Methylation as Epigenetic Regulators of DNA Damage Repair in Gastric Cancer and Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:4976. [PMID: 37894343 PMCID: PMC10605360 DOI: 10.3390/cancers15204976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the cell nucleus, including gene expression and DNA damage repair (DDR). Indeed, the aberrant expression of histone methyltransferases and demethylases influences chromatin accessibility to the DNA repair machinery; moreover, overexpression of DNA methyltransferases results in promoter hypermethylation, which can suppress the transcription of genes involved in DNA repair. Several DDR mechanisms have been recognized so far, with homologous recombination (HR) being the main pathway involved in the repair of double-strand breaks. An increasing number of defective HR genes are emerging in GC, resulting in the identification of important determinants of therapeutic response to DDR inhibitors. This review describes how both histone and DNA methylation affect DDR in the context of GC and discusses how alterations in DDR can help identify new molecular targets to devise more effective therapeutic strategies for GC, with a particular focus on HR-deficient tumors.
Collapse
Affiliation(s)
- Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| |
Collapse
|
4
|
Paydar P, Asadikaram G, Nejad HZ, Akbari H, Abolhassani M, Moazed V, Nematollahi MH, Ebrahimi G, Fallah H. Epigenetic modulation of BRCA-1 and MGMT genes, and histones H4 and H3 are associated with breast tumors. J Cell Biochem 2019; 120:13726-13736. [PMID: 30938887 DOI: 10.1002/jcb.28645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Aberrant patterns in promoter methylation of tumor-suppressor genes and posttranslational modifications of histone proteins are considered as major features of malignancy. In this study, we aimed to investigate promoter methylation of three tumor-suppressor genes (BRCA-1, MGMT, and P16) and three histone marks (H3K9ac, H3K18ac, and H4K20me3) in patients with breast tumors. This case-control study included 27 patients with malignant breast tumors (MBT) and 31 patients with benign breast tumors (BBT). The methylation-specific PCR was used for determining promoter methylation of BRCA-1, MGMT, and P16 genes. Western blot analysis was performed to detect histone lysine acetylation (H3K9ac and H3K18ac) and lysine methylation (H4K20me3). BRCA-1 promoter methylation was detected in 44.4% of the MBT whereas this alteration was found in 9.7% of BBT (P = 0.005). The Kaplan-Meier analysis indicated that hypermethylation in BRCA-1 promoter was significantly associated with poor overall survival of patients with breast cancer (P = 0.039). MGMT promoter methylation was identified in 18.5% of MBT and 0.0% of the BBT (P = 0.01). The frequency of P16 promoter methylation was 25.8% in BBT and 11.1% in MBT (P = 0.12). As compared with BBT, MBT samples displayed the aberrant patterns of histones marks with hypomethylation of H4K20 and hypoacetylation of H3K18 (P = 0.03 and P = 0.04, respectively). There was a negative significant correlation between H3K9ac levels and tumor size in MBT group (r = -0.672; P = 0.008). The present findings suggest that promoter hypermethylation of MGMT and BRCA-1 genes along with alterations in H3K18ac and H4K20me3 levels may have prognostic values in patients with breast cancer. Moreover, the detection of these epigenetic modifications in breast tumors could be helpful in finding new methods for breast cancer therapy.
Collapse
Affiliation(s)
- Parisa Paydar
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Zeynali Nejad
- Department of Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Moazed
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghasem Ebrahimi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Fallah
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Pirini F, Noazin S, Jahuira-Arias MH, Rodriguez-Torres S, Friess L, Michailidi C, Cok J, Combe J, Vargas G, Prado W, Soudry E, Pérez J, Yudin T, Mancinelli A, Unger H, Ili-Gangas C, Brebi-Mieville P, Berg DE, Hayashi M, Sidransky D, Gilman RH, Guerrero-Preston R. Early detection of gastric cancer using global, genome-wide and IRF4, ELMO1, CLIP4 and MSC DNA methylation in endoscopic biopsies. Oncotarget 2018; 8:38501-38516. [PMID: 28418867 PMCID: PMC5503549 DOI: 10.18632/oncotarget.16258] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 12/15/2022] Open
Abstract
Clinically useful molecular tools to triage gastric cancer patients are not currently available. We aimed to develop a molecular tool to predict gastric cancer risk in endoscopy-driven biopsies obtained from high-risk gastric cancer clinics in low resource settings. We discovered and validated a DNA methylation biomarker panel in endoscopic samples obtained from 362 patients seen between 2004 and 2009 in three high-risk gastric cancer clinics in Lima, Perú, and validated it in 306 samples from the Cancer Genome Atlas project (“TCGA”). Global, epigenome wide and gene-specific DNA methylation analyses were used in a Phase I Biomarker Development Trial to identify a continuous biomarker panel that combines a Global DNA Methylation Index (GDMI) and promoter DNA methylation levels of IRF4, ELMO1, CLIP4 and MSC. We observed an inverse association between the GDMI and histological progression to gastric cancer, when comparing gastritis patients without metaplasia (mean = 5.74, 95% CI, 4.97−6.50), gastritis patients with metaplasia (mean = 4.81, 95% CI, 3.77−5.84), and gastric cancer cases (mean = 3.38, 95% CI, 2.82−3.94), respectively (p < 0.0001). Promoter methylation of IRF4 (p < 0.0001), ELMO1 (p < 0.0001), CLIP4 (p < 0.0001), and MSC (p < 0.0001), is also associated with increasing severity from gastritis with no metaplasia to gastritis with metaplasia and gastric cancer. Our findings suggest that IRF4, ELMO1, CLIP4 and MSC promoter methylation coupled with a GDMI>4 are useful molecular tools for gastric cancer risk stratification in endoscopic biopsies.
Collapse
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sassan Noazin
- The Johns Hopkins University, Bloomberg School of Public Health, Department of International Health, Baltimore, MD, USA
| | - Martha H Jahuira-Arias
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA.,Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sebastian Rodriguez-Torres
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Leah Friess
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Christina Michailidi
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Jaime Cok
- Hospital Nacional Cayetano Heredia, Pathology Department, Lima, Perú
| | - Juan Combe
- Instituto Nacional de Enfermedades Neoplásicas, Gastroenterology Department, Lima, Perú
| | - Gloria Vargas
- Hospital Nacional Arzobispo Loayza, Gastroenterology Department, Lima, Perú
| | - William Prado
- Hospital Nacional Dos de Mayo, Gastroenterology Department, Lima, Perú
| | - Ethan Soudry
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Jimena Pérez
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Tikki Yudin
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Andrea Mancinelli
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Helen Unger
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Carmen Ili-Gangas
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi-Mieville
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Douglas E Berg
- Washington University Medical School, Department of Molecular Microbiology, St Louis, MO, USA.,University of California San Diego, Department of Medicine, La Jolla, CA, USA
| | - Masamichi Hayashi
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA.,Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David Sidransky
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Robert H Gilman
- The Johns Hopkins University, Bloomberg School of Public Health, Department of International Health, Baltimore, MD, USA.,Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rafael Guerrero-Preston
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA.,University of Puerto Rico School of Medicine, Department of Obstetrics and Gynecology, San Juan, Puerto Rico
| |
Collapse
|