1
|
Jang JH, Kim DH, Chun KS. Tumor microenvironment regulation by reactive oxygen species-mediated inflammasome activation. Arch Pharm Res 2025; 48:115-131. [PMID: 39888519 DOI: 10.1007/s12272-025-01532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Tumor microenvironment (TME) is composed of diverse cell types whose interactions, both direct and indirect, significantly influence tumorigenesis and therapeutic outcomes. Within TME, reactive oxygen species (ROS) are produced by various cells and exhibit a dual role: moderate ROS levels promote tumor initiation and progression, whereas excessive levels induce cancer cell death, influencing the efficacy of anticancer therapies. Inflammasomes, cytosolic multiprotein complexes, are pivotal in multiple stages of tumorigenesis and play a crucial role in establishing the inflammatory TME. By releasing cytokines such as IL-1β and IL-18, inflammasomes contribute to immune cell recruitment and sustain a chronic inflammatory state that supports tumor growth. ROS are critical regulators of inflammasome activation, with the impact of ROS-mediated activation differing across cell types, leading to distinct influences on tumor progression and therapeutic responses. This review explores how ROS drive inflammasome activation in various TME-associated cells and the reciprocal ROS generation induced by inflammasomes, examining their multifaceted impact on tumorigenesis and therapeutic efficacy. By elucidating the complex interplay between ROS and inflammasomes in TME, we provide insights into potential therapeutic approaches that could modulate cancer progression and enhance treatment outcomes.
Collapse
Affiliation(s)
- Jeong-Hoon Jang
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si, Gyeongbuk, 38430, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
2
|
Belloucif Y, Lobry C. Super-Enhancers Dysregulations in Hematological Malignancies. Cells 2022; 11:196. [PMID: 35053311 PMCID: PMC8774084 DOI: 10.3390/cells11020196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
Hematological malignancies affecting either the lymphoid or the myeloid lineages involve epigenetic mutations or dysregulation in the majority of cases. These epigenetic abnormalities can affect regulatory elements in the genome and, particularly, enhancers. Recently, large regulatory elements known as super-enhancers, initially identified for their critical roles in cell-type specific expression regulation of genes controlling cell identity, have been shown to also be involved in tumorigenesis in many cancer types and hematological malignancies via the regulation of numerous oncogenes, including MYC. In this review, we highlight the existing links between super-enhancers and hematological malignancies, with a particular focus on acute myeloid leukemia, a clonal hematopoietic neoplasm with dismal outcomes, resulting in an uncontrolled proliferation of myeloblasts, abnormally blocked during differentiation and accumulating within the patient's bone marrow. We report recent works, performed during the last few years, treating this subject and consider the possibility of targeting oncogenic regulatory elements, as well as the effectiveness and limitations reported so far for such strategies.
Collapse
Affiliation(s)
| | - Camille Lobry
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France;
| |
Collapse
|
3
|
Akram AM, Chaudhary A, Kausar H, Althobaiti F, Abbas AS, Hussain Z, Fatima N, Zafar E, Asif W, Afzal U, Yousaf Z, Zafar A, Harakeh SM, Qamer S. Analysis of RAS gene mutations in cytogenetically normal de novo acute myeloid leukemia patients reveals some novel alterations. Saudi J Biol Sci 2021; 28:3735-3740. [PMID: 34220225 PMCID: PMC8241590 DOI: 10.1016/j.sjbs.2021.04.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rat sarcoma gene (RAS) holds great importance in pathogenesis of acute myeloid leukemia (AML). The activated mutations in Neuroblastoma rat sarcoma viral oncogene homolog (NRAS) and Kirsten rat sarcoma viral oncogene homolog (KRAS) confers proliferative and survival signals, deliberating numerous effects on overall survival and progression free survival in AML patients. In this study thirty one (31) blood samples of adult newly diagnosed AML patients were collected to identify possible incidence of mutations through amplification of KRAS (exon 1 and 2) and NRAS gene (exon 1 and 2) using polymerase chain reaction (PCR). Amplicons were then subjected to sequencing and were analyzed through Geneious Prime 2019. Five of thirty one (16.12%) patients had altered sites in either NRAS or KRAS. The NRAS mutations were observed in three AML patients (N = 3, 9.67%). A novel missense mutation NRAS-I36R (239 T > G) representing a substitution of single nucleotide basepair found in NRAS exon 1 while exon 2 was detected with heterozygous mutation NRAS-E63X (318G > T) and insertion (A), resulting in frameshift of the amino acid sequence and insertion of two nucleotide basepairs (TA) in two of the patients. KRAS mutations (N = 2, 6.45%) were found in exon 1 whereas no mutations in KRAS exon 2 were detected in our patient cohort. Mutation in KRAS Exon 1, KRAS-D30N (280G > A) was observed in two patients and one of them also had a novel heterozygous mutation KRAS-L16N (240G > C). In addition there was no statistically significant association of mutRAS gene of AML patients with several prognostic markers including age, gender, karyotyping, CD34 positivity, cytogenetic abnormalities, total leukocyte count, white blood cell count and French-American-British (FAB) classification. However, the presence of mutRAS gene were strongly associated (p = 0.001) with increased percentage of bone marrow blasts. The prevalence of mutations in correlation with clinical and hematological parameter is useful for risk stratification in AML patients.
Collapse
Affiliation(s)
- Afia Muhammad Akram
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Asma Chaudhary
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Humera Kausar
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Afshan Syed Abbas
- Department of Zoology, University of Education, Lower Mall Campus, Lahore, Pakistan
| | - Zawar Hussain
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Naz Fatima
- Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Erum Zafar
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Wajiha Asif
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Umair Afzal
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Zoufishan Yousaf
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Amjad Zafar
- Department of Oncology, Mayo Hospital, Anarkali Bazar, Lahore, Pakistan
| | - Steve M Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samina Qamer
- Department of Zoology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
4
|
Covell DG. Bioinformatic analysis linking genomic defects to chemosensitivity and mechanism of action. PLoS One 2021; 16:e0243336. [PMID: 33909629 PMCID: PMC8081165 DOI: 10.1371/journal.pone.0243336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
A joint analysis of the NCI60 small molecule screening data, their genetically defective genes, and mechanisms of action (MOA) of FDA approved cancer drugs screened in the NCI60 is proposed for identifying links between chemosensitivity, genomic defects and MOA. Self-Organizing-Maps (SOMs) are used to organize the chemosensitivity data. Student's t-tests are used to identify SOM clusters with enhanced chemosensitivity for tumor cell lines with versus without genetically defective genes. Fisher's exact and chi-square tests are used to reveal instances where defective gene to chemosensitivity associations have enriched MOAs. The results of this analysis find a relatively small set of defective genes, inclusive of ABL1, AXL, BRAF, CDC25A, CDKN2A, IGF1R, KRAS, MECOM, MMP1, MYC, NOTCH1, NRAS, PIK3CG, PTK2, RPTOR, SPTBN1, STAT2, TNKS and ZHX2, as possible candidates for roles in chemosensitivity for compound MOAs that target primarily, but not exclusively, kinases, nucleic acid synthesis, protein synthesis, apoptosis and tubulin. These results find exploitable instances of enhanced chemosensitivity of compound MOA's for selected defective genes. Collectively these findings will advance the interpretation of pre-clinical screening data as well as contribute towards the goals of cancer drug discovery, development decision making, and explanation of drug mechanisms.
Collapse
Affiliation(s)
- David G. Covell
- Information Technologies Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States of America
| |
Collapse
|
5
|
Yang F, Anekpuritanang T, Press RD. Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia. Mol Diagn Ther 2021; 24:1-13. [PMID: 31848884 DOI: 10.1007/s40291-019-00443-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease that, even with current advancements in therapy, continues to have a poor prognosis. Recurrent somatic mutations have been identified in a core set of pathogenic genes including FLT3 (25-30% prevalence), NPM1 (25-30%), DNMT3A (25-30%), IDH1/2 (5-15%), and TET2 (5-15%), with direct diagnostic, prognostic, and targeted therapeutic implications. Advances in the understanding of the complex mechanisms of AML leukemogenesis have led to the development and recent US Food and Drug Administration (FDA) approval of several targeted therapies: midostaurin and gilteritinib targeting activated FLT3, and ivosidenib and enasidenib targeting mutated IDH1/2. Several additional drug candidates targeting other recurrently mutated gene pathways in AML are also being actively developed. Furthermore, outside of the realm of predicting responses to targeted therapies, many other mutated genes, which comprise the so-called long tail of oncogenic drivers in AML, have been shown to provide clinically useful diagnostic and prognostic information for AML patients. Many of these recurrently mutated genes have also been shown to be excellent biomarkers for post-treatment minimal residual disease (MRD) monitoring for assessing treatment response and predicting future relapse. In addition, the identification of germline mutations in a set of genes predisposing to myeloid malignancies may directly inform treatment decisions (particularly stem cell transplantation) and impact other family members. Recent advances in sequencing technology have made it practically and economically feasible to evaluate many genes simultaneously using next-generation sequencing (NGS). Mutation screening with NGS panels has been recommended by national and international professional guidelines as the standard of care for AML patients. NGS-based detection of the heterogeneous genes commonly mutated in AML has practical clinical utility for disease diagnosis, prognosis, prediction of targeted therapy response, and MRD monitoring.
Collapse
Affiliation(s)
- Fei Yang
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L113, Portland, OR, 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tauangtham Anekpuritanang
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L113, Portland, OR, 97239, USA.,Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Richard D Press
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L113, Portland, OR, 97239, USA. .,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
6
|
A forward selection algorithm to identify mutually exclusive alterations in cancer studies. J Hum Genet 2020; 66:509-518. [PMID: 33177701 DOI: 10.1038/s10038-020-00870-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Mutual exclusivity analyses provide an effective tool to identify driver genes from passenger genes for cancer studies. Various algorithms have been developed for the detection of mutual exclusivity, but controlling false positive and improving accuracy remain challenging. We propose a forward selection algorithm for identification of mutually exclusive gene sets (FSME) in this paper. The method includes an initial search of seed pair of mutually exclusive (ME) genes and subsequently including more genes into the current ME set. Simulations demonstrated that, compared to recently published approaches (i.e., CoMEt, WExT, and MEGSA), FSME could provide higher precision or recall rate to identify ME gene sets, and had superior control of false positive rates. With application to TCGA real data sets for AML, BRCA, and GBM, we confirmed that FSME can be utilized to discover cancer driver genes.
Collapse
|
7
|
Absence of BCL-2 Expression Identifies a Subgroup of AML with Distinct Phenotypic, Molecular, and Clinical Characteristics. J Clin Med 2020; 9:jcm9103090. [PMID: 32992732 PMCID: PMC7599534 DOI: 10.3390/jcm9103090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the rapid and uncontrolled clonal growth of myeloid lineage cells in the bone marrow. The advent of oral, selective inhibitors of the B-cell leukemia/lymphoma-2 (BCL-2) apoptosis pathway, such as venetoclax, will likely induce a paradigm shift in the treatment of AML. However, the high cost of this treatment and the risk of additive toxicity when used in combination with standard chemotherapy represent limitations to its use and underscore the need to identify which patients are most—and least—likely to benefit from incorporation of venetoclax into the treatment regimen. Bone marrow specimens from 93 newly diagnosed AML patients were collected in this study and evaluated for BCL-2 protein expression by immunohistochemistry. Using this low-cost, easily, and readily applicable analysis method, we found that 1 in 5 AML patients can be considered as BCL-2−. In addition to a lower bone marrow blast percentage, this group exhibited a favorable molecular profile characterized by lower WT1 expression and underrepresentation of FLT3 mutations. As compared to their BCL-2+ counterparts, the absence of BCL-2 expression was associated with a favorable response to standard chemotherapy and overall survival, thus potentially precluding the necessity for venetoclax add-on.
Collapse
|
8
|
Evolution of a chemosensitive core-binding factor AML into an aggressive leukemia with eosinophilic differentiation. Blood Adv 2019; 2:1517-1521. [PMID: 29950292 DOI: 10.1182/bloodadvances.2018016675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/19/2018] [Indexed: 11/20/2022] Open
Abstract
Key Points
Core-binding factor AML can evolve from good-risk disease into aggressive disease through the gain of additional genomic aberrations. In this unique case, an AML patient died of hypereosinophilic syndrome with solid organ infiltration of differentiated eosinophils.
Collapse
|
9
|
Knight T, Irving JAE. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting. Front Oncol 2014; 4:160. [PMID: 25009801 PMCID: PMC4067595 DOI: 10.3389/fonc.2014.00160] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/06/2014] [Indexed: 01/11/2023] Open
Abstract
Deregulation of the Ras/Raf/MEK/extracellular signal-regulated kinase pathway is a common event in childhood acute lymphoblastic leukemia and is caused by point mutation, gene deletion, and chromosomal translocation of a vast array of gene types, highlighting its importance in leukemia biology. Pathway activation can be therapeutically exploited and may guide new therapies needed for relapsed acute lymphoblastic leukemia and other high risk subgroups.
Collapse
Affiliation(s)
- Thomas Knight
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Julie Anne Elizabeth Irving
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Jabbour E, Ottmann OG, Deininger M, Hochhaus A. Targeting the phosphoinositide 3-kinase pathway in hematologic malignancies. Haematologica 2014; 99:7-18. [PMID: 24425689 PMCID: PMC4007928 DOI: 10.3324/haematol.2013.087171] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022] Open
Abstract
The phosphoinositide 3-kinase pathway represents an important anticancer target because it has been implicated in cancer cell growth, survival, and motility. Recent studies show that PI3K may also play a role in the development of resistance to currently available therapies. In a broad range of cancers, various components of the phosphoinositide 3-kinase signaling axis are genetically modified, and the pathway can be activated through many different mechanisms. The frequency of genetic alterations in the phosphoinositide 3-kinase pathway, coupled with the impact in oncogenesis and disease progression, make this signaling axis an attractive target in anticancer therapy. A better understanding of the critical function of the phosphoinositide 3-kinase pathway in leukemias and lymphomas has led to the clinical evaluation of novel rationally designed inhibitors in this setting. Three main categories of phosphoinositide 3-kinase inhibitors have been developed so far: agents that target phosphoinositide 3-kinase and mammalian target of rapamycin (dual inhibitors), pan-phosphoinositide 3-kinase inhibitors that target all class I isoforms, and isoform-specific inhibitors that selectively target the α, -β, -γ, or -δ isoforms. Emerging data highlight the promise of phosphoinositide 3-kinase inhibitors in combination with other therapies for the treatment of patients with hematologic malignancies. Further evaluation of phosphoinositide 3-kinase inhibitors in first-line or subsequent regimens may improve clinical outcomes. This article reviews the role of phosphoinositide 3-kinase signaling in hematologic malignancies and the potential clinical utility of inhibitors that target this pathway.
Collapse
|
11
|
Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PLoS One 2013; 8:e80070. [PMID: 24244612 PMCID: PMC3828226 DOI: 10.1371/journal.pone.0080070] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/09/2013] [Indexed: 01/22/2023] Open
Abstract
Purpose Aberrant PI3K/AKT/mTOR signaling has been linked to oncogenesis and therapy resistance in various malignancies including leukemias. In Philadelphia chromosome (Ph) positive leukemias, activation of PI3K by dysregulated BCR-ABL tyrosine kinase (TK) contributes to the pathogenesis and development of resistance to ABL-TK inhibitors (TKI). The PI3K pathway thus is an attractive therapeutic target in BCR-ABL positive leukemias, but its role in BCR-ABL negative ALL is conjectural. Moreover, the functional contribution of individual components of the PI3K pathway in ALL has not been established. Experimental Design We compared the activity of the ATP-competitive pan-PI3K inhibitor NVP-BKM120, the allosteric mTORC1 inhibitor RAD001, the ATP-competitive dual PI3K/mTORC1/C2 inhibitors NVP-BEZ235 and NVP-BGT226 and the combined mTORC1 and mTORC2 inhibitors Torin 1, PP242 and KU-0063794 using long-term cultures of ALL cells (ALL-LTC) from patients with B-precursor ALL that expressed the BCR-ABL or TEL-ABL oncoproteins or were BCR-ABL negative. Results Dual PI3K/mTOR inhibitors profoundly inhibited growth and survival of ALL cells irrespective of their genetic subtype and their responsiveness to ABL-TKI. Combined suppression of PI3K, mTORC1 and mTORC2 displayed greater antileukemic activity than selective inhibitors of PI3K, mTORC1 or mTORC1 and mTORC2. Conclusions Inhibition of the PI3K/mTOR pathway is a promising therapeutic approach in patients with ALL. Greater antileukemic activity of dual PI3K/mTORC1/C2 inhibitors appears to be due to the redundant function of PI3K and mTOR. Clinical trials examining dual PI3K/mTORC1/C2 inhibitors in patients with B-precursor ALL are warranted, and should not be restricted to particular genetic subtypes.
Collapse
|
12
|
Frequency of KRAS mutations in adult Korean patients with acute myeloid leukemia. Int J Hematol 2013; 98:549-57. [PMID: 24105326 DOI: 10.1007/s12185-013-1446-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 01/26/2023]
Abstract
Mutation of KRAS genes occurs with a frequency of 0.5-32 % in AML. In the present study, mutations of KRAS codon 12, 13, and 61 were detected by pyrosequencing and direct sequencing in AML. Seven KRAS mutations (7/123, 5.7 %) were detected. The most common mutation was a G-to-A transition in the second base of KRAS codon 13. No mutations were detected in KRAS codon 61. Combinations of KRAS and FLT3 mutation were not found in the same patient. There was no statistically significant difference between patients with KRAS mutations and patients with wild-type KRAS in terms of sex, age, CBC at diagnosis, CD34 positivity, MPO positivity, FLT3 mutation, karyotype, progression-free survival, and overall survival, although this may be attributable to the small sample size. To our knowledge, this is the first report of the detection of KRAS mutation in Asian AML patients using pyrosequencing and direct sequencing. These two methods showed identical efficiencies in their ability to detect KRAS mutations in 84 patients.
Collapse
|