1
|
Luo Z, Fan H, Zhang T, Wang J, Zheng J, Guo R, Zhou J, Yang B, Huang L, Liu G, Yang J. A novel benzofuran derivative of β-elemene (ZT-22) inhibits hepatocellular carcinoma cell growth via directly targeting HSPA6. Chem Biol Interact 2025; 415:111514. [PMID: 40239884 DOI: 10.1016/j.cbi.2025.111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer globally and is associated with a poor prognosis. Current therapies for HCC have limited efficacy and require improvement. In our study, the benzofuran derivative of β-elemene (ZT-22) demonstrated enhanced anti-HCC efficacy compared to β-elemene, both in vitro and in vivo. Using network pharmacology, RNA sequencing, and western blot analysis, the crucial role of the p38 MAPK signaling pathway in the anti-HCC activity of ZT-22 cells was highlighted. Using drug affinity-responsive target stability (DARTS) combined with mass spectrometry (MS), HSPA6 was identified as the target for ZT-22. Techniques such as the cellular thermal shift assay (CETSA), surface plasmon resonance (SPR) analysis, microscale thermophoresis (MST), molecular docking and molecular dynamics (MD) simulations were used for further validation, confirming that ZT-22 directly binds to HSPA6. Knocking down HSPA6 diminished p38 MAPK signaling and reversed the anti-HCC effects of ZT-22. These findings suggest that ZT-22 exerts its anti-HCC activity by targeting HSPA6, which in turn activated the p38-MAPK signaling pathway. Our results support the development of ZT-22 as a potential therapeutic agent for HCC and highlight HSPA6 as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District, 330000, China
| | - Huixia Fan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District, 330000, China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot, 010030, Inner Mongolia, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jingqi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ruofan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District, 330000, China
| | - Bin Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guodu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot, 010030, Inner Mongolia, China.
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District, 330000, China.
| |
Collapse
|
2
|
Sunildutt N, Ahmed F, Salih ARC, Kim HC, Choi KH. Unraveling new avenues in pancreatic cancer treatment: A comprehensive exploration of drug repurposing using transcriptomic data. Comput Biol Med 2025; 185:109481. [PMID: 39644581 DOI: 10.1016/j.compbiomed.2024.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Pancreatic cancer, a malignancy notorious for its late-stage diagnosis and low patient survival rates, remains a formidable global health challenge. The currently available FDA-approved treatments for pancreatic cancer, notably chemotherapeutic agents, exhibit suboptimal efficacy, often accompanied by concerns regarding toxicity. Given the intricate nature of pancreatic cancer pathogenesis and the time-intensive nature of in silico drug discovery approaches, drug repurposing emerges as a compelling strategy to expedite the development of novel therapeutic interventions. In our study, we harnessed transcriptomic data from an exhaustive exploration of four diverse databases, ensuring a rigorous and unbiased analysis of differentially expressed genes, with a particular focus on upregulated genes associated with pancreatic cancer. Leveraging these pancreatic cancer-associated host protein targets, we employed a battery of cutting-edge bioinformatics tools, including Cytoscape STRING, GeneMANIA, Connectivity Map, and NetworkAnalyst, to identify potential small molecule drug candidates and elucidate their interactions. Subsequently, we conducted meticulous docking and redocking simulations for the selected drug-protein target pairs. This rigorous computational approach culminated in the identification of two promising broad-spectrum drug candidates against four pivotal host genes implicated in pancreatic cancer. Our findings strongly advocate for further investigation and preclinical validation of these candidates. Specifically, we propose prioritizing Dasatinib for evaluation against MMP3, MMP9, and EGFR due to their remarkable binding affinities, as well as Pioglitazone against MMP3, MMP2 and MMP9. These discoveries hold great promise in advancing the therapeutic landscape for pancreatic cancer, offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea
| | - Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea
| | - Abdul Rahim Chethikkattuveli Salih
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, US; BioSpero, Inc, Jeju, Republic of Korea
| | - Hyung Chul Kim
- Department of Future Science and Technology Business, Korea University, Seoul, 02841, Republic of Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| |
Collapse
|
3
|
Horaira MA, Islam MA, Kibria MK, Alam MJ, Kabir SR, Mollah MNH. Bioinformatics screening of colorectal-cancer causing molecular signatures through gene expression profiles to discover therapeutic targets and candidate agents. BMC Med Genomics 2023; 16:64. [PMID: 36991484 PMCID: PMC10053149 DOI: 10.1186/s12920-023-01488-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Detection of appropriate receptor proteins and drug agents are equally important in the case of drug discovery and development for any disease. In this study, an attempt was made to explore colorectal cancer (CRC) causing molecular signatures as receptors and drug agents as inhibitors by using integrated statistics and bioinformatics approaches. METHODS To identify the important genes that are involved in the initiation and progression of CRC, four microarray datasets (GSE9348, GSE110224, GSE23878, and GSE35279) and an RNA_Seq profiles (GSE50760) were downloaded from the Gene Expression Omnibus database. The datasets were analyzed by a statistical r-package of LIMMA to identify common differentially expressed genes (cDEGs). The key genes (KGs) of cDEGs were detected by using the five topological measures in the protein-protein interaction network analysis. Then we performed in-silico validation for CRC-causing KGs by using different web-tools and independent databases. We also disclosed the transcriptional and post-transcriptional regulatory factors of KGs by interaction network analysis of KGs with transcription factors (TFs) and micro-RNAs. Finally, we suggested our proposed KGs-guided computationally more effective candidate drug molecules compared to other published drugs by cross-validation with the state-of-the-art alternatives of top-ranked independent receptor proteins. RESULTS We identified 50 common differentially expressed genes (cDEGs) from five gene expression profile datasets, where 31 cDEGs were downregulated, and the rest 19 were up-regulated. Then we identified 11 cDEGs (CXCL8, CEMIP, MMP7, CA4, ADH1C, GUCA2A, GUCA2B, ZG16, CLCA4, MS4A12 and CLDN1) as the KGs. Different pertinent bioinformatic analyses (box plot, survival probability curves, DNA methylation, correlation with immune infiltration levels, diseases-KGs interaction, GO and KEGG pathways) based on independent databases directly or indirectly showed that these KGs are significantly associated with CRC progression. We also detected four TFs proteins (FOXC1, YY1, GATA2 and NFKB) and eight microRNAs (hsa-mir-16-5p, hsa-mir-195-5p, hsa-mir-203a-3p, hsa-mir-34a-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-429, and hsa-mir-335-5p) as the key transcriptional and post-transcriptional regulators of KGs. Finally, our proposed 15 molecular signatures including 11 KGs and 4 key TFs-proteins guided 9 small molecules (Cyclosporin A, Manzamine A, Cardidigin, Staurosporine, Benzo[A]Pyrene, Sitosterol, Nocardiopsis Sp, Troglitazone, and Riccardin D) were recommended as the top-ranked candidate therapeutic agents for the treatment against CRC. CONCLUSION The findings of this study recommended that our proposed target proteins and agents might be considered as the potential diagnostic, prognostic and therapeutic signatures for CRC.
Collapse
Affiliation(s)
- Md Abu Horaira
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ariful Islam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Kaderi Kibria
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Jahangir Alam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
4
|
Song B, Shen S, Fu S, Fu J. HSPA6 and its role in cancers and other diseases. Mol Biol Rep 2022; 49:10565-10577. [PMID: 35666422 DOI: 10.1007/s11033-022-07641-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Heat Shock Protein Family A (Hsp70) Member 6 (HSPA6) (Online Mendelian Inheritance in Man: 140555) belongs to the HSP70 family and is a partially conserved inducible protein in mammals. The HSPA6 gene locates on the human chromosome 1q23.3 and encodes a protein containing two important structural domains: The N-terminal nucleotide-binding domain and the C-terminal substrate-binding domain. Currently, studies have found that HSPA6 not only plays a role in the tumorigenesis and tumor progresses but also causes non-tumor-related diseases. Furthermore, HSPA6 exhibits to inhibit tumorigenesis and tumor progression in some types of cancers but promotes in others. Even though HSPA6 research has increased, its exact roles and mechanisms are still unclear. This article reviews the structure, expression, function, research progress, possible mechanism, and perspective of HSPA6 in cancers and other diseases, highlighting its potential role as a targeted therapeutic and prognostic marker.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shiyi Shen
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- School of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Liu F, Ma X, Bian X, Zhang C, Liu X, Liu Q. LINC00586 Represses ASXL1 Expression Thus Inducing Epithelial-To-Mesenchymal Transition of Colorectal Cancer Cells Through LSD1-Mediated H3K4me2 Demethylation. Front Pharmacol 2022; 13:887822. [PMID: 35586041 PMCID: PMC9108668 DOI: 10.3389/fphar.2022.887822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is a major public health problem on a global scale by virtue of its relatively high incidence. The transition of tumor cells from an epithelial to a mesenchymal-like phenotype, so-called epithelial-to-mesenchymal transition (EMT), is a key hallmark of human cancer metastasis, including CRC. Understanding the signaling events that initiate this phenotypic switch may provide opportunities to limit the metastasis of CRC. In this study, we aim to identify long non-coding RNA (lncRNA) mediated epigenetic regulation under the context of CRC. 54 paired samples of tumor tissues and surrounding non-tumor tissues were collected from CRC patients. Cultured human CRC cells HCT116 and LoVo were assayed for their viability and migration using CCK-8 tests and transwell migration assays. The expression of EMT-specific markers (E-cadherin, N-cadherin and vimentin) was analyzed biochemically by RT-qPCR and immunoblot analyses. Interaction among LINC00586, LSD1, and ASXL1 was determined by RNA immunoprecipitation and chromatin immunoprecipitation. In vivo analysis of LINC00586 was performed in nude mice xenografted with HCT116 cells. LINC00586 was overexpressed in CRC tissues and associated with patient survival. LINC00586 knockdown repressed HCT116 and LoVo cell viability, migration, their phenotypic switch from epithelial to a mesenchymal, and tumorigenesis in vivo. We demonstrated LINC00586 recruited the LSD1 into the ASXL1 promoter region and epigenetically silenced the ASXL1 expression. An ASXL1 gene resisting to LINC00586 attack was demonstrated in cultured HCT116 and LoVo cells and mouse xenograft models of human CRC. Overall, discovery of the LINC00586/LSD1/ASXL1 axis partially explains epigenetic mechanism regulating EMT in CRC, providing a therapeutic target to limit CRC metastasis.
Collapse
Affiliation(s)
- Fengting Liu
- Tianjin Key Laboratory of RadiationMedicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaofang Ma
- Medical Research Center, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xiyun Bian
- Medical Research Center, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Chunyan Zhang
- Medical Research Center, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xiaozhi Liu
- Medical Research Center, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
- *Correspondence: Xiaozhi Liu, ; Qiang Liu,
| | - Qiang Liu
- Tianjin Key Laboratory of RadiationMedicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- *Correspondence: Xiaozhi Liu, ; Qiang Liu,
| |
Collapse
|
6
|
Peng L, Zhao M, Liu T, Chen J, Gao P, Chen L, Xing P, Wang Z, Di J, Xu Q, Qu H, Jiang B, Su X. A stop-gain mutation in GXYLT1 promotes metastasis of colorectal cancer via the MAPK pathway. Cell Death Dis 2022; 13:395. [PMID: 35459861 PMCID: PMC9033806 DOI: 10.1038/s41419-022-04844-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022]
Abstract
Genomic instability plays a key role in the initiation and progression of colorectal cancer (CRC). Although cancer driver genes in CRC have been well characterized, identifying novel genes associated with carcinogenesis and treatment remains challenging because of tumor heterogeneity. Here, we analyzed the genomic alterations of 45 samples from CRC patients in northern China by whole-exome sequencing. In addition to the identification of six well-known CRC driver genes (APC, TP53, KRAS, FBXW7, PIK3CA, and PABPC), two tumor-related genes (MTCH2 and HSPA6) were detected, along with RRP7A and GXYLT1, which have not been previously linked to cancer. GXYLT1 was mutated in 40% (18/45) of the samples in our cohort. Functionally, GXYLT1 promoted migration and invasion in vitro and metastasis in vivo, while the GXYLT1S212* mutant induced significantly greater effect. Furthermore, both GXYLT1 and GXYLT1S212* interacted with ERK2. GXYLT1 induced metastasis via a mechanism involving the Notch and MAPK pathways, whereas the GXYLT1S212* mutant mainly promoted metastasis by activating the MAPK pathway. We propose that GXYLT1 acts as a novel metastasis-associated driver gene and GXYLT1S212* might serve as a potential indicator for therapies targeting the MAPK pathway in CRC.
Collapse
Affiliation(s)
- Lin Peng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4556, Australia
| | - Tianqi Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiangbo Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Pin Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lei Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Pu Xing
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zaozao Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiabo Di
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qiang Xu
- GenomiCare Biotechnology (Shanghai) Co., Ltd, Shanghai, 201210, China
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, P. R. China.
| | - Beihai Jiang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
7
|
Al-Taie Z, Liu D, Mitchem JB, Papageorgiou C, Kaifi JT, Warren WC, Shyu CR. Explainable artificial intelligence in high-throughput drug repositioning for subgroup stratifications with interventionable potential. J Biomed Inform 2021; 118:103792. [PMID: 33915273 DOI: 10.1016/j.jbi.2021.103792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Enabling precision medicine requires developing robust patient stratification methods as well as drugs tailored to homogeneous subgroups of patients from a heterogeneous population. Developing de novo drugs is expensive and time consuming with an ultimately low FDA approval rate. These limitations make developing new drugs for a small portion of a disease population unfeasible. Therefore, drug repositioning is an essential alternative for developing new drugs for a disease subpopulation. This shows the importance of developing data-driven approaches that find druggable homogeneous subgroups within the disease population and reposition the drugs for these subgroups. In this study, we developed an explainable AI approach for patient stratification and drug repositioning. Contrast pattern mining and network analysis were used to discover homogeneous subgroups within a disease population. For each subgroup, a biomedical network analysis was done to find the drugs that are most relevant to a given subgroup of patients. The set of candidate drugs for each subgroup was ranked using an aggregated drug score assigned to each drug. The proposed method represents a human-in-the-loop framework, where medical experts use the data-driven results to generate hypotheses and obtain insights into potential therapeutic candidates for patients who belong to a subgroup. Colorectal cancer (CRC) was used as a case study. Patients' phenotypic and genotypic data was utilized with a heterogeneous knowledge base because it gives a multi-view perspective for finding new indications for drugs outside of their original use. Our analysis of the top candidate drugs for the subgroups identified by medical experts showed that most of these drugs are cancer-related, and most of them have the potential to be a CRC regimen based on studies in the literature.
Collapse
Affiliation(s)
- Zainab Al-Taie
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Computer Science, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | - Danlu Liu
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA
| | - Jonathan B Mitchem
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.
| | - Christos Papageorgiou
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jussuf T Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Wesley C Warren
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Chi-Ren Shyu
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA; Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
8
|
Downregulation of LINC00958 inhibits proliferation, invasion and migration, and promotes apoptosis of colorectal cancer cells by targeting miR‑3619‑5p. Oncol Rep 2020; 44:1574-1582. [PMID: 32945474 PMCID: PMC7448424 DOI: 10.3892/or.2020.7707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/16/2020] [Indexed: 01/03/2023] Open
Abstract
The aberrant expression of long non-coding RNAs (lncRNAs), including LINC00958, has been demonstrated in several types cancers. The present study aimed to investigate the role of LINC00958 in colorectal cancer (CRC) and identify the possible underlying mechanisms. The expression of LINC00958 and microRNA (miR)-3619-5p was detected in several human CRC cell lines using reverse transcription-quantitative PCR. Then, short hairpin RNA (shRNA)-LINC00958 was transfected into the cells. The results revealed that the expression of LINC00958 was notably upregulated, whereas miR-3619-5p was downregulated in CRC cells. Transfection with shRNA-LINC00958 inhibited the proliferation, invasion and migration of CRC cells. Moreover, the rate of apoptosis was enhanced, accompanied by a decrease in the expression of Bcl-2 and an increase in the expression of Bax and caspase-3. A luciferase reporter assay was conducted to verify the target binding site between LINC00958 and miR-3619-5p. The luciferase reporter assay confirmed that miR-3619-5p could be directly targeted by LINC00958. Furthermore, the miR-3619-5p inhibitor reversed the effects of LINC00958 silencing on proliferation, invasion, migration and apoptosis. Taken together, the findings suggest that the downregulation of LINC00958 suppresses the proliferation, invasion and migration, and promotes the apoptosis of CRC cells by targeting miR-3619-5p in vitro, which provides a theoretical basis and therapeutic strategy for the treatment of CRC.
Collapse
|
9
|
Jiang L, Zhao XH, Mao YL, Wang JF, Zheng HJ, You QS. Long non-coding RNA RP11-468E2.5 curtails colorectal cancer cell proliferation and stimulates apoptosis via the JAK/STAT signaling pathway by targeting STAT5 and STAT6. J Exp Clin Cancer Res 2019; 38:465. [PMID: 31718693 PMCID: PMC6852742 DOI: 10.1186/s13046-019-1428-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are tumor-associated biological molecules and have been found to be implicated in the progression of colorectal cancer (CRC). This study aims to examine the effects of lncRNA RP11-468E2.5 and its target genes (STAT5 and STAT6) on the biological activities of CRC cells via the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway. METHODS We initially screened the GEO database for differentially expressed lncRNAs related to CRC and then made a prediction of the implicated target genes. Then we collected CRC tissues and adjacent normal tissues from 169 CRC patients. Human CRC HCT116 and SW480 cells were treated with small interference RNA (siRNA) against RP11-468E2.5, AG490 (an inhibitor of the JAK/STAT signaling pathway), or both in combination. Next, we measured the effects of RP11-468E2.5 treatment on cellular activities such as cell viability, cycle distribution and cell apoptosis, and studied interactions among RP11-468E2.5, STAT5/STAT6, and the JAK/STAT signaling pathway. Finally, an in vivo tumor formation assay was performed to observe the effect of RP11-468E2.5 on tumor growth. RESULTS The CRC-related gene microarray data showed low expression of RP11-468E2.5 in CRC surgical specimens. However, RP11-468E2.5 was confirmed to target STAT5 and STAT6, which participate in the JAK/STAT signaling pathway. CRC tissues showed lower expression of RP11-468E2.5, higher expression of STAT5, STAT6 and of the cell cycle marker Cyclin D1 (CCND1), compared to the findings in adjacent normal tissues. The treatment of siRNA against RP11-468E2.5 increased expression of JAK2, STAT3, STAT5, STAT6, CCND1 and Bcl-2 along with the extent of STAT3, STAT5 and STAT6 phosphorylation, while lowering expression of P21 and P27. Treatment with AG490 exhibited approximately opposite effects, whereas siRNA against RP11-468E2.5 treatment stimulated CRC cell proliferation and reduced cell apoptosis, while promoting cell cycle entry; AG490 treatment reversed these results. CONCLUSIONS Altogether, we conclude that up-regulation of RP11-468E2.5 inhibits the JAK/STAT signaling pathway by targeting STAT5 and STAT6, thereby suppressing cell proliferation and promoting cell apoptosis in CRC.
Collapse
Affiliation(s)
- Li Jiang
- Department of Hematology and Lymphatic Diseases, Harbin Medical University Tumour Hospital, Harbin, 150081, People's Republic of China
| | - Xu-Hai Zhao
- Department of Breast Surgery, Harbin Medical University Tumour Hospital, Harbin, 150081, People's Republic of China
| | - Yin-Ling Mao
- Department of Abdominal Radiotherapy, Harbin Medical University Tumour Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People's Republic of China.
| | - Jun-Feng Wang
- Department of Thoracic Surgery, Harbin Medical University Tumour Hospital, Harbin, 150081, People's Republic of China
| | - Hui-Jun Zheng
- Department of General Surgery, Kangying Hospital of Mingshui County, Suihua, 151700, People's Republic of China
| | - Qing-Shan You
- Department of Abdominal Radiotherapy, Harbin Medical University Tumour Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People's Republic of China
| |
Collapse
|
10
|
Abstract
The ubiquitin proteasome system (UPS) degrades individual proteins in a highly regulated fashion and is responsible for the degradation of misfolded, damaged, or unneeded cellular proteins. During the past 20 years, investigators have established a critical role for the UPS in essentially every cellular process, including cell cycle progression, transcriptional regulation, genome integrity, apoptosis, immune responses, and neuronal plasticity. At the center of the UPS is the proteasome, a large and complex molecular machine containing a multicatalytic protease complex. When the efficiency of this proteostasis system is perturbed, misfolded and damaged protein aggregates can accumulate to toxic levels and cause neuronal dysfunction, which may underlie many neurodegenerative diseases. In addition, many cancers rely on robust proteasome activity for degrading tumor suppressors and cell cycle checkpoint inhibitors necessary for rapid cell division. Thus, proteasome inhibitors have proven clinically useful to treat some types of cancer, especially multiple myeloma. Numerous cellular processes rely on finely tuned proteasome function, making it a crucial target for future therapeutic intervention in many diseases, including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes, and cancer. In this review, we discuss the structure and function of the proteasome, the mechanisms of action of different proteasome inhibitors, various techniques to evaluate proteasome function in vitro and in vivo, proteasome inhibitors in preclinical and clinical development, and the feasibility for pharmacological activation of the proteasome to potentially treat neurodegenerative disease.
Collapse
Affiliation(s)
- Tiffany A Thibaudeau
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
11
|
Sun YZ, Li JF, Wei ZD, Jiang HH, Hong YX, Zheng S, Qi RQ, Gao XH. Proteomic and bioinformatic analysis of condyloma acuminata: mild hyperthermia treatment reveals compromised HPV infectivity of keratinocytes via regulation of metabolism, differentiation and anti-viral responses. Int J Hyperthermia 2019; 36:383-393. [PMID: 30909744 DOI: 10.1080/02656736.2019.1578420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperthermia has proved successful in treating cutaneous human papillomavirus infectious diseases such as plantar wart and condyloma acuminata (CA). Moreover, this treatment provides improved therapeutic efficacy in these conditions as compared with conventional therapies. OBJECTIVES To investigate the global proteome changes in CA in response to hyperthermia and achieve a better understanding of the mechanisms of hyperthermia therapy against HPV-infectious diseases. METHODS CA tissue was obtained from patients undergoing pathological examinations. Diagnosis was verified as based on results of both HE staining and HPV-DNA PCR assay. Hyperthermia was achieved with a 44 °C water bath. Differentially expressed proteins (DEPs) were identified by iTRAQ labeling, SCX chromatography and LC-MS/MS assay. Validation of proteomic results was performed using real-time qPCR and western blot, while bioinformatic analysis of DEPs was accomplished by R 3.4.1, STRING and Cytoscape softwares. RESULTS In response to hyperthermia, a total of 102 DEPs were identified with 37 being upregulated and 65 downregulated. Among these DEPs, hyperthermia induced proteins involved with anti-viral processes such as OAS1, MX1, BANF1, CANX and AP1S1, whereas it inhibited proteins that participated in cellular metabolism, such as GALT, H6PD, EXOSC4 and EXOSC6; protein translation, such as RPS4Y1; as well as keratinocyte differentiation, such as KRT5, KRT27, KRT75, KRT76 and H2AFY2. CONCLUSIONS Hyperthermia inhibited enzymes and molecules responsible for metabolism modulation and keratinocyte differentiation in CA tissue, whereas it promoted factors involved in anti-viral responses. Such effects may, in part, contribute to the efficacy of local hyperthermia therapy against HPV infection.
Collapse
Affiliation(s)
- Yu-Zhe Sun
- a Graduate School, China Medical University , Shenyang , China.,b Department of Dermatology , The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education , Shenyang , China
| | - Jia-Feng Li
- a Graduate School, China Medical University , Shenyang , China.,c Department of Pathology , The First Hospital of China Medical University , Shenyang , China
| | - Zhen-Dong Wei
- d Department of Dermatology , the 2nd Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Hang-Hang Jiang
- b Department of Dermatology , The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education , Shenyang , China
| | - Yu-Xiao Hong
- b Department of Dermatology , The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education , Shenyang , China
| | - Song Zheng
- b Department of Dermatology , The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education , Shenyang , China
| | - Rui-Qun Qi
- b Department of Dermatology , The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education , Shenyang , China
| | - Xing-Hua Gao
- a Graduate School, China Medical University , Shenyang , China.,b Department of Dermatology , The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education , Shenyang , China
| |
Collapse
|
12
|
Iwata M, Hirose L, Kohara H, Liao J, Sawada R, Akiyoshi S, Tani K, Yamanishi Y. Pathway-Based Drug Repositioning for Cancers: Computational Prediction and Experimental Validation. J Med Chem 2018; 61:9583-9595. [PMID: 30371064 DOI: 10.1021/acs.jmedchem.8b01044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing drugs with anticancer activity and low toxic side-effects at low costs is a challenging issue for cancer chemotherapy. In this work, we propose to use molecular pathways as the therapeutic targets and develop a novel computational approach for drug repositioning for cancer treatment. We analyzed chemically induced gene expression data of 1112 drugs on 66 human cell lines and searched for drugs that inactivate pathways involved in the growth of cancer cells (cell cycle) and activate pathways that contribute to the death of cancer cells (e.g., apoptosis and p53 signaling). Finally, we performed a large-scale prediction of potential anticancer effects for all the drugs and experimentally validated the prediction results via three in vitro cellular assays that evaluate cell viability, cytotoxicity, and apoptosis induction. Using this strategy, we successfully identified several potential anticancer drugs. The proposed pathway-based method has great potential to improve drug repositioning research for cancer treatment.
Collapse
Affiliation(s)
- Michio Iwata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering , Kyushu Institute of Technology , 680-4 Kawazu , Iizuka , Fukuoka 820-8502 , Japan
| | - Lisa Hirose
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan
| | - Hiroshi Kohara
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan.,Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Jiyuan Liao
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan.,Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Ryusuke Sawada
- Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Sayaka Akiyoshi
- Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Kenzaburo Tani
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan.,Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering , Kyushu Institute of Technology , 680-4 Kawazu , Iizuka , Fukuoka 820-8502 , Japan.,PRESTO , Japan Science and Technology Agency , Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
13
|
Yue D, Sun X. Ixazomib promotes CHOP-dependent DR5 induction and apoptosis in colorectal cancer cells. Cancer Biol Ther 2018; 20:284-294. [PMID: 30359552 DOI: 10.1080/15384047.2018.1529095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ixazomib (Ninlaro), a novel proteasome inhibitor, has been developed for the treatment of many cancers and has demonstrated anti-tumor efficacy against various malignancies. However, the mechanism of the anti-tumor effect of ixazomib in colorectal cancer (CRC) cells remains unclear. METHODS MTS and flow cytometry were performed to determine the effect of ixazomib on CRC cells. Western blotting and real-time RT-PCR were performed to detect ixazomib-induced DR5 upregulation. ChIP was performed to detect CHOP binding to DR5 promoter. Finally, xenograft experiments were carried out to measure the antitumor effect of ixazomib in vivo. RESULTS In this study, we revealed the mechanism by which ixazomib inhibits the growth of CRC cells. Our findings indicated that ixazomib treatment induces CHOP-dependent DR5 induction, irrespective of p53 status. Furthermore, DR5 is necessary for ixazomib-mediated apoptosis. Ixazomib also synergized with TRAIL to induce marked apoptosis via DR5 in CRC cells. CONCLUSIONS Our findings further suggested that ixazomib sensitizes TRAIL/death receptor signaling pathway-targeted CRC and suggested that DR5 induction could be a valuable indicator of ixazomib sensitivity.
Collapse
Affiliation(s)
- Dan Yue
- a Department of Laboratory Medicine , ShengJing Hospital of China Medical University , Shenyang , China
| | - Xun Sun
- b Department of Immunology , China Medical University , Shenyang , China
| |
Collapse
|
14
|
Hu S, Jin Y, Liu Y, Ljungman M, Neamati N. Synthesis and mechanistic studies of quinolin-chlorobenzothioate derivatives with proteasome inhibitory activity in pancreatic cancer cell lines. Eur J Med Chem 2018; 158:884-895. [PMID: 30253345 DOI: 10.1016/j.ejmech.2018.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022]
Abstract
Inhibition of proteasome activity blocks the degradation of dysfunctional proteins and induces cancer cell death due to cellular stress. Thus, proteasome inhibitors represent an attractive class of anticancer agents, and bortezomib, carfilzomib and ixazomib have been FDA-approved to treat multiple myeloma. However, cancer cells acquire resistance to these inhibitors through point mutations in the proteasome catalytic subunit or induction of alternative compensatory mechanisms. In this study, we identified a quinolin-chlorobenzothioate, QCBT7, as a new proteasome inhibitor showing cytotoxicity in a panel of cancer cell lines. QCBT7 is a more stable derivative of quinoline-8-thiol that targets the regulatory subunit instead of the catalytic subunit of the proteasome. QCBT7 caused the accumulation of ubiquitylated proteins in the cancer cells, indicating its proteasome inhibitory activity. Additionally, QCBT7 increased the expression of a set of genes (PFKFB4, CHOP, HMOX1 and SLC7A11) at both nascent RNA and protein levels, similarly to the known proteasome inhibitors MG132 and ixazomib. Together, QCBT7 induces proteasome inhibition, hypoxic response, endoplasmic reticulum stress and glycolysis, finally leading to cell death. Importantly, we have identified PFKFB4 as a potential biomarker of proteasome inhibitors that can be used to monitor treatment response.
Collapse
Affiliation(s)
- Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Yi Jin
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States; Key Laboratory of Medicinal Chemistry for Natural Resource, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yanghan Liu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
15
|
Mañas A, Chen W, Nelson A, Yao Q, Xiang J. BaxΔ2 sensitizes colorectal cancer cells to proteasome inhibitor-induced cell death. Biochem Biophys Res Commun 2018; 496:18-24. [PMID: 29291406 PMCID: PMC6022363 DOI: 10.1016/j.bbrc.2017.12.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 12/23/2022]
Abstract
Proteasome inhibitors, such as bortezomib and carfilzomib, are FDA approved for the treatment of hemopoietic cancers, but recent studies have shown their great potential for treatment of solid tumors. BaxΔ2, a unique proapoptotic Bax isoform, promotes non-mitochondrial cell death and sensitizes cancer cells to chemotherapy. However, endogenous BaxΔ2 proteins are unstable and susceptible to proteasomal degradation. Here, we screened a panel of proteasome inhibitors in colorectal cancer cells with different Bax statuses. We found that all proteasome inhibitors tested were able to block BaxΔ2 degradation without affecting the level of Baxα or Bcl-2 proteins. Among the inhibitors tested, only bortezomib and carfilzomib were able to induce differential cell death corresponding to the distinct Bax statuses. BaxΔ2-positive cells had a significantly higher level of cell death at low nanomolar concentrations than Baxα-positive or Bax-negative cells. Furthermore, bortezomib-induced cell death in BaxΔ2-positive cells was predominantly dependent on the caspase 8/3 pathway, consistent with our previous studies. These results imply that BaxΔ2 can selectively sensitize cancer cells to proteasome inhibitors, enhancing their potential to treat colon cancer and other solid tumors.
Collapse
Affiliation(s)
- Adriana Mañas
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Wenjing Chen
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Adam Nelson
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Qi Yao
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jialing Xiang
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|