1
|
Huang YY, Bao TY, Huang XQ, Lan QW, Huang ZM, Chen YH, Hu ZD, Guo XG. Machine learning algorithm to construct cuproptosis- and immune-related prognosis prediction model for colon cancer. World J Gastrointest Oncol 2023; 15:372-388. [PMID: 37009317 PMCID: PMC10052662 DOI: 10.4251/wjgo.v15.i3.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Over the past few years, research into the pathogenesis of colon cancer has progressed rapidly, and cuproptosis is an emerging mode of cellular apoptosis. Exploring the relationship between colon cancer and cuproptosis benefits in identifying novel biomarkers and even improving the outcome of the disease.
AIM To look at the prognostic relationship between colon cancer and the genes associated with cuproptosis and the immune system in patients. The main purpose was to assess whether reasonable induction of these biomarkers reduces mortality among patients with colon cancers.
METHOD Data obtained from The Cancer Genome Atlas and Gene Expression Omnibus and the Genotype-Tissue Expression were used in differential analysis to explore differential expression genes associated with cuproptosis and immune activation. The least absolute shrinkage and selection operator and Cox regression algorithm was applied to build a cuproptosis- and immune-related combination model, and the model was utilized for principal component analysis and survival analysis to observe the survival and prognosis of the patients. A series of statistically meaningful transcriptional analysis results demonstrated an intrinsic relationship between cuproptosis and the micro-environment of colon cancer.
RESULTS Once prognostic characteristics were obtained, the CDKN2A and DLAT genes related to cuproptosis were strongly linked to colon cancer: The first was a risk factor, whereas the second was a protective factor. The finding of the validation analysis showed that the comprehensive model associated with cuproptosis and immunity was statistically significant. Within the component expressions, the expressions of HSPA1A, CDKN2A, and UCN3 differed markedly. Transcription analysis primarily reflects the differential activation of related immune cells and pathways. Furthermore, genes linked to immune checkpoint inhibitors were expressed differently between the subgroups, which may reveal the mechanism of worse prognosis and the different sensitivities of chemotherapy.
CONCLUSION The prognosis of the high-risk group evaluated in the combined model was poorer, and cuproptosis was highly correlated with the prognosis of colon cancer. It is possible that we may be able to improve patients’ prognosis by regulating the gene expression to intervene the risk score.
Collapse
Affiliation(s)
- Yuan-Yi Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Ting-Yu Bao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Xu-Qi Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Sixth Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Qi-Wen Lan
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Medical Imageology, The Second Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Yu-Han Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia Autonomous Region, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| |
Collapse
|
2
|
Varkalaite G, Vaitkeviciute E, Inciuraite R, Salteniene V, Juzenas S, Petkevicius V, Gudaityte R, Mickevicius A, Link A, Kupcinskas L, Leja M, Kupcinskas J, Skieceviciene J. Atrophic gastritis and gastric cancer tissue miRNome analysis reveals hsa-miR-129-1 and hsa-miR-196a as potential early diagnostic biomarkers. World J Gastroenterol 2022; 28:653-663. [PMID: 35317427 PMCID: PMC8900545 DOI: 10.3748/wjg.v28.i6.653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 01/19/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most frequently diagnosed tumor globally. In most cases, GC develops in a stepwise manner from chronic gastritis or atrophic gastritis (AG) to cancer. One of the major issues in clinical settings of GC is diagnosis at advanced disease stages resulting in poor prognosis. MicroRNAs (miRNAs) are small noncoding molecules that play an essential role in a variety of fundamental biological processes. However, clinical potential of miRNA profiling in the gastric cancerogenesis, especially in premalignant GC cases, remains unclear. AIM To evaluate the AG and GC tissue miRNomes and identify specific miRNAs' potential for clinical applications (e.g., non-invasive diagnostics). METHODS Study included a total of 125 subjects: Controls (CON), AG, and GC patients. All study subjects were recruited at the Departments of Surgery or Gastroenterology, Hospital of Lithuanian University of Health Sciences and divided into the profiling (n = 60) and validation (n = 65) cohorts. Total RNA isolated from tissue samples was used for preparation of small RNA sequencing libraries and profiled using next-generation sequencing (NGS). Based on NGS data, deregulated miRNAs hsa-miR-129-1-3p and hsa-miR-196a-5p were analyzed in plasma samples of independent cohort consisting of CON, AG, and GC patients. Expression level of hsa-miR-129-1-3p and hsa-miR-196a-5p was determined using the quantitative real-time polymerase chain reaction and 2-ΔΔCt method. RESULTS Results of tissue analysis revealed 20 differentially expressed miRNAs in AG group compared to CON group, 129 deregulated miRNAs in GC compared to CON, and 99 altered miRNAs comparing GC and AG groups. Only 2 miRNAs (hsa-miR-129-1-3p and hsa-miR-196a-5p) were identified to be step-wise deregulated in healthy-premalignant-malignant sequence. Area under the curve (AUC)-receiver operating characteristic analysis revealed that expression level of hsa-miR-196a-5p is significant for discrimination of CON vs AG, CON vs GC and AG vs GC and resulted in AUCs: 88.0%, 93.1% and 66.3%, respectively. Compar-ing results in tissue and plasma samples, hsa-miR-129-1-3p was significantly down-regulated in GC compared to AG (P = 0.0021 and P = 0.024, tissue and plasma, respectively). Moreover, analysis revealed that hsa-miR-215-3p/5p and hsa-miR-934 were significantly deregulated in GC based on Helicobacter pylori (H. pylori) infection status [log2 fold change (FC) = -4.52, P-adjusted = 0.02; log2FC = -4.00, P-adjusted = 0.02; log2FC = 6.09, P-adjusted = 0.02, respectively]. CONCLUSION Comprehensive miRNome study provides evidence for gradual deregulation of hsa-miR-196a-5p and hsa-miR-129-1-3p in gastric carcinogenesis and found hsa-miR-215-3p/5p and hsa-miR-934 to be significantly deregulated in H. pylori carrying GC patients.
Collapse
Affiliation(s)
- Greta Varkalaite
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Evelina Vaitkeviciute
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Ruta Inciuraite
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Violeta Salteniene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Simonas Juzenas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Vytenis Petkevicius
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Rita Gudaityte
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Antanas Mickevicius
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| | - Limas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga 1586, Latvia
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| |
Collapse
|
3
|
Ahmed AA, Adam Essa ME. Epigenetic alterations in female urogenital organs cancer: Premise, properties, and perspectives. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Wang X, Ding Y, Wang J, Wu Y. Identification of the Key Factors Related to Bladder Cancer by lncRNA-miRNA-mRNA Three-Layer Network. Front Genet 2020; 10:1398. [PMID: 32047516 PMCID: PMC6997565 DOI: 10.3389/fgene.2019.01398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, and it has high incidence, high degree of malignancy, and easy recurrence after surgery. The etiology and pathogenesis of bladder cancer are not fully understood, but more and more studies have shown that its development may be regulated by some core molecules. To identify key molecules in bladder cancer, we constructed a three-layer network by merging lncRNA-miRNA regulatory network, miRNA-mRNA regulatory network, and lncRNA-mRNA coexpression network, and further analyzed the topology attributes of the network including the degree, betweenness centrality and closeness centrality of nodes. We found that miRNA-93 and miRNA-195 are controllers for a three-layer network and regulators of numerous target genes associated with bladder cancer. Functional enrichment analysis of their target mRNAs revealed that miRNA-93 and miRNA-195 may be closely related to bladder cancer by disturbing the homeostasis of the cell cycle or HTLV-I infection. In addition, since E2F1 and E2F2 are enriched in various KEGG signaling pathways, we conclude that they are important target genes of miRNA-93, and participate in the apoptotic process by forming a complex with a certain protein or transcription factor activity, sequence-specific DNA binding in bladder cancer. Similarly, AKT3 is an important target gene of miRNA-195, its expression is associated with PI3K-Akt-mTOR signaling pathway and AMPK-mTOR signaling pathway. Therefore, we speculate that AKT3 may participate in proliferation and apoptosis of bladder cancer cells through these pathways, and ultimately affect the biological behavior of tumor cells. Furthermore, through survival analysis, we found that miRNA-195 and miRNA-93 are associated with poor prognosis of bladder cancer. And the Kaplan-Meier curve showed that 24 mRNAs and nine lncRNAs are closely related to overall survival of bladder cancer.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, China
| | - Jie Wang
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
| | - Yanyan Wu
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Dhahbi J, Nunez Lopez YO, Schneider A, Victoria B, Saccon T, Bharat K, McClatchey T, Atamna H, Scierski W, Golusinski P, Golusinski W, Masternak MM. Profiling of tRNA Halves and YRNA Fragments in Serum and Tissue From Oral Squamous Cell Carcinoma Patients Identify Key Role of 5' tRNA-Val-CAC-2-1 Half. Front Oncol 2019; 9:959. [PMID: 31616639 PMCID: PMC6775249 DOI: 10.3389/fonc.2019.00959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer and, as indicated by The Oral Cancer Foundation, kills at an alarming rate of roughly one person per hour. With this study, we aimed at better understanding disease mechanisms and identifying minimally invasive disease biomarkers by profiling novel small non-coding RNAs (specifically, tRNA halves and YRNA fragments) in both serum and tumor tissue from humans. Small RNA-Sequencing identified multiple 5' tRNA halves and 5' YRNA fragments that displayed significant differential expression levels in circulation and/or tumor tissue, as compared to control counterparts. In addition, by implementing a modification of weighted gene coexpression network analysis, we identified an upregulated genetic module comprised of 5' tRNA halves and miRNAs (miRNAs were described in previous study using the same samples) with significant association with the cancer trait. By consequently implementing miRNA-overtargeting network analysis, the biological function of the module (and by "guilt by association," the function of the 5' tRNA-Val-CAC-2-1 half) was found to involve the transcriptional targeting of specific genes involved in the negative regulation of the G1/S transition of the mitotic cell cycle. These findings suggest that 5' tRNA-Val-CAC-2-1 half (reduced in serum of OSCC patients and elevated in the tumor tissue) could potentially serve as an OSCC circulating biomarker and/or target for novel anticancer therapies. To our knowledge, this is the first time that the specific molecular function of a 5'-tRNA half is specifically pinpointed in OSCC.
Collapse
Affiliation(s)
- Joseph Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Yury O. Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, United States
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Tatiana Saccon
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Krish Bharat
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Thaddeus McClatchey
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Hani Atamna
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Wojciech Scierski
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Golusinski
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, Zielona Gora, Poland
- Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznań, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznań, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| |
Collapse
|
6
|
Xiang M, Yuan W, Zhang W, Huang J. Expression of miR-490-5p, miR-148a-3p and miR-608 in bladder cancer and their effects on the biological characteristics of bladder cancer cells. Oncol Lett 2019; 17:4437-4442. [PMID: 30988813 PMCID: PMC6447928 DOI: 10.3892/ol.2019.10143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Changes in the expression of miR-490-5p, miR-148a-3p and miR-608 in bladder cancer tissues were studied. A total of 30 patients with bladder cancer who had surgical resection in the Hunan Provincial People's Hospital (Changsha, China) from April 2015 to August 2016 were selected. RT-qPCR was used to detect the expression levels of miR-490-5p, miR-148a-3p and miR-608. The expression vectors of miR-490-5p, miR-148a-3p and miR-608 were respectively transfected and divided into three groups: blank cell group, gene transfection group (groups A-C) and negative transfection group (NC group). CCK8 was used to detect cell proliferation and flow cytometry was used to detect the condition of apoptosis of each group, and the Transwell chamber was used to detect the invasion ability of the cells. After the transfection, the expression level of miR-490-5p in group A was significantly higher than that in the NC and blank groups, and the expression level of miR-148a-3p in group B was significantly higher than that in the NC and blank groups. The expression level of miR-608 in group C was significantly higher than that in the NC and blank groups (P<0.001). The survival rates of the cells in groups A-C were significantly lower than those in the NC and blank groups at 48 and 72 h (P<0.001). After the transfection, the number of invasive cells and the apoptosis rates in groups A-C were significantly higher than those in the NC and blank groups (P<0.05). miR-490-5p, miR-148a-3p and miR-608 promoted proliferation of bladder cancer T24 cells and inhibited apoptosis of the cells and showed potential to become a new target for the future treatment of bladder cancer.
Collapse
Affiliation(s)
- Min Xiang
- Department of Urinary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Wuxiong Yuan
- Department of Urinary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Weiwei Zhang
- Department of Chinese Medicine, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Jie Huang
- Department of Emergency, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
7
|
Chen P, Gu YY, Ma FC, He RQ, Li ZY, Zhai GQ, Lin X, Hu XH, Pan LJ, Chen G. Expression levels and co‑targets of miRNA‑126‑3p and miRNA‑126‑5p in lung adenocarcinoma tissues: Αn exploration with RT‑qPCR, microarray and bioinformatic analyses. Oncol Rep 2018; 41:939-953. [PMID: 30535503 PMCID: PMC6313014 DOI: 10.3892/or.2018.6901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. Previous studies have found that many microRNAs (miRNAs), including miRNA-126-3p, may play a critical role in the development of LUAD. However, no study of LUAD has researched the synergistic effects and co-targets of both miRNA-126-3p and miRNA-126-5p. The present study used real-time quantitative polymerase chain reaction (RT-qPCR) to explore the expression values of miRNA-126-3p and miRNA-126-5p in 101 LUAD and 101 normal lung tissues. Ten relevant microarray datasets were screened to further validate the expression levels of miRNA-126-3p and −5p in LUAD. Twelve prediction tools were employed to obtain potential targets of miRNA-126-3p and miRNA-126-5p. The results showed that both miRNA-126-3p and −5p were expressed significantly lower in LUAD. A significant positive correlation was also present between miRNA-126-3p and −5p expression in LUAD. In addition, lower expression of miRNA-126-3p and −5p was indicative of vascular invasion, lymph node metastasis (LNM), and a later tumor/node/metastasis (TNM) stage of LUAD. The authors obtained 167 targets of miRNA-126-3p and 212 targets of miRNA-126-5p; 44 targets were co-targets of both. Eight co-target genes (IGF2BP1, TRPM8, DUSP4, SOX11, PLOD2, LIN28A, LIN28B and SLC7A11) were initially identified as key genes in LUAD. The results of the present study indicated that the co-regulation of miRNA-126-3p and miRNA-126-5p plays a key role in the development of LUAD, which also suggests a fail-proof mode between miRNA-3p and miRNA-126-5p.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gao-Qiang Zhai
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xia Lin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin-Jiang Pan
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
8
|
Zhao F, Zhou LH, Ge YZ, Ping WW, Wu X, Xu ZL, Wang M, Sha ZL, Jia RP. MicroRNA-133b suppresses bladder cancer malignancy by targeting TAGLN2-mediated cell cycle. J Cell Physiol 2018; 234:4910-4923. [PMID: 30317571 DOI: 10.1002/jcp.27288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs), a group of small noncoding RNAs, are widely involved in the regulation of gene expression via binding to complementary sequences at 3'-untranslated regions (3'-UTRs) of target messenger RNAs. Recently, downregulation of miR-133b has been detected in various human malignancies. Here, the potential biological role of miR-133b in bladder cancer (BC) was investigated. In this study, we found the expression of miR-133b was markedly downregulated in BC tissues and cell lines (5637 and T24), and was correlated with poor overall survival. Notably, transgelin 2 (TAGLN2) was found to be widely upregulated in BC, and overexpression of TAGLN2 also significantly increased risks of advanced TMN stage. We further identified that upregulation of miR-133b inhibited glucose uptake, invasion, angiogenesis, colony formation and enhances gemcitabine chemosensitivity in BC cell lines by targeting TAGLN2. Additionally, we showed that miR-133b promoted the proliferation of BC cells, at least partially through a TAGLN2-mediated cell cycle pathway. Our results suggest a novel miR-133b/TAGLN2/cell cycle pathway axis controlling BC progression; a molecular mechanism which may offer a potential therapeutic target.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liu-Hua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wen Ping
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhong-Le Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zuo-Liang Sha
- Department of Pathology, Pizhou People's Hospital, Xuzhou, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Giulietti M, Occhipinti G, Righetti A, Bracci M, Conti A, Ruzzo A, Cerigioni E, Cacciamani T, Principato G, Piva F. Emerging Biomarkers in Bladder Cancer Identified by Network Analysis of Transcriptomic Data. Front Oncol 2018; 8:450. [PMID: 30370253 PMCID: PMC6194189 DOI: 10.3389/fonc.2018.00450] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/25/2018] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer is a very common malignancy. Although new treatment strategies have been developed, the identification of new therapeutic targets and reliable diagnostic/prognostic biomarkers for bladder cancer remains a priority. Generally, they are found among differentially expressed genes between patients and healthy subjects or among patients with different tumor stages. However, the classical approach includes processing these data taking into consideration only the expression of each single gene regardless of the expression of other genes. These complex gene interaction networks can be revealed by a recently developed systems biology approach called Weighted Gene Co-expression Network Analysis (WGCNA). It takes into account the expression of all genes assessed in an experiment in order to reveal the clusters of co-expressed genes (modules) that, very probably, are also co-regulated. If some genes are co-expressed in controls but not in pathological samples, it can be hypothesized that a regulatory mechanism was altered and that it could be the cause or the effect of the disease. Therefore, genes within these modules could play a role in cancer and thus be considered as potential therapeutic targets or diagnostic/prognostic biomarkers. Here, we have reviewed all the studies where WGCNA has been applied to gene expression data from bladder cancer patients. We have shown the importance of this new approach in identifying candidate biomarkers and therapeutic targets. They include both genes and miRNAs and some of them have already been identified in the literature to have a role in bladder cancer initiation, progression, metastasis, and patient survival.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giulia Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandra Righetti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Conti
- Department of Urology, Bressanone/Brixen Hospital, Bressanone, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Fano, Italy
| | - Elisabetta Cerigioni
- Unit of Pediatric and Specialistic Surgery, United Hospitals, "G.Salesi", Ancona, Italy
| | - Tiziana Cacciamani
- Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
| | - Giovanni Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
10
|
Zhu N, Hou J, Wu Y, Liu J, Li G, Zhao W, Ma G, Chen B, Song Y. Integrated analysis of a competing endogenous RNA network reveals key lncRNAs as potential prognostic biomarkers for human bladder cancer. Medicine (Baltimore) 2018; 97:e11887. [PMID: 30170380 PMCID: PMC6392549 DOI: 10.1097/md.0000000000011887] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human bladder cancer (BCa) is one of the most commonly diagnosed malignancies worldwide. It has high recurrence rates and low-grade malignancy, thus representing an important public health concern. An increasing number of studies suggest that long-noncoding RNAs (lncRNAs) play important roles in various biological processes and disease pathologies, including cancer.We analyzed the expression profiles of lncRNA, miRNA, and mRNA, along with the clinical information of BCa patients collected from the Cancer Genome Atlas database to identify lncRNA biomarkers for prognosis. We also constructed an lncRNA-miRNA-mRNA global triple network (competitive endogenous RNA network) by bioinformational approach.This BCa lncRNA-miRNA-mRNA network consisted of 23 miRNA nodes, 52 mRNA nodes, 59 lncRNA nodes, and 365 edges. Subsequent gene ontology (GO) and pathway analyses were performed using BinGO for Cytoscape and Database for Annotation, Visualization, and Integration Discovery, respectively, highlighting important GO terms and pathways that were enriched in the network. Subnetworks were created using 3 key lncRNAs (MAGI2-AS3, ADAMTS9-AS2, and LINC00330), revealing associations with BCa-linked mRNAs and miRNAs. Finally, an analysis of significantly differentiating RNAs found 6 DElncRNAs (AC112721.1, ADAMTS9-AS1, ADAMTS9-AS2, HCG22, MYO16-AS1, and SACS-AS1), 1 DEmiRNA (miRNA-195), and 6 DEmRNAs (CCNB1, FAM129A, MAP1B, TMEM100, AIFM3, and HOXB5) that correlated with BCa patient survival.Our results provide a novel perspective from which to study the lncRNA-related ceRNA network in BCa, contributing to the development of future diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Jingyi Hou
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde
| | - Yuanhao Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Jinxin Liu
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde
| | - Geng Li
- China-Japan Friendship Hospital, Beijing
| | - Wenjia Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiyun Ma
- Affiliated Hospital of Chengde Medical College
| | - Bin Chen
- Affiliated Hospital of Chengde Medical College
| | - Youxin Song
- Affiliated Hospital of Chengde Medical College
| |
Collapse
|