1
|
Can S, Atilla Ö, Karaçetin D. Calculated and measured radiation dose for the low energy xoft axxent eBT X-ray source. BMC Res Notes 2023; 16:25. [PMID: 36855193 PMCID: PMC9976427 DOI: 10.1186/s13104-023-06287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
PURPOSE In this study, it was aimed to evaluate the functionality to deliver different prescription dose except 20 Gy for the Xoft Axxent Ebt (electronic Brachytherapy) system and analyzing the system in terms of radiation dosimetry in water and 0.9% isotonic Sodium Chloride (NaCl) solution. MATERIALS AND METHODS In the Xoft Axxent eBT, different prescription dose in single fraction were calculated for different balloon applicator volumes based on source position and irradiation times. EBT-XD Gafchromic film was calibrated at 6MV photon energy. A balloon applicator filled with 0.9% isotonic NaCl solution was used to deliver a radiation dose of 20 Gy, 16 Gy, 10 Gy on the applicator surface. Then the balloon applicator was filled with water and the same measurements were repeated. Finally, the balloon applicator was irradiated by positioning it at different distances in the water phantom to simulate the isodose contour. RESULTS At the time the balloon applicator was filled with water and 0,9% NaCl solution, the difference between the planned dose and the absorbed dose was ~ 2% vs. 15% for 30 cc, ~ 5% vs. 14% for 35 cc and ~ 3,5% vs. 10% for 40 cc respectively. Finally, the absorbed dose at a distance of 1 cm from the applicator surface was measured as 9.63 Gy. CONCLUSION In this study, it was showed that different prescription dose could be possible to deliver in the Xoft Axxent eBT system based on the standard plan. In addition, the absorbed dose was higher than the planned dose depending on the effective atomic number of NaCl solution comparing to water due to photoelectric effect in low energy photons. By measuring the dose distributions at different distances from the balloon applicator surface, the absorbed dose in tissue equivalent medium was determined and the isodose contours characteristics was simulated.
Collapse
Affiliation(s)
- Sümeyra Can
- Basaksehir Cam and Sakura City Hospital Radiation Oncology Department, 34480, Basaksehir Istanbul, Turkey.
| | - Özge Atilla
- Basaksehir Cam and Sakura City Hospital Radiation Oncology Department, 34480 Basaksehir Istanbul, Turkey
| | - Didem Karaçetin
- Basaksehir Cam and Sakura City Hospital Radiation Oncology Department, 34480 Basaksehir Istanbul, Turkey
| |
Collapse
|
2
|
Anderson B, Arthur D, Hannoun-Levi JM, Kamrava M, Khan A, Kuske R, Scanderbeg D, Shah C, Shaitelman S, Showalter T, Vicini F, Wazer D, Yashar C. Partial breast irradiation: An updated consensus statement from the American brachytherapy society. Brachytherapy 2022; 21:726-747. [PMID: 36117086 DOI: 10.1016/j.brachy.2022.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/15/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE In recent years, results with mature follow-up have been reported for several Phase III trials randomizing women to receive whole breast irradiation (WBI) versus varying modalities of partial breast irradiation (PBI). It is important to recognize that these methods vary in terms of volume of breast tissue treated, dose per fraction, and duration of therapy. As such, clinical and technical guidelines may vary among the various PBI techniques. METHODS Members of the American Brachytherapy Society with expertise in PBI performed an extensive literature review focusing on the highest quality data available for the numerous PBI options offered in the modern era. Data were evaluated for strength of evidence and published outcomes were assessed. RESULTS The majority of women enrolled on randomized trials of WBI versus PBI have been age >45 years with tumor size <3 cm, negative margins, and negative lymph nodes. The panel also concluded that PBI can be offered to selected women with estrogen receptor negative and/or Her2 amplified breast cancer, as well as ductal carcinoma in situ, and should generally be avoided in women with extensive lymphovascular space invasion. CONCLUSIONS This updated guideline summarizes published clinical trials of PBI methods. The panel also highlights the role of PBI for women facing special circumstances, such as history of cosmetic breast augmentation or prior breast irradiation, and discusses promising novel modalities that are currently under study, such as ultrashort and preoperative PBI. Updated consensus guidelines are also provided to inform patient selection for PBI and to characterize the strength of evidence to support varying PBI modalities.
Collapse
Affiliation(s)
- Bethany Anderson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| | - Douglas Arthur
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA
| | | | | | - Atif Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert Kuske
- Arizona Breast Cancer Specialists, Scottsdale, AZ
| | - Daniel Scanderbeg
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, CA
| | - Chirag Shah
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland, OH
| | - Simona Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Timothy Showalter
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | | | - David Wazer
- Department of Radiation Oncology, Tufts Medical Center, Boston, MA
| | - Catheryn Yashar
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, CA
| |
Collapse
|
3
|
The American Brachytherapy Society consensus statement for electronic brachytherapy. Brachytherapy 2019; 18:292-298. [DOI: 10.1016/j.brachy.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 11/21/2022]
|
4
|
Breast intraoperative radiotherapy: a review of available modalities, dedicated machines and treatment procedure. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s146039691800033x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractBackgroundBreast intraoperative radiotherapy (IORT) is a partial irradiation technique that delivers a single fraction of radiation dose to the tumour bed during surgery. The use of this technique is increasing (especially in the Middle East), and therefore, it is essential to have a comprehensive approach to this treatment modality. The aim of this study is to conduct a literature review on available IORT modalities during breast irradiation as well as dedicated IORT machines and associated treatment procedures. The main IORT trials and corresponding clinical outcomes are also studied.Materials and MethodsA computerised search was performed through MEDLINE, PubMed, PubMed Central, ISI web of knowledge and reference list of related articles.ResultsIORT is now feasible through using two main modalities, including low-kilovolt IORT and intraoperative electron radiotherapy (IOERT). The dedicated machines employed and treatment procedure for mentioned modalities are quite different. The outcomes of implemented clinical trials showed that IORT is not inferior to external beam radiotherapy (EBRT) in specifically selected and well-informed patients and can be considered as an alternative to EBRT.ConclusionAlthough the clinical outcomes of introduced IORT methods are comparable, but based on the review results, it could be said that IOERT is the most effective technical method, in view of the treatment time and dose uniformity concepts. The popularity of IORT is mainly due to the distinguished obtained results during breast cancer treatment. Despite the presence of some technical challenges, it is expected that the IORT technique will become more widespread in the immediate future.
Collapse
|
5
|
Ebert MA, Dhal B, Prunster J, McLaren S, Zeps N, House M, Reniers B, Verhaegen F, Corica T, Saunders C, Joseph DJ. Theoretical versus Ex Vivo Assessment of Radiation Damage Repair: An Investigation in Normal Breast Tissue. Radiat Res 2016; 185:393-401. [PMID: 27023258 DOI: 10.1667/rr14235.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In vivo validation of models of DNA damage repair will enable their use for optimizing clinical radiotherapy. In this study, a theoretical assessment was made of DNA double-strand break (DSB) induction in normal breast tissue after intraoperative radiation therapy (IORT), which is now an accepted form of adjuvant radiotherapy for selected patients with early breast cancer. DSB rates and relative biological effectiveness (RBE) were calculated as a function of dose, radiation quality and dose rate, each varying based on the applicator size used during IORT. The spectra of primary electrons in breast tissue adjacent to each applicator were calculated using measured X-ray spectra and Monte Carlo methods, and were used to inform a Monte Carlo damage simulation code. In the absence of repair, asymptotic RBE values (relative to (60)Co) were approximately 1.5. Beam-quality changes led to only minor variations in RBE among applicators, though differences in dose rate and overall dose delivery time led to larger variations and a rapid decrease in RBE. An experimental assessment of DSB induction was performed ex vivo using pre- and postirradiation tissue samples from patients receiving breast intraoperative radiation therapy. Relative DSB rates were assessed via γ-H2AX immunohistochemistry using proportional staining. Maximum-likelihood parameter estimation yielded a DSB repair halftime of 25.9 min (95% CI, 21.5-30.4 min), although the resulting model was not statistically distinguishable from one where there was no change in DSB yield among patients. Although the model yielded an in vivo repair halftime of the order of previous estimates for in vitro repair halftimes, we cannot conclude that it is valid in this context. This study highlights some of the uncertainties inherent in population analysis of ex vivo samples, and of the quantitative limitations of immunohistochemistry for assessment of DSB repair.
Collapse
Affiliation(s)
- Martin A Ebert
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of.,b Physics
| | | | - Janelle Prunster
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of
| | - Sally McLaren
- e St. John of God Subiaco Hospital, Western Australia
| | - Nikolajs Zeps
- c Surgery and.,e St. John of God Subiaco Hospital, Western Australia
| | | | - Brigitte Reniers
- f Research Group NuTeC, CMK, Hasselt University, Diepenbeek, Belgium; and
| | | | - Tammy Corica
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of.,d Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia
| | | | - David J Joseph
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of.,c Surgery and
| |
Collapse
|
6
|
Doggett S, Willoughby M, Willoughby C, Mafong E, Han A. Incorporation of Electronic Brachytherapy for Skin Cancer into a Community Dermatology Practice. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2015; 8:28-32. [PMID: 26705437 PMCID: PMC4689494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVE The introduction of an electronic brachytherapy delivery system into an existing general dermatology practice is described. Radiobiologic rational for the dose fractionation schedule is detailed. DESIGN A miniaturized 50keV x-ray tube and delivery system are United States Food and Drug Administration cleared for nonmelanoma skin cancer. The device is introduced into an existing multi-physician dermatology practice in a standard unshielded treatment room. SETTING A multi-site, multi-physician dermatology practice Results: Fifteen months following introduction of the system, a total of 524 nonmelanoma skin cancer patients have been treated. At 12.5 months follow-up, there have been four recurrences and cosmesis has been excellent. CONCLUSIONS Advances in radiobiology and radiotechnology permit the treatment course to be given in eight fractions over four weeks. Radiation therapy for nonmelanoma skin cancer can now be given in an office setting as an alternative to Mohs surgery for appropriately selected patients. Results are comparable or better than those of surgery. Advances in radiobiology and radiotechnology permit the treatment course to be given in as few as eight fractions over four weeks. Patients are pleased with the convenience of the short course of therapy given in the office.
Collapse
Affiliation(s)
| | | | | | - Erick Mafong
- Dermatology and Laser Center, San Diego, California
| | - Amy Han
- Dermatology and Laser Center, San Diego, California
| |
Collapse
|
7
|
Eaton DJ. Electronic brachytherapy--current status and future directions. Br J Radiol 2015; 88:20150002. [PMID: 25748070 PMCID: PMC4628482 DOI: 10.1259/bjr.20150002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
In the past decade, electronic brachytherapy (EB) has emerged as an attractive modality for the treatment of skin lesions and intraoperative partial breast irradiation, as well as finding wider applications in intracavitary and interstitial sites. These miniature X-ray sources, which operate at low kilovoltage energies (<100 kV), have reduced shielding requirements and inherent portability, therefore can be used outside the traditional realms of the radiotherapy department. However, steep dose gradients and increased sensitivity to inhomogeneities challenge accurate dosimetry. Secondly, ease of use does not mitigate the need for close involvement by medical physics experts and consultant oncologists. Finally, further studies are needed to relate the more heterogeneous dose distributions to clinical outcomes. With these provisos, the practical convenience of EB strongly suggests that it will become an established option for selected patients, not only in radiotherapy departments but also in a range of operating theatres and clinics around the world.
Collapse
Affiliation(s)
- D J Eaton
- NCRI Radiotherapy Trials Quality Assurance Group, Mount Vernon Hospital, London, UK
| |
Collapse
|
8
|
Beck RE, Kim L, Yue NJ, Haffty BG, Khan AJ, Goyal S. Treatment techniques to reduce cardiac irradiation for breast cancer patients treated with breast-conserving surgery and radiation therapy: a review. Front Oncol 2014; 4:327. [PMID: 25452938 PMCID: PMC4231838 DOI: 10.3389/fonc.2014.00327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/30/2014] [Indexed: 12/25/2022] Open
Abstract
Thousands of women diagnosed with breast cancer each year receive breast-conserving surgery followed by adjuvant radiation therapy. For women with left-sided breast cancer, there is risk of potential cardiotoxicity from the radiation therapy. As data have become available to quantify the risk of cardiotoxicity from radiation, strategies have also developed to reduce the dose of radiation to the heart without compromising radiation dose to the breast. Several broad categories of techniques to reduce cardiac radiation doses include breath hold techniques, prone positioning, intensity-modulated radiation therapy, and accelerated partial breast irradiation, as well as many small techniques to improve traditional three-dimensional conformal radiation therapy. This review summarizes the published scientific literature on the various techniques to decrease cardiac irradiation in women treated to the left breast for breast cancer after breast-conserving surgery.
Collapse
Affiliation(s)
- Robert E Beck
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey , New Brunswick, NJ , USA
| | - Leonard Kim
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey , New Brunswick, NJ , USA
| | - Ning J Yue
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey , New Brunswick, NJ , USA
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey , New Brunswick, NJ , USA
| | - Atif J Khan
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey , New Brunswick, NJ , USA
| | - Sharad Goyal
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey , New Brunswick, NJ , USA
| |
Collapse
|
9
|
Deneve JL, Hoefer RA, Harris EER, Laronga C. Accelerated Partial Breast Irradiation: A Review and Description of an Early North American Surgical Experience with the Intrabeam Delivery System. Cancer Control 2012; 19:295-308. [DOI: 10.1177/107327481201900406] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jeremiah L. Deneve
- Department of Women's Oncology H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Richard A. Hoefer
- Dorothy G. Hoefer Comprehensive Breast Center, Sentara Cancer Network, Newport News, Virginia
| | - Eleanor E. R. Harris
- Radiation Oncology Program at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Christine Laronga
- Department of Women's Oncology H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|