1
|
Milosevic B, Stojanovic B, Cvetkovic A, Jovanovic I, Spasic M, Stojanovic MD, Stankovic V, Sekulic M, Stojanovic BS, Zdravkovic N, Mitrovic M, Stojanovic J, Laketic D, Vulovic M, Cvetkovic D. The Enigma of Mammaglobin: Redefining the Biomarker Paradigm in Breast Carcinoma. Int J Mol Sci 2023; 24:13407. [PMID: 37686210 PMCID: PMC10487666 DOI: 10.3390/ijms241713407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The continuous evolution of cancer biology has led to the discovery of mammaglobin, a potential novel biomarker for breast carcinoma. This review aims to unravel the enigmatic aspects of mammaglobin and elucidate its potential role in redefining the paradigm of breast carcinoma biomarkers. We will thoroughly examine its expression in tumoral and peritumoral tissues and its circulating levels in the blood, thereby providing insights into its possible function in cancer progression and metastasis. Furthermore, the potential application of mammaglobin as a non-invasive diagnostic tool and a target for personalized treatment strategies will be discussed. Given the increasing incidence of breast carcinoma worldwide, the exploration of novel biomarkers such as mammaglobin is crucial in advancing our diagnostic capabilities and treatment modalities, ultimately contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.M.); (B.S.); (A.C.)
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.M.); (B.S.); (A.C.)
| | - Aleksandar Cvetkovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.M.); (B.S.); (A.C.)
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Marko Spasic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.M.); (B.S.); (A.C.)
| | - Milica Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.S.); (V.S.)
| | - Vesna Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.S.); (V.S.)
| | - Marija Sekulic
- Department of Hygiene and Ecology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Natasa Zdravkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Minja Mitrovic
- Department of Neurology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Jasmina Stojanovic
- Department of Otorhinolaryngology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Darko Laketic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia;
| | - Maja Vulovic
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Danijela Cvetkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
2
|
Peptide-Based Vaccines in Clinical Phases and New Potential Therapeutic Targets as a New Approach for Breast Cancer: A Review. Vaccines (Basel) 2022; 10:vaccines10081249. [PMID: 36016136 PMCID: PMC9416350 DOI: 10.3390/vaccines10081249] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is the leading cause of death in women from 20 to 59 years old. The conventional treatment includes surgery, chemotherapy, hormonal therapy, and immunotherapy. This immunotherapy is based on administering monoclonal therapeutic antibodies (passive) or vaccines (active) with therapeutic purposes. Several types of vaccines could be used as potential treatments for cancer, including whole-cell, DNA, RNA, and peptide-based vaccines. Peptides used to develop vaccines are derived from tumor-associated antigens or tumor-specific antigens, such as HER-2, MUC1, ErbB2, CEA, FRα, MAGE A1, A3, and A10, NY-ESO-1, among others. Peptide-based vaccines provide some advantages, such as low cost, purity of the antigen, and the induction of humoral and cellular immune response. In this review, we explore the different types of vaccines against breast cancer with a specific focus on the description of peptide-based vaccines, their composition, immune response induction, and the description of new potential therapeutic targets.
Collapse
|
3
|
Salmond N, Khanna K, Owen GR, Williams KC. Nanoscale flow cytometry for immunophenotyping and quantitating extracellular vesicles in blood plasma. NANOSCALE 2021; 13:2012-2025. [PMID: 33449064 DOI: 10.1039/d0nr05525e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Extracellular vesicles (EVs) are lipid membrane enclosed nano-sized structures released into the extracellular environment by all cell types. EV constituents include proteins, lipids and nucleic acids that reflect the cell from which they originated. The molecular profile of cancer cells is distinct as compared to healthy cells of the same tissue type, and this distinct profile should be reflected by the EVs they release. This makes EVs desirable candidates for blood-based biopsy diagnosis of cancer. EVs can be time consuming to isolate therefore, a technology that can analyze EVs in complex biological samples in a high throughput manner is in demand. Here nanoscale flow cytometry is used to analyze EVs in whole, unpurified, plasma samples from healthy individuals and breast cancer patients. A known breast cancer marker, mammaglobin-a, was evaluated as a potential candidate for expression on EVs and increased levels in breast cancer. Mammaglobin-a particles were abundantly detected in plasma by nanoscale flow cytometry but only a portion of these particles were validated as bona fide EVs. EVs could be distinguish and characterized from small protein clusters and platelets based on size, marker composition, and detergent treatment. Mammaglobin-a positive EVs were characterized and found to be CD42a/CD41-positive platelet EVs, and the number of these EVs present was dependent upon plasma preparation protocol. Different plasma preparation protocols influenced the total number of platelet EVs and mammaglobin-a was found to associate with lipid membranes in plasma. When comparing plasma samples prepared by the same protocol, mammaglobin-a positive EVs were more abundant in estrogen receptor (ER) positive as compared to ER negative breast cancer patient plasma samples. This study demonstrates the capabilities of nanoscale flow cytometry for EV and small particle analysis in whole, unpurified, plasma samples, and highlights important technical challenges that need to be addressed when developing this technology as a liquid biopsy platform.
Collapse
Affiliation(s)
- Nikki Salmond
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, V6T1Z3, Canada.
| | | | | | | |
Collapse
|