1
|
Huang J, Gao Z, Xuan J, Gao N, Wei C, Gu J. Metabolic insights into tumor lymph node metastasis in melanoma. Cell Oncol (Dordr) 2024; 47:2099-2112. [PMID: 39704926 DOI: 10.1007/s13402-024-01027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
Although accounting for only a small amount of skin cancers, melanoma contributes prominently to skin cancer-related deaths, which are mostly caused by metastatic diseases, and lymphatic metastasis constitutes the main route. In this review, we concentrate on the metabolic mechanisms of tumor lymph node (LN) metastasis in melanoma. Two hypotheses of melanoma LN metastasis are introduced, which are the premetastatic niche (PMN) and parallel progression model. Dysregulation of oxidative stress, lactic acid concentration, fatty acid synthesis, amino acid metabolism, autophagy, and ferroptosis construct the metabolic mechanisms in LN metastasis of melanoma. Moreover, melanoma cells also promote LN metastasis by interacting with non-tumor cells through metabolic reprogramming in TIME. This review will deepen our understanding of the mechanism of lymph node metastasis in melanoma.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jiangying Xuan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Ningyuan Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
2
|
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S, Florio T. Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets 2024; 28:937-952. [PMID: 39582130 DOI: 10.1080/14728222.2024.2433130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells. This process also involves modification of extracellular matrix components, such as collagen and glycoproteins, where the secretion of soluble mediators, particularly CXC chemokines, plays a significant role. AREAS COVERED We analyze the critical role of chemokines in glioblastoma tumorigenesis, proliferation, angiogenesis, tumor progression, and brain parenchyma invasiveness. Recent evidence highlights how chemokines and their receptors impact glioblastoma biology and represent potential therapeutic targets. Several studies show that chemokines modulate glioblastoma development by acting on glioma stem cell proliferation and self-renewal, promoting vasculogenic mimicry, and altering the extracellular matrix to facilitate tumor invasiveness. EXPERT OPINION There is clear evidence supporting CXC receptors (such as CXCR1, 2, 3, 4, and ACKR3/CXCR7) and their signaling pathways as promising pharmacological targets. This in-depth review of chemokine roles in glioblastoma development provides a critical evaluation of the possible clinical translation of innovative compounds targeting these ligand/receptor systems, leading to improved therapeutic outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Beatrice Tremonti
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| |
Collapse
|
3
|
Pan M, Wei X, Xiang X, Liu Y, Zhou Q, Yang W. Targeting CXCL9/10/11-CXCR3 axis: an important component of tumor-promoting and antitumor immunity. Clin Transl Oncol 2023; 25:2306-2320. [PMID: 37076663 DOI: 10.1007/s12094-023-03126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 04/21/2023]
Abstract
Chemokines are chemotactic-competent molecules composed of a family of small cytokines, playing a key role in regulating tumor progression. The roles of chemokines in antitumor immune responses are of great interest. CXCL9, CXCL10, and CXCL11 are important members of chemokines. It has been widely investigated that these three chemokines can bind to their common receptor CXCR3 and regulate the differentiation, migration, and tumor infiltration of immune cells, directly or indirectly affecting tumor growth and metastasis. Here, we summarize the mechanism of how the CXCL9/10/11-CXCR3 axis affects the tumor microenvironment, and list the latest researches to find out how this axis predicts the prognosis of different cancers. In addition, immunotherapy improves the survival of tumor patients, but some patients show drug resistance. Studies have found that the regulation of CXCL9/10/11-CXCR3 on the tumor microenvironment is involved in the process of changing immunotherapy resistance. Here we also describe new approaches to restoring sensitivity to immune checkpoint inhibitors through the CXCL9/10/11-CXCR3 axis.
Collapse
Affiliation(s)
- Minjie Pan
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yanhong Liu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Weibing Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
4
|
Dong H, Sun M, Li H, Yue Y. CXCR3 predicts the prognosis of endometrial adenocarcinoma. BMC Med Genomics 2023; 16:20. [PMID: 36750966 PMCID: PMC9903462 DOI: 10.1186/s12920-023-01451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Currently, endometrial adenocarcinoma lacks an effective prognostic indicator. This study was to develop and validate a gene biomarker and a nomogram to predict the survival of endometrial adenocarcinoma, explore potential mechanisms and select sensitive drugs. METHODS 425 endometrial adenocarcinoma cases with RNA sequencing data from TCGA were used to identify the most immune-related module by WGCNA. As an external test set, 103 cases from GSE17025 were used. Immune-related genes were downloaded from Innate DB. The three sets of data were used to identify the prognostic genes. Based on 397 cases with complete clinical data from TCGA, randomly divided into the training set (n = 199) and test set (n = 198), we identified CXCR3 as the prognostic gene biomarker. Age, grade, FIGO stage, and risk were used to develop and validate a predictive nomogram. AUC, C-index, calibration curve and K-M estimate evaluated the model's predictive performance. KEGG enrichment analysis, immune functions, TMB, the effectiveness of immunotherapy, and drug sensitivity between the high-risk and low-risk groups. RESULTS CXCR3 was identified as a prognostic biomarker. We calculated the risk score and divided the cases into the high-risk and low-risk groups by the median value of the risk score. The OS of the high-risk group was better than the low-risk group. The risk was the prognostic indicator independent of age, grade, and FIGO stage. We constructed the nomogram including age, grade, FIGO stage, and risk to predict the prognosis of endometrial adenocarcinoma. The top five KEGG pathways enriched by the DEGs between the high- and low-risk groups were viral protein interaction with cytokine and cytokine receptors, cytokine-cytokine receptor interaction, chemokine signaling pathway, natural killer cell-mediated cytotoxicity, and cell adhesion molecules. We analyzed the difference in immune cells and found that CD8+ T cells, activated CD4+ T cells, T helper cells, monocytes, and M1 macrophages were infiltrated more in the low-risk group. However, M0 macrophages and activated dendritic cells were more in the high-risk group. The immune function including APC coinhibition, APC costimulation, CCR, checkpoint, cytolytic activity, HLA, inflammation-promoting, MHC-I, parainflammation, T cell coinhibition, T cell costimulation, type I-IFN-response, and type II-IFN-response were better in the low-risk group. TMB and TIDE scores were both better in the low-risk group. By 'the pRRophetic' package, we found 56 sensitive drugs for different risk groups. CONCLUSION We identified CXCR3 as the prognostic biomarker. We also developed and validated a predictive nomogram model combining CXCR3, age, histological grade, and FIGO stage for endometrial adenocarcinoma, which could help explore the precise treatment.
Collapse
Affiliation(s)
- He Dong
- grid.430605.40000 0004 1758 4110Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, China
| | - Mengzi Sun
- grid.64924.3d0000 0004 1760 5735Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, China
| | - Hua Li
- grid.430605.40000 0004 1758 4110Department of Abdominal Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Ying Yue
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Raza S, Rajak S, Tewari A, Gupta P, Chattopadhyay N, Sinha RA, Chakravarti B. Multifaceted role of chemokines in solid tumors: From biology to therapy. Semin Cancer Biol 2022; 86:1105-1121. [PMID: 34979274 PMCID: PMC7613720 DOI: 10.1016/j.semcancer.2021.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Chemokines are small secretory chemotactic cytokines that control the directed migration of immune cells. Chemokines are involved in both anti-and pro-tumorigenic immune responses. Accumulating evidence suggests that the balance between these responses is influenced by several factors such as the stage of tumorigenesis, immune cell activation, recruitment of immune activating or immunosuppressive cells in the tumor microenvironment (TME), and chemokine receptor expression on effector and regulatory target cells. Cancer cells engage in a complex network with their TME components via several factors including growth factors, cytokines and chemokines that are critical for the growth of primary tumor and metastasis. However, chemokines show a multifaceted role in tumor progression including maintenance of stem-like properties, tumor cell proliferation/survival/senescence, angiogenesis, and metastasis. The heterogeneity of solid tumors in primary and metastatic cancers presents a challenge to the development of successful cancer therapy. Despite extensive research on how solid tumors escape immune cell-mediated anti-tumor response, finding an effective therapy for metastatic cancer still remains a challenge. This review discusses the multifarious roles of chemokines in solid tumors including various chemokine signaling pathways such as CXCL8-CXCR1/2, CXCL9, 10, 11-CXCR3, CXCR4-CXCL12, CCL(X)-CCR(X) in primary and metastatic cancers. We further discuss the novel therapeutic approaches that have been developed by major breakthroughs in chemokine research to treat cancer patients by the strategic blockade/activation of these signaling axes alone or in combination with immunotherapies.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
6
|
Adams R, Moser B, Karagiannis SN, Lacy KE. Chemokine Pathways in Cutaneous Melanoma: Their Modulation by Cancer and Exploitation by the Clinician. Cancers (Basel) 2021; 13:cancers13225625. [PMID: 34830780 PMCID: PMC8615762 DOI: 10.3390/cancers13225625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence of cutaneous malignant melanoma is rising globally and is projected to continue to rise. Advances in immunotherapy over the last decade have demonstrated that manipulation of the immune cell compartment of tumours is a valuable weapon in the arsenal against cancer; however, limitations to treatment still exist. Cutaneous melanoma lesions feature a dense cell infiltrate, coordinated by chemokines, which control the positioning of all immune cells. Melanomas are able to use chemokine pathways to preferentially recruit cells, which aid their growth, survival, invasion and metastasis, and which enhance their ability to evade anticancer immune responses. Aside from this, chemokine signalling can directly influence angiogenesis, invasion, lymph node, and distal metastases, including epithelial to mesenchymal transition-like processes and transendothelial migration. Understanding the interplay of chemokines, cancer cells, and immune cells may uncover future avenues for melanoma therapy, namely: identifying biomarkers for patient stratification, augmenting the effect of current and emerging therapies, and designing specific treatments to target chemokine pathways, with the aim to reduce melanoma pathogenicity, metastatic potential, and enhance immune cell-mediated cancer killing. The chemokine network may provide selective and specific targets that, if included in current therapeutic regimens, harbour potential to improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
| | - Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4YS, UK;
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Guy’s Cancer Centre, Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| |
Collapse
|
7
|
Yuan G, Chen B, Meng Y, Lu J, Shi X, Hu A, Hu Y, Wang D. Role of the CXCR3‑mediated TLRs/MyD88 signaling pathway in promoting the development of hepatitis B into cirrhosis and liver cancer. Mol Med Rep 2021; 24:738. [PMID: 34435646 PMCID: PMC8404096 DOI: 10.3892/mmr.2021.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B can lead to liver cirrhosis and primary hepatocellular carcinoma. The present study aimed to investigate whether C‑X‑C motif chemokine receptor 3 (CXCR3) regulates the genes in Toll‑like receptors (TLRs)/myeloid differentiation primary response protein 88 (MyD88) signaling pathway in the development of hepatitis B into cirrhosis and liver cancer in vitro. A hepatitis B virus (HBV) overexpression lentivirus was constructed and infected into a LX‑2 cell line to obtain stable HBV‑overexpressing cells (named HBV‑LX‑2 cells). The CXCR3 gene was knocked down using small interfering RNA in HBV‑LX‑2 cells. Cell Counting Kit‑8 assays, cell scratch tests and flow cytometry were used to detect cell proliferation, migration and apoptosis, respectively. The levels of IL‑1β and IL‑6 in serum samples of patients with liver cancer were measured via ELISA, and the collagen content in liver cancer tissues was detected using Masson staining. Western blotting was used to detect the expression levels of proteins in the TLRs/MyD88 signaling pathway. Excessive fibrosis was identified in the liver cancer tissues, and the serum levels of IL‑6 and IL‑1β were abnormally increased in patients with liver cancer. It was found that interfering with CXCR3 inhibited cell proliferation and migration, as well as promoted the apoptosis of HBV‑LX‑2 cells. Moreover, interfering with CXCR3 inhibited the expression levels of collagen type I α 1 chain and the proteins in the TLRs/MyD88 pathway. In conclusion, CXCR3 knockdown could inhibit the expression levels of proteins in the TLR4/MyD88 signaling pathway, decrease cell proliferation and migration, and promote cell apoptosis, thus inhibiting the development of liver cirrhosis to liver cancer.
Collapse
Affiliation(s)
- Gang Yuan
- Department of Acute Infection, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Bin Chen
- Hepatology Center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Yina Meng
- Institute of Hepatology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Jialin Lu
- Institute of Hepatology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaojun Shi
- Department of Hepato-Oncology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Airong Hu
- Institute of Hepatology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Yaoren Hu
- Institute of Hepatology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Donghui Wang
- Department of Acute Infection, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
8
|
Cao Y, Jiao N, Sun T, Ma Y, Zhang X, Chen H, Hong J, Zhang Y. CXCL11 Correlates With Antitumor Immunity and an Improved Prognosis in Colon Cancer. Front Cell Dev Biol 2021; 9:646252. [PMID: 33777950 PMCID: PMC7991085 DOI: 10.3389/fcell.2021.646252] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
The chemokine ligand C-X-C motif chemokine ligand 11 (CXCL11) is involved in the progression of various cancers, but its biological roles in colorectal cancer (CRC) remain confused. Therefore, the prognostic value and underlying mechanism of CXCL11 in CRC were preliminarily evaluated. Three independent datasets were used for mRNA-related analysis: one dataset from the Cancer Genome Atlas (TCGA, n = 451) and two single-cell RNA sequencing (scRNA-seq) datasets from Gene Expression Omnibus (GEO): GSE146771 and GSE132465. In addition, a colon adenocarcinoma (COAD) patient cohort (the Yijishan Hospital cohort, YJSHC, n = 108) was utilized for analysis of cell infiltration by immunohistochemistry. We determined the distribution of CXCL11 in tumor tissue across all TCGA cancers and found that CXCL11 expression was significantly upregulated in both COAD and rectal adenocarcinoma (READ). However, the upregulation of CXCL11 mRNA was associated with a better prognosis in COAD, but not in READ. Within the YJSHC, the patients with a high abundance of intratumoral CXCL11+ cells had prolonged survival (p = 0.001). Furthermore, we found that the high CXCL11 expression group had a higher proportion of antitumor immune cells, and a lower proportion of protumor immune cells. Additionally, we discovered the changes of gene expression and enriched immune pathway network mediated by CXCL11. Interestingly, both cytotoxic genes (IFNG, GZMA, GZMB, GZMK, GZMM, and PRF1) and immunosuppressive molecules, including PD-L1, were positively correlated with CXCL11 expression. CXCL11, which promoted antitumor immunity to benefit survival, was identified as an independent prognostic biomarker in patients with COAD.
Collapse
Affiliation(s)
- Yingying Cao
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Nanlin Jiao
- Department of Pathology, Affiliated Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Tiantian Sun
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Yanru Ma
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhang
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Wang P, Wang Y, Jiang Y, Li M, Li G, Qiao Q. Immune Cluster and PPI Network Analyses Identified CXCR3 as a Key Node of Immunoregulation in Head and Neck Cancer. Front Oncol 2021; 10:564306. [PMID: 33585188 PMCID: PMC7874192 DOI: 10.3389/fonc.2020.564306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/30/2020] [Indexed: 12/09/2022] Open
Abstract
The tumor microenvironment (TME) is significantly associated with clinical outcomes and therapeutic efficacy. However, the landscape of the head and neck cancer (HNC) microenvironment is not fully understood. Therefore, we divided HNCs into three classes according to differences in the TME to determine effective personalized treatments. We explored the immune landscape of head and neck cancer by analysing the gene expression profile of 501 cases from the Cancer Genome Atlas (TCGA) data portal and validated our findings in 270 cases from the Gene Expression Omnibus (GEO) database. The levels of immune components in the tumor microenvironment were evaluated via single-sample gene set enrichment (ssGSEA) analysis. The HNCs were clustered into an Immunity-H group, Immunity-M group and Immunity-L group according to 40 immune components in the tumor microenvironment. DNA damage and HLA genes play an important role in immune regulation. The patients in the Immunity-H group had a favourable survival compared with patients in the Immunity-M group and the Immunity-L group. The patients in the Immunity-H group and Immunity-M group could benefit from radiotherapy. In addition, the Immunity-L group showed the lowest immunophenoscore and had poor response to anti-PD-1 treatment. CXCR3 was demonstrated to be downregulated in the Immunity-L group, which was related to shorter OS in the TCGA and GEO databases, suggesting CXCR3 as a potential therapeutic target. Taken together, our findings proposed three new microenvironment-related phenotypes of HNCs and suggested that CXCR3 played a major role in immune regulation and could be a novel therapeutic target, providing a reference for clinical decisions and research directions in the future.
Collapse
Affiliation(s)
- Ping Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yanli Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Minghong Li
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ariyarathna H, Thomson N, Aberdein D, Munday JS. Chemokine gene expression influences metastasis and survival time of female dogs with mammary carcinoma. Vet Immunol Immunopathol 2020; 227:110075. [PMID: 32590239 DOI: 10.1016/j.vetimm.2020.110075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/25/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023]
Abstract
Chemokines are signaling proteins secreted by immune cells which regulate leukocyte trafficking. The aberrant expression of chemokines and their receptors by neoplastic cells influences the behaviour of many human cancers. This study evaluated gene-expression of the chemokines: CCL5, CXCL10, CXCL12 and the chemokine receptors: CXCR3, CXCR4, CXCR7, CCR4, CCR9 in 41 histologically-malignant, outcome-known, canine mammary tumours. These chemokines and chemokine receptors were selected as all were previously shown to influence the behaviour of human breast cancers. The expression of chemokines CCL5 and CXCL12 were significantly higher in tumours which subsequently metastasised than tumours that did not metastasise (p < 0.05). Increased expression of these chemokines was also correlated with shorter survival times of the dogs (CCL5: rs = -0.40, p = 0.02, CXCL12: rs = -0.40, p = 0.03) while CCL5 was independently prognostic of survival times (p = 0.026). A significantly higher proportion of tumours that subsequently metastasised expressed CXCR3 (p = 0.037), CXCR4 (p = 0.026), CXCR7 (p = 0.025) and CCR9 (p = 0.039) receptors while the survival times of the dogs with tumours that expressed CXCR4 (p = 0.045) and CCR9 (p = 0.039) receptors were significantly shorter than dogs with tumours that did not express these receptors. Chemokine and chemokine receptor gene-expression has not been previously correlated with disease outcome of canine mammary tumours. These findings indicate that altered expression of chemokines and their receptors influences the behaviour of canine mammary tumours suggesting a potential role of them as prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Harsha Ariyarathna
- School of Veterinary Science, Massey University, Palmerston North, 4442, New Zealand.
| | - Neroli Thomson
- School of Veterinary Science, Massey University, Palmerston North, 4442, New Zealand
| | - Danielle Aberdein
- School of Veterinary Science, Massey University, Palmerston North, 4442, New Zealand
| | - John S Munday
- School of Veterinary Science, Massey University, Palmerston North, 4442, New Zealand
| |
Collapse
|
11
|
Bujak JK, Szopa IM, Pingwara R, Kruczyk O, Krzemińska N, Mucha J, Majchrzak-Kuligowska K. The Expression of Selected Factors Related to T Lymphocyte Activity in Canine Mammary Tumors. Int J Mol Sci 2020; 21:E2292. [PMID: 32225066 PMCID: PMC7178106 DOI: 10.3390/ijms21072292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Crosstalk between neoplastic and immune cells in the tumor microenvironment (TME) influences the progression of disease in human and canine cancer patients. Given that canine mammary tumors are a useful model to study breast cancer biology, we aimed to evaluate the expression of genes associated with T lymphocyte activity in benign, malignant, and metastatic canine mammary tumors. Interestingly, metastatic tumors exhibit increased expression of CXCR3, CCR2, IL-4, IL-12p40, and IL-17. In particular, we focused on IL-17, a key interleukin associated with the Th17 lymphocyte phenotype. Th17 cells have been shown to play a contradictory role in tumor immunity. Although IL-17 showed a high expression in the metastatic tumors, the expression of RORγt, a crucial transcription factor for Th17 differentiation was barely detected. We further investigated IL-17 expression using immunohistochemistry, through which we confirmed the increased expression of this interleukin in malignant and metastatic mammary tumors. Finally, we compared the plasma levels of IL-17 in healthy and malignant mammary tumor-bearing dogs using ELISA but found no differences between the groups. Our data indicate that the IL-17 in metastatic tumors may be produced by other cell types, but not by Th17 lymphocytes. Overall, our results broaden the available knowledge on the interactions in canine mammary tumors and provide insight into the development of new therapeutic strategies, with potential benefits for human immune oncology.
Collapse
MESH Headings
- Animals
- Dog Diseases/genetics
- Dog Diseases/immunology
- Dog Diseases/pathology
- Dogs
- Female
- Interleukins/genetics
- Interleukins/metabolism
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/pathology
- Neoplasm Metastasis
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/metabolism
- Th17 Cells/immunology
- Transcriptome
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences -SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.K.B.); (I.M.S.); (R.P.); (O.K.); (N.K.); (J.M.)
| |
Collapse
|
12
|
Kundu N, Ma X, Brox R, Fan X, Kochel T, Reader J, Tschammer N, Fulton A. The Chemokine Receptor CXCR3 Isoform B Drives Breast Cancer Stem Cells. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2019; 13:1178223419873628. [PMID: 31619923 PMCID: PMC6777055 DOI: 10.1177/1178223419873628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/04/2022]
Abstract
We are seeking to identify molecular targets that are relevant to breast cancer
cells with stem-like properties. There is growing evidence that cancer stem
cells (CSCs) are supported by inflammatory mediators expressed in the tumor
microenvironment. The chemokine receptor CXCR3 binds the interferon-γ-inducible,
ELR-negative CXC chemokines CXCL9, CXCL10, and CXCL11 and malignant cells have
co-opted this receptor to promote tumor cell migration and invasion. There are 2
major isoforms of CXCR3: CXCR3A and CXCR3B. The latter is generated from
alternative splicing and results in a protein with a longer N-terminal domain.
CXCR3 isoform A is generally considered to play a major role in tumor
metastasis. When the entire tumor cell population is examined, CXCR3 isoform B
is usually detected at much lower levels than CXCR3A and for this, and other
reasons, was not considered to drive tumor progression. We have shown that
CXCR3B is significantly upregulated in the subpopulation of breast CSCs in
comparison with the bulk tumor cell population in 3 independent breast cancer
cell lines (MDA-MB-231, SUM159, and T47D). Modulation of CXCR3B levels by knock
in strategies increases CSC populations identified by aldehyde dehydrogenase
activity or CD44+CD24− phenotype as well as
tumorsphere-forming capacity. The reverse is seen when CXCR3B is gene-silenced.
CXCL11 and CXCL10 directly induce CSC. We also report that novel CXCR3
allosteric modulators BD064 and BD103 prevent the induction of CSCs. BD103
inhibited experimental metastasis. This protective effect is associated with the
reversal of CXCR3 ligand-mediated activation of STAT3, ERK1/2, CREB, and NOTCH1
pathways. We propose that CXCR3B, expressed on CSC, should be explored further
as a novel therapeutic target.
Collapse
Affiliation(s)
- Namita Kundu
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xinrong Ma
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Regine Brox
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nurnberg, Erlangen, Germany
| | - Xiaoxuan Fan
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Tyler Kochel
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jocelyn Reader
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nurnberg, Erlangen, Germany
| | - Amy Fulton
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Li H, Rong S, Chen C, Fan Y, Chen T, Wang Y, Chen D, Yang C, Yang J. Disparate roles of CXCR3A and CXCR3B in regulating progressive properties of colorectal cancer cells. Mol Carcinog 2018; 58:171-184. [PMID: 30302818 DOI: 10.1002/mc.22917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Hai Li
- Department of Colorectal Surgery; General Hospital of Ningxia Medical University; Yinchuan China
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Shikuo Rong
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Chao Chen
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Yayun Fan
- Department of Gynaecology; Jingzhou Central Hospital; Jingzhou China
| | - Tuo Chen
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Yong Wang
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Dongmei Chen
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Chun Yang
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Jiali Yang
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Ningxia Key Laboratory of Clinical and Pathological Microbiology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| |
Collapse
|
14
|
Susek KH, Karvouni M, Alici E, Lundqvist A. The Role of CXC Chemokine Receptors 1-4 on Immune Cells in the Tumor Microenvironment. Front Immunol 2018; 9:2159. [PMID: 30319622 PMCID: PMC6167945 DOI: 10.3389/fimmu.2018.02159] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Chemokines govern leukocyte migration by attracting cells that express their cognate ligands. Many cancer types show altered chemokine secretion profiles, favoring the recruitment of pro-tumorigenic immune cells and preventing the accumulation of anti-tumorigenic effector cells. This can ultimately result in cancer immune evasion. The manipulation of chemokine and chemokine-receptor signaling can reshape the immunological phenotypes within the tumor microenvironment in order to increase the therapeutic efficacy of cancer immunotherapy. Here we discuss the three chemokine-chemokine receptor axes, CXCR1/2–CXCL1-3/5-8, CXCR3–CXCL9/10/11, and CXCR4-CXCL12 and their role on pro-tumorigenic immune cells and anti-tumorigenic effector cells in solid tumors. In particular, we summarize current strategies to target these axes and discuss their potential use in treatment approaches.
Collapse
Affiliation(s)
| | - Maria Karvouni
- Department of Medicine, Karolinska Institutet (KI), Solna, Sweden
| | - Evren Alici
- Department of Medicine, Karolinska Institutet (KI), Solna, Sweden.,Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Andreas Lundqvist
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United States.,Department of Oncology-Pathology, Karolinska Institutet (KI), Solna, Sweden
| |
Collapse
|