1
|
Jeong SJ, Lee KH, Cho JY. Comparative epigenomics to clinical trials in human breast cancer and canine mammary tumor. Anim Cells Syst (Seoul) 2025; 29:12-30. [PMID: 40115961 PMCID: PMC11924266 DOI: 10.1080/19768354.2025.2477024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Epigenetics and epigenomics are captivating fields of molecular biology, dedicated to the exploration of heritable alterations in gene expression and cellular phenotypes, which transpire devoid of any discernible modifications to the fundamental DNA sequence. This intricate regulatory apparatus encompasses multiple mechanisms, prominently featuring DNA methylation, histone modifications, and the involvement of non-coding RNA molecules in pivotal roles. To achieve a comprehensive grasp of these diverse mechanisms, it is imperative to conduct research employing animal models as proxies for human studies. Since experimental animal models like mice and rats struggle to replicate the diverse environmental conditions experienced by humans, this review focuses on comparing common epigenetic alterations in naturally occurring tumors in canine models, which share the human environment, with those in humans. Through this, we emphasize the importance of an epigenetic regulation in the comparative medical approach to a deeper understanding of cancers and further development of cancer treatments. Additionally, we elucidate epigenetic modifications pertinent to specific developmental stages, the ageing process, and the progression of various diseases.
Collapse
Affiliation(s)
- Su-Jin Jeong
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Fan Y, Fan X, Yan H, Liu Z, Wang X, Yuan Q, Xie J, Lu X, Yang Y. Hypermethylation of microRNA-497-3p contributes to progression of thyroid cancer through activation of PAK1/β-catenin. Cell Biol Toxicol 2023; 39:1979-1994. [PMID: 35066776 DOI: 10.1007/s10565-021-09682-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/18/2021] [Indexed: 11/02/2022]
Abstract
MicroRNA-497 (miR-497) has been reported to be a tumor-suppressive miRNA in thyroid cancer (TC), yet the mechanism is not clearly defined. In this study, we aim to determine the mechanism by which miR-497-3p affects the progression of TC. After characterization of low miR-497-3p expression pattern in TC and normal tissues, we assessed the correlation between miR-497-3p expression and clinicopathological features of TC patients. Its low expression shared associations with advanced tumor stage and lymph node metastasis. ChIP and methylation-specific PCR provided data showing that downregulation of miR-497-3p in TC tissues was induced by DNA methyltransferase-mediated hypermethylation. By performing dual-luciferase reporter assay, we identified that miR-497-3p targeted PAK1 while PAK1 could inhibit β-catenin expression. Through this mechanism, miR-497-3p exerted the anti-proliferative, anti-invasive, pro-apoptotic, and anti-tumorigenic effects on TC cells on the strength of the results from gain-of-function and rescue experiments. This study suggested that hypermethylation of miR-497-3p resulted in upregulation of β-catenin dependent on PAK1 and contributed to cancer progression in TC, which highlighted one of miR-mediated tumorigenic mechanism.
Collapse
Affiliation(s)
- Yuxia Fan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Xin Fan
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Hao Yan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Zheng Liu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Xiaoming Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Qingling Yuan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Jie Xie
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Xiubo Lu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China.
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
3
|
Zhu S, Jiang N, Zhu J. miR-375 Regulates the Proliferation, Apoptosis and Colony Formation of Thyroid Cancer Cells via Targeting YAP1. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: Yes-associated protein 1 (YAP1) regulates cell proliferation and apoptosis. Abnormal miR-375 level was related to thyroid cancer. Software predicted a relationship between miR-375 and YAP1. Our study investigated whether miR-375 regulates YAP1 expression and affects
thyroid cancer cells. Methods: The tumor tissues and adjacent tissues of thyroid cancer patients were collected to measure miR-375 and YAP1 expression. The dual luciferase reporter experiment verified the regulation between miR-375 and YAP1. Thyroid cancer cell line B-CPAP and TPC-1
cells were divided into miR-NC group and miR-375 mimic group followed by analysis of cell proliferation by flow cytometry, caspase-3 activity, and cell clone formation ability by plate cloning assay. Results: Compared with adjacent cancer tissues, miR-375 in thyroid cancer tissues was
decreased and YAP1 was increased. miR-375 targets YAP1. Compared with Nthy-ori 3-1 cells, miR-375 in B-CPAP and TPC-1 cells was significantly reduced and YAP1 was increased. Transfection with miR-375 mimic significantly inhibited cell proliferation, increase caspase-3 activity, and reduced
the ability of cells to form clones. Conclusion: miR-375 can inhibit YAP1 expression, decrease the proliferation of thyroid cancer cells, induce cell apoptosis, and reduce clone formation.
Collapse
Affiliation(s)
- Shunfu Zhu
- Department of General Surgery, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Neng Jiang
- Department of General Surgery, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Jianjun Zhu
- Department of General Surgery, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| |
Collapse
|
4
|
Hao X, Su A. MiR-590 suppresses the progression of non-small cell lung cancer by regulating YAP1 and Wnt/β-catenin signaling. Clin Transl Oncol 2022; 24:546-555. [PMID: 35031966 DOI: 10.1007/s12094-021-02713-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/19/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Accumulating evidence has been revealed that miR-590 is involved in the progression and carcinogenesis of various cancers. However, the molecular mechanism of miR-590 in non-small-cell lung cancer (NSCLC) remains unclear. METHODS Quantitative reverse transcription-PCR (qRT-PCR), western blot, MTT, and transwell assay were applied to investigate the functional role of miR-590 in this study. Dual luciferase reporter assay was utilized to investigate the interaction between YAP1 and miR-590 expression. Cells transfected with miR-590 mimic or inhibitor were subjected to western blot to investigate the role of Wnt/β-catenin signaling in NSCLC modulated by miR-590. RESULTS MiR-590 was down-regulated in NSCLC tissues and cells. Kaplan-Meier analysis found that the higher expression of miR-590 in NSCLC patients, the more improved survival rate of NSCLC patients. Over-expression of miR-590 inhibited NSCLC cell proliferation, migration, and invasion. Moreover, increasing miR-590 suppressed Yes-associated protein 1 (YAP1) expression and inhibited the Wnt/β-catenin pathway in NSCLC cells. Furthermore, miR-590 was negatively correlated with YAP1 expression. CONCLUSION These findings demonstrated that the miR-590/YAP1 axis exerted an important role in the progression of NSCLC, suggesting that miR-590 might be the appealing prognostic marker for NSCLC treatment.
Collapse
Affiliation(s)
- X Hao
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - A Su
- General Department, Bejing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| |
Collapse
|
5
|
Zhang Z, Wang W, Su Z, Zhang J, Cao H. Circ_0011058 facilitates proliferation, angiogenesis and radioresistance in papillary thyroid cancer cells by positively regulating YAP1 via acting as miR-335-5p sponge. Cell Signal 2021; 88:110155. [PMID: 34562605 DOI: 10.1016/j.cellsig.2021.110155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are reported to be associated with multiple biological processes in human cancers. However, there are still numerous circRNAs whose functions remain unclear. The aim of this study was to investigate the role of circ_0011058 in papillary thyroid cancer (PTC). METHODS Quantitative real-time PCR (qPCR) was utilized to detect the expression of circ_0011058, microRNA-335-5p (miR-335-5p) and Yes-associated Protein 1 (YAP1). Cell proliferation was detected using cell counting kit-8 (CCK-8) assay and EdU assay. Cell apoptosis was detected by flow cytometry assay. Angiogenesis ability was assessed using tube formation assay. The expression of angiogenesis-related proteins and YAP1 protein was detected by western blot. Radioresistance was examined using colony formation assay. The binding relationship between miR-335-5p and circ_0011058 or YAP1 was verified by dual-luciferase reporter assay, pull-down assay and RIP assay. Xenograft models were constructed to ensure the role of circ_0011058. RESULTS Circ_0011058 expression was aberrantly elevated in PTC tissues and cells. The downregulation of circ_0011058 suppressed proliferation, angiogenesis and radioresistance in PTC cells. MiR-335-5p was defined as a target of circ_0011058, and miR-335-5p inhibition reversed the effects of circ_0011058 downregulation. In addition, YAP1 was a target of miR-335-5p, and circ_0011058 positively regulated YAP1 expression by targeting miR-335-5p. MiR-335-5p restoration inhibited proliferation, angiogenesis and radioresistance in PTC cells, while YAP1 overexpression abolished these effects. Animal study showed that circ_0011058 knockdown inhibited tumor growth in vivo. CONCLUSION Circ_0011058 promoted PTC cell proliferation, angiogenesis and radioresistance by upregulating YAP1 via acting as miR-335-5p sponge.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou City, Henan Province, China.
| | - Wei Wang
- Department of Radiotherapy, Henan Provincial People's Hospital, Zhengzhou City, Henan Province, China
| | - Zijie Su
- Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou City, Henan Province, China
| | - Ji Zhang
- Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou City, Henan Province, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou City, Henan Province, China
| |
Collapse
|
6
|
Li Y, Hua K, Jin J, Fang L. miR-497 inhibits proliferation and invasion in triple-negative breast cancer cells via YAP1. Oncol Lett 2021; 22:580. [PMID: 34122631 PMCID: PMC8190776 DOI: 10.3892/ol.2021.12841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miR)-497 has been reported as a tumor suppressor in various cancer types. Nonetheless, the regulation of triple-negative breast cancer (TNBC) by miR-497 remains poorly understood. The present study aimed to investigate the potential function and mechanism of miR-497 in TNBC. A total of 36 TNBC and matched non-cancerous tissue samples were collected for analysis. Reverse transcription-quantitative PCR was performed to detect the miR-497 levels in TNBC tissue. The association between miR-497 expression, clinical characteristics and survival was then analyzed. To investigate the role of miR-497 in TNBC, MTT, colony formation, Transwell invasion, cell cycle and cell apoptosis assays were conducted following transfection of miR-497 mimics into the MDA-MB-231 and MDA-MB-468 cell lines. Luciferase reporter assays and western blot analysis were used to confirm the regulation of a putative target of miR-497. The results indicated that the expression of miR-497 was downregulated in the TNBC specimens. Further analysis demonstrated that the expression of miR-497 was downregulated in patients with advanced TNBC stages and that low miR-497 was associated with poor prognosis in patients with TNBC. Transfection of miR-497 mimics inhibited TNBC cell proliferation and increased cell apoptosis in MDA-MB-231 and MDA-MB-468 cells. Moreover, cell migration was inhibited following overexpression of miR-497, which also led to the arrest of the breast cancer cells in the G0/G1 phase of the cell cycle. Yes-associated protein 1 (YAP1), a critical molecule in the Hippo pathway, was identified as a target of miR-497. Notably, the protein and mRNA expression levels of YAP1 in MDA-MB-231 and MDA-MB-468 cells were downregulated following overexpression of miR-497. Overall, the findings of the present study indicated that miR-497 inhibited TNBC cell proliferation and migration and induced cell apoptosis by negatively regulating YAP1 expression. Thus, targeting miR-497 may represent a potential strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Breast and Thyroid Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213164, P.R. China
| | - Kaiyao Hua
- School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Jiali Jin
- Department of Neurology, Kongjiang Hospital of Yangpu District, Shanghai 200093, P.R. China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai No. 10 People's Hospital, Clinical College of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
7
|
Feng XE. miR-548b Suppresses Melanoma Cell Growth, Migration, and Invasion by Negatively Regulating Its Target Gene HMGB1. Cancer Biother Radiopharm 2021; 36:189-201. [PMID: 33750228 DOI: 10.1089/cbr.2019.3507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Melanoma is one of the most aggressive malignancies. Exploration of metastasis-related genes will improve the clinical outcomes of patients with melanoma. Recently, microRNAs (miRNAs) have been implicated in regulating the aggressiveness of melanoma. In the current study, the author demonstrated the expression of miR-548b and its functions in melanoma. Materials and Methods: The expression levels of miR-548b and high mobility group protein 1 (HMGB1) in melanoma specimens and adjacent normal tissues were examined using the quantitative real-time PCR method. The Cell Counting Kit-8 (CCK-8), wound healing test, and Transwell assays were conducted to examine the impact of miR-548b on aggressive phenotypes of melanoma cells. The protein expression of HMGB1 was detected by Western blot. The tumor growth of melanoma cells in vivo was analyzed using the transplanted tumor model. The expression of HMGB1 in vivo was assessed using immunohistochemistry assay. Results: miR-548b was significantly downregulated in the melanoma sample when compared with adjacent normal tissues. In addition, low levels of miR-548b were related to poor overall survival in patients with melanoma. As predicted, overexpression of miR-548b suppressed the growth and metastasis-associated traits of melanoma cells. Furthermore, the luciferase reporter gene assay and Western blotting revealed that HMGB1 was a target of miR-548b and its expression level was negatively modulated by miR-548b. Several rescue experiments indicated that reintroduction of HMGB1 abolished the inhibiting effects of miR-548b on melanoma cells. Finally, the author demonstrated that upregulation of miR-548b repressed melanoma cell growth in vivo. Conclusions: All these findings demonstrate that miR-548b serves as a cancer-suppressive miRNA in human melanoma by inhibiting HMGB1.
Collapse
Affiliation(s)
- Xi-En Feng
- Department of Dermatology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| |
Collapse
|
8
|
Huang Y, Zhang K, Li Y, Dai Y, Zhao H. The DLG1-AS1/miR-497/YAP1 axis regulates papillary thyroid cancer progression. Aging (Albany NY) 2020; 12:23326-23336. [PMID: 33197895 PMCID: PMC7746333 DOI: 10.18632/aging.104121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/05/2020] [Indexed: 12/26/2022]
Abstract
The long non-coding RNA (lncRNA), DLG1-AS1, is upregulated in papillary thyroid cancer (PTC) tissues and cell lines. Here, we found that increased expression of DLG1-AS1 caused lymph node metastasis and advanced tumor-node-metastasis (TNM) stage. DLG1-AS1 knockdown inhibited proliferation, invasion, and migration of PTC cells, and impaired tumorigenesis in vivo in mouse xenografts. DLG1-AS1 functions as a competing endogenous RNA (ceRNA) for miR-497. Further investigation revealed that DLG1-AS1 regulated yes-associated protein 1 (YAP1; a known target of miR-497) by competitively binding to miR-497. Moreover, inhibition of miR-497 abrogated the inhibitory effects of DLG1-AS1 depletion on PTC cells. These findings demonstrate that the DLG1-AS1-miR-497-YAP1 axis promotes the growth and metastasis of PTC by forming a ceRNA network.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - KeWei Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinghua Li
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuyin Dai
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
9
|
Luo G, He K, Xia Z, Liu S, Liu H, Xiang G. Regulation of microRNA-497 expression in human cancer. Oncol Lett 2020; 21:23. [PMID: 33240429 PMCID: PMC7681205 DOI: 10.3892/ol.2020.12284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of non-coding single-stranded RNA, with a length of ~22 nt, which are encoded by endogenous genes and are involved in the post-transcriptional regulation of gene expression in animals and plants. Studies have demonstrated that miRNAs play an important role in the occurrence, development, metastasis, diagnosis and treatment of cancer. In recent years, miR-497 has been identified as one of the key miRNAs in a variety of cancer types and has been shown to be downregulated in a variety of solid tumors. However, the regulation of miR-497 expression involves a complex network, which is affected by several factors. The aim of the present review was to summarize the mechanism of regulation of miR-497 expression at the pre-transcriptional and transcriptional levels in cancer, as well as the role of miR-497 expression imbalance in cancer diagnosis, treatment and prognosis. The regulatory mechanisms of miR-497 expression may aid in our understanding of the causes of miR-497 expression imbalance and provide a reference value for further research on the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Guanshui Luo
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China.,Department of Postgraduate Studies, The Second Clinical College of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Zhenglin Xia
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Shuai Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Hong Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
10
|
Lin L, Wen J, Lin B, Bhandari A, Zheng D, Kong L, Wang Y, Wang O, Chen Y. Immortalization up-regulated protein promotes tumorigenesis and inhibits apoptosis of papillary thyroid cancer. J Cell Mol Med 2020; 24:14059-14072. [PMID: 33094920 PMCID: PMC7754061 DOI: 10.1111/jcmm.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022] Open
Abstract
The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up‐regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf‐like PTC patients with higher IMUP expression had shorter disease‐free survival. The biological function of IMUP in PTC cell lines (KTC‐1 and TPC‐1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis‐related molecules were identified by real‐time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down‐regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.
Collapse
Affiliation(s)
- Lizhi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jialiang Wen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Bangyi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Danni Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Lingguo Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yizuo Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
11
|
Evaluating of miR-184, miR-497, miR-378, miR-103 and miR-506 expression level in non-small cell lung cancer patients tissues compared with their normal marginal tissues. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liu WH, Qiao HY, Xu J, Wang WQ, Wu YL, Wu X. LINC00473 contributes to the radioresistance of esophageal squamous cell carcinoma by regulating microRNA‑497‑5p and cell division cycle 25A. Int J Mol Med 2020; 46:571-582. [PMID: 32468021 PMCID: PMC7307861 DOI: 10.3892/ijmm.2020.4616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNA (lncRNA) LINC00473 plays a carcinogenic role in a variety of different tumor types. Nevertheless, the mechanisms through which LINC00473 regulates the radiosensitivity of esophageal squamous cell carcinoma (ESCC) cells remains elusive. In the present study, reverse transcription-quantitative PCR was used to quantify the expression of LINC00473, microRNA (miRNA/miR)-497-5p and cell division cycle 25A (CDC25A) in ESCC tissues. The association between LINC00473 expression and the clinicopathological characteristics of patients with ESCC was also assessed. Furthermore, Cell Counting kit-8 and colony formation assays were carried out to monitor the proliferation of ESCC cells exposed to X-ray radiation. A dual-luciferase reporter assay was also conducted to analyze the interaction between LINC00473 and miR-497-5p, as well as the interaction between CDC25A and miR-497-5p. The findings of the present study demonstrated that in ESCC tissues and cells, the expression levels of LINC00473 and CDC25A were significantly upregulated, while the expression of miR-497-5p was downregulated. The high expression level of LINC00473 was associated with a higher T stage, lymph node metastasis stage and a lower tumor differentiation grade in patients with ESCC. Following irradiation, transfection with miR-497-5p mimics reduced the promoting effect of LINC00473 overexpression on ESCC cell proliferation, and partially impeded the resistance of ESCC cells to X-ray radiation induced by LINC00473 overexpression. Moreover, transfection with miR-497-5p inhibitors partially alleviated the inhibitory effects of LINC00473 knockdown on cellular proliferation, and partly reversed the sensitivity of cells to X-ray irradiation induced by LINC00473 knockdown. Furthermore, it was confirmed that miR-497-5p was able to bind LINC00473 and the 3′-untranslated region of CDC25A. On the whole, the findings of the present study demonstrate that LINC00473 reduces the radiosensitivity of ESCC cells by modulating the miR-497-5p/CDC25A axis.
Collapse
Affiliation(s)
- Wei-Hua Liu
- Department of Radiology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Han-Yong Qiao
- Department of Special Inspection, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Jian Xu
- Department of Radiology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Wei-Qing Wang
- Department of Radiology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Yi-Lei Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xia Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| |
Collapse
|
13
|
Ye P, Lv X, Aizemaiti R, Cheng J, Xia P, Di M. H3K27ac-activated LINC00519 promotes lung squamous cell carcinoma progression by targeting miR-450b-5p/miR-515-5p/YAP1 axis. Cell Prolif 2020; 53:e12797. [PMID: 32297697 PMCID: PMC7260072 DOI: 10.1111/cpr.12797] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives Long non‐coding RNAs (lncRNAs) are extensively reported as participants in the biological process of diverse malignancies, including lung squamous cell carcinoma (LUSC). Long intergenic non‐protein coding RNA 519 (LINC00519) is identified as a novel lncRNA which has not yet been studied in cancers. Materials and Methods LINC00519 expression was detected by qRT‐PCR. The effect of LINC00519 on LUSC cellular activities was determined by in vitro and in vivo assays. Subcellular fractionation and FISH assays were conducted to identify the localization of LINC00519. The interaction between miR‐450b‐5p/miR‐515‐5p and LINC00519/YAP1 was verified by RIP, RNA pull‐down and luciferase reporter assays. Results Elevated level of LINC00519 was identified in LUSC tissues and cell lines. High LINC00519 level predicted unsatisfactory prognosis. Then, loss‐of‐function assays suggested the inhibitive role of silenced LINC00519 in cell proliferation, migration, invasion and tumour growth and promoting effect on cell apoptosis in LUSC. Mechanically, LINC00519 was activated by H3K27 acetylation (H3K27ac). Moreover, LINC00519 sponged miR‐450b‐5p and miR‐515‐5p to up‐regulate Yes1 associated transcriptional regulator (YAP1). Additionally, miR‐450b‐5p and miR‐515‐5p elicited anti‐carcinogenic effects in LUSC. Finally, rescue assays validated the effect of LINC00519‐miR‐450b‐5p‐miR‐515‐5p‐YAP1 axis in LUSC. Conclusions H3K27ac‐activated LINC00519 acts as a competing endogenous RNA (ceRNA) to promote LUSC progression by targeting miR‐450b‐5p/miR‐515‐5p/YAP1 axis.
Collapse
Affiliation(s)
- Peng Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiayi Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Rusidanmu Aizemaiti
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jun Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pinghui Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Meng Di
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Li C, Wang S, Yang C. Long non-coding RNA DLX6-AS1 regulates neuroblastoma progression by targeting YAP1 via miR-497-5p. Life Sci 2020; 252:117657. [PMID: 32289431 DOI: 10.1016/j.lfs.2020.117657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
AIMS The lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) has been reported to be an oncogenic lncRNA in diverse malignant cancers; however, whether it has oncogenic role in neuroblastoma(NB) remain largely unknown. This study explored the expression status, function and potential mechanism of DLX6-AS1 in NB. MAIN METHOD In the current study, a total of 70 human NB tissues and matched adjacent non-tumor tissues were collected. Quantitative PCR (qPCR) was performed to study the expression differences of DLX6-AS1 in tissues and NB cell lines. Proliferation, migration, invasion and EMT status of transfected NB cells were evaluated by WST-1 assay, colony formation unit assay, Transwell assay and qPCR, respectively. The interaction between DLX6-AS1 and its potential targets was confirmed by luciferase reporter assay. Xenograft models were established to evaluate tumor proliferation in vivo. KEY FINDING We found that the expression of DLX6-AS1 was significantly increased in both NB tissues and cell lines, and elevated DLX6AS1 expression was positively correlated with advanced stage and poor survival. Proliferation rate, migration and invasion ability, as well as EMT process of NB cells was inhibited after DLX6-AS1 knockdown, meanwhile, the tumor growth in vivo was impaired after DLX6-AS1 inhibition. Further analysis showed that DLX6-AS1 regulates the expression of YAP1 by sponging miR-497-5p. DLX6-AS1 directly interacts with miR-497-5p and reduces the binding of miR-497-5p to YAP1 3'UTR, thus inhibiting the degradation of YAP1 by miR-497-5p. SIGNIFICANCE This work demonstrates that DLX6-AS1 partially enhances the proliferation, migration and invasion abilities of NB cells through the miR-497-5p/YAP1 pathway, DLX6-AS1 might act as a promising therapeutic target for NB.
Collapse
Affiliation(s)
- Changchun Li
- Department of Pediatric surgical oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Shan Wang
- Department of Pediatric surgical oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Chao Yang
- Department of Pediatric surgical oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
15
|
Chen Y, Du J, Wang Y, Shi H, Jiang Q, Wang Y, Zhang H, Wei Y, Xue W, Pu Z, Gao Y, Li D, Feng Y, Yan J, Zhang J. MicroRNA-497-5p Induces Cell Cycle Arrest Of Cervical Cancer Cells In S Phase By Targeting CBX4. Onco Targets Ther 2019; 12:10535-10545. [PMID: 31849480 PMCID: PMC6910861 DOI: 10.2147/ott.s210059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose miR-497-5p can inhibit cervical cancer cell proliferation. However, the underlying mechanism remains to be elucidated. Methods Bioinformatics was used to analyze the target genes of miR-497-5p. qRT-PCR and Western blot were used to analyze mRNA and protein expression, respectively. Dual-luciferase reporter assay was used to analyze the direct binding between miR-497-5p and 3'-untranslated region of CBX4. Cell viability was measured with MTT assay. Flow cytometry was performed to detect cell cycle distribution. Results Here, using bioinformatics methods we firstly found that miR-497-5p regulated cervical carcinoma proliferation by targeting polycomb chromobox4 (CBX4). Expression of miR-497-5p in cervical carcinoma tissues was negatively correlated with CBX4. A binding region of miR-497-5p in 3'-untranslated region of CBX4 was predicted. Further experiments confirmed that miR-497-5p directly targeted CBX4. Besides, RNA interference of CBX4 inhibited cervical cancer cell proliferation, arrested cells at S phase and reduced the expression of CDK2 and Cyclin A2 proteins. The use of miR-497-5p inhibitor compromised CBX4 interference RNAs induced cycle arrest of cervical cancer cells. Cells co-transfected with miR-497-5p inhibitors and CBX4 interference RNAs had a higher proliferation rate than CBX4 inference RNA-transfected cells. Conclusion All together, the present study demonstrates that miR-497-5p inhibits cervical cancer cells proliferation by directly targeting CBX4.
Collapse
Affiliation(s)
- Yani Chen
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Juan Du
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Yu Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Haiyan Shi
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Qiuyu Jiang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Yangfeng Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Huahua Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Yameng Wei
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Wanjuan Xue
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Zhiying Pu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, People's Republic of China
| | - Yi Gao
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Dan Li
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Yun Feng
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Jing Yan
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, People's Republic of China
| |
Collapse
|
16
|
Zhuo X, Zhou W, Ye H, Li D, Chang A, Wu Y, Zhou Q. Screening of key miRNAs and evaluation of their diagnostic and prognostic values in nasopharyngeal carcinoma. Oncol Lett 2019; 17:5803-5810. [PMID: 31186807 DOI: 10.3892/ol.2019.10231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence has revealed the importance of microRNA (miRNA/miR) in cancer genesis and progression. The aim of the current study was to identify the key miRNAs involved in the onset and development of nasopharyngeal carcinoma (NPC) and to further evaluate their diagnostic and prognostic values. Microarray data were obtained and analyzed to screen differentially expressed miRNAs (DEMs) between patients with NPC and healthy controls. The target genes of the DEMs were predicted and their possible functions were evaluated. The diagnostic and prognostic values of the DEMs were subsequently investigated. A total of 4 DEMs, including miR-18a, miR-135b, miR-204 and miR-497, were identified. Gene Ontology (GO) and pathway enrichment analysis revealed that the target genes were enriched in a number of GO terms and signaling pathways. The results demonstrated that the selected DEMs may present potential diagnostic factors for NPC. In addition, miR-18a [Hazard ratio (HR), 3.405; 95% confidence interval (CI), 1.334-8.693] and miR-135b (HR, 2.482; 95% CI, 1.014-6.076) may serve prognostic roles for patients with NPC. In summary, the present study identified 4 miRNAs that may be involved in the genesis and development of NPC. In addition, miR-18a and miR-135b may present useful prognostic markers for patients with NPC. Future in vitro and in vivo investigations are warranted to substantiate the results obtained in the current study.
Collapse
Affiliation(s)
- Xianlu Zhuo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Huiping Ye
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dairong Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Aoshuang Chang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yongzhong Wu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Qi Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| |
Collapse
|
17
|
Wen Q, Zhao L, Wang T, Lv N, Cheng X, Zhang G, Bai L. LncRNA SNHG16 drives proliferation and invasion of papillary thyroid cancer through modulation of miR-497. Onco Targets Ther 2019; 12:699-708. [PMID: 30705598 PMCID: PMC6343509 DOI: 10.2147/ott.s186923] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Long noncoding small nucleolar RNA host gene 16 (SNHG16) has been shown to play an oncogenic role in multiple cancers. However, the biological roles and mechanism of SNHG16 action in the regulation of papillary thyroid cancer (PTC) remains unknown. The aims of this study were to investigate the roles and the possible mechanism of SNHG16 in PTC progression. Materials and methods The expression of SNHG16 PTC tissues and cell lines was detected by reverse-transcription quantitative PCR (qRT-PCR). The effect of SNHG16 on cell proliferation, apoptosis, migration, and invasion was detected by Cell Counting Kit-8, flow cytometry, wound-healing assay, and Matrigel invasion assay, respectively. In addition, the regulatory relationships between SNHG16 and miR-497 were explored by luciferase reporter assay and qRT-PCR. Results The SNHG16 expression was upregulated in PTC tissues and cell lines, whose expression was positively associated with advanced TNM stage and lymph node metastasis. Function analysis demonstrated that depletion of SNHG16 in PTC cells significantly inhibited cell proliferation, induced cell apoptosis, and suppressed cell migration and invasion abilities. Mechanistic studies indicated that SNHG16 functioned as an endogenous sponge for miR-497 to regulate its target genes brain-derived neurotrophic factor and yes-associated protein 1 expression. Furthermore, the inhibition of miR-497 antagonized the suppressive effect of SNHG16-depleted cells on cell proliferation, migration, and invasion. Conclusion These findings revealed that SNHG16 drived the PTC progression possibly via regulating miR-497, suggesting that SNHG16 might be a novel therapeutic agent for PTC.
Collapse
Affiliation(s)
- Qiang Wen
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, ErDao District, Changchun 13033, China,
| | - Lina Zhao
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, ErDao District, Changchun 13033, China,
| | - Tongtong Wang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, ErDao District, Changchun 13033, China,
| | - Ningning Lv
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, ErDao District, Changchun 13033, China,
| | - Xuejiao Cheng
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, ErDao District, Changchun 13033, China,
| | - Guang Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, ErDao District, Changchun 13033, China,
| | - Lin Bai
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, ErDao District, Changchun 13033, China,
| |
Collapse
|
18
|
Zhu P, Liu Z, Zhou J, Chen Y. Tanshinol inhibits the growth, migration and invasion of hepatocellular carcinoma cells via regulating the PI3K-AKT signaling pathway. Onco Targets Ther 2018; 12:87-99. [PMID: 30588033 PMCID: PMC6304085 DOI: 10.2147/ott.s185997] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Tanshinol is an active constituent of Salvia miltiorrhiza and possess anti-inflammatory, antioxidant, and anti-bacterial activity. Herein, we explored the role of tanshinol on the growth and aggressiveness of hepatocellular carcinoma (HCC) cells in vitro and in vivo. Materials and methods The proliferation of a panel of HCC cell lines was measured using MTT assay. The expressions of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) were detected by immunofluorescence staining and immunohistochemical assay. The levels of Bcl-2 and Bax were determined using immunoblotting assay. The secretions of matrix metalloproteinase-2 (MMP-2) and MMP-9 were detected by ELISA. The migration and invasion abilities of HepG2 cell were determined using wound healing and Transwell invasion assays. The apoptosis of HepG2 cell induced by tanshinol was analyzed by Annexin V/propidium iodide staining. A xenograft model was constructed to investigate the inhibitory effect of tanshinol on HepG2 cell growth in vivo. To further investigate the role of tanshinol on the metastasis of HepG2 cell in vivo, an experimental metastasis assay was performed. Results Tanshinol inhibited the growth and colony formation of HCC cell in vitro. Tanshinol also induced the apoptosis of HepG2 cell and inhibited the migration and invasion of HepG2 cell. In in vivo experiments, tanshinol suppressed the tumor growth and metastasis of HepG2 cell. Furthermore, the phosphorylation of PI3K and AKT was decreased by tanshinol in vitro and in vivo. Conclusion Tanshinol exerts its anti-cancer effects via regulating the PI3K-AKT signaling pathway in HCC.
Collapse
Affiliation(s)
- Pingting Zhu
- School of Nursing, Yangzhou University, Yangzhou, China, .,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China,
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - JiaoJiao Zhou
- School of Nursing, Yangzhou University, Yangzhou, China,
| | - Yuanyuan Chen
- School of Nursing, Yangzhou University, Yangzhou, China,
| |
Collapse
|