1
|
Koukourikis P, Papaioannou M, Pervana S, Apostolidis A. Exploring the DNA Methylation Profile of Genes Associated with Bladder Cancer in Bladder Tissue of Patients with Neurogenic Lower Urinary Tract Dysfunction. Int J Mol Sci 2024; 25:5660. [PMID: 38891848 PMCID: PMC11171624 DOI: 10.3390/ijms25115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
DNA methylation is an epigenetic process that commonly occurs in genes' promoters and results in the transcriptional silencing of genes. DNA methylation is a frequent event in bladder cancer, participating in tumor initiation and progression. Bladder cancer is a major health issue in patients suffering from neurogenic lower urinary tract dysfunction (NLUTD), although the pathogenetic mechanisms of the disease remain unclear. In this population, bladder cancer is characterized by aggressive histopathology, advanced stage during diagnosis, and high mortality rates. To assess the DNA methylation profiles of five genes' promoters previously known to be associated with bladder cancer in bladder tissue of NLUTD patients, we conducted a prospective study recruiting NLUTD patients from the neuro-urology unit of a public teaching hospital. Cystoscopy combined with biopsy for bladder cancer screening was performed in all patients following written informed consent being obtained. Quantitative methylation-specific PCR was used to determine the methylation status of RASSF1, RARβ, DAPK, hTERT, and APC genes' promoters in bladder tissue samples. Twenty-four patients suffering from mixed NLUTD etiology for a median duration of 10 (IQR: 12) years were recruited in this study. DNA hypermethylation was detected in at least one gene of the panel in all tissue samples. RAR-β was hypermethylated in 91.7% samples, RASSF and DAPK were hypermethylated in 83.3% samples, APC 37.5% samples, and TERT in none of the tissue samples. In 45.8% of the samples, three genes of the panel were hypermethylated, in 29.2% four genes were hypermethylated, and in 16.7% and in 8.3% of the samples, two and one gene were hypermethylated, respectively. The number of hypermethylated genes of the panel was significantly associated with recurrent UTIs (p = 0.0048). No other significant association was found between DNA hypermethylation or the number of hypermethylated genes and the clinical characteristics of the patients. Histopathological findings were normal in 8.3% of patients, while chronic inflammation was found in 83.3% of patients and squamous cell metaplasia in 16.7% of patients. In this study, we observed high rates of DNA hypermethylation of genes associated with bladder cancer in NLUTD patients, suggesting an epigenetic field effect and possible risk of bladder cancer development. Recurrent UTIs seem to be associated with increased DNA hypermethylation. Further research is needed to evaluate the impact of recurrent UTIs and chronic inflammation in DNA hypermethylation and bladder cancer etiopathogenesis in NLUTD patients.
Collapse
Affiliation(s)
- Periklis Koukourikis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece;
| | - Maria Papaioannou
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stavroula Pervana
- Department of Pathology, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece;
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece;
| |
Collapse
|
2
|
Koukourikis P, Papaioannou M, Georgopoulos P, Apostolidis I, Pervana S, Apostolidis A. A Study of DNA Methylation of Bladder Cancer Biomarkers in the Urine of Patients with Neurogenic Lower Urinary Tract Dysfunction. BIOLOGY 2023; 12:1126. [PMID: 37627010 PMCID: PMC10452268 DOI: 10.3390/biology12081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Background: Bladder cancer (BCa) in patients suffering from neurogenic lower urinary tract dysfunction (NLUTD) is a significant concern due to its advanced stage at diagnosis and high mortality rate. Currently, there is a scarcity of specific guidelines for BCa screening in these patients. The development of urine biomarkers for BCa seems to be an attractive non-invasive method of screening or risk stratification in this patient population. DNA methylation is an epigenetic modification, resulting in the transcriptional silencing of tumor suppression genes, that is frequently detected in the urine of BCa patients. Objectives: We aimed to investigate DNA hypermethylation in five gene promoters, previously associated with BCa, in the urine of NLUTD patients, and in comparison with healthy controls. Design, setting and participants: This was a prospective case-control study that recruited neurourology outpatients from a public teaching hospital who had suffered from NLUTD for at least 5 years. They all underwent cystoscopy combined with biopsy for BCa screening following written informed consent. DNA was extracted and DNA methylation was assessed for the RASSF1, RARβ, DAPK, TERT and APC gene promoters via quantitative methylation-specific PCR in urine specimens from the patients and controls. Results: Forty-one patients of mixed NLUTD etiology and 35 controls were enrolled. DNA was detected in 36 patients' urine specimens and in those of 22 controls. In the urine specimens, DNA was hypermethylated in at least one of five gene promoters in 17/36 patients and in 3/22 controls (47.22% vs. 13.64%, respectively, p = 0.009). RASSF1 was hypermethylated in 10/17 (58.82%) specimens with detected methylation, APC in 7/17 (41.18%), DAPK in 4/17 (23.53%), RAR-β2 in 3/17 (17.56%) and TERT in none. According to a multivariate logistic regression analysis, NLUTD and male gender were significantly associated with hypermethylation (OR = 7.43, p = 0.007 and OR = 4.21; p = 0.04, respectively). In the tissue specimens, histology revealed TaLG BCa in two patients and urothelial squamous metaplasia in five patients. Chronic bladder inflammation was present in 35/41 bladder biopsies. Conclusions: DNA hypermethylation in a panel of five BCa-associated genes in the urine was significantly more frequent in NLUTD patients than in the controls. Our results warrant further evaluation in longitudinal studies assessing the clinical implications and possible associations between DNA hypermethylation, chronic inflammation and BCa in the NLUTD population.
Collapse
Affiliation(s)
- Periklis Koukourikis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Maria Papaioannou
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Petros Georgopoulos
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
- Pelvic Floor Unit, Department of Urology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Ioannis Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Stavroula Pervana
- Department of Pathology, General Hospital Papageorgiou, 56429 Thessaloniki, Greece;
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| |
Collapse
|
3
|
What are the roles of global DNA and APC 2 gene promotor hypermethylation in multiple myeloma? Mol Biol Rep 2021; 48:7875-7882. [PMID: 34637096 PMCID: PMC8505470 DOI: 10.1007/s11033-021-06813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022]
Abstract
Background In today's practice, gene-based approaches come to the fore in the determination of prognosis and treatment preferences of multiple myeloma (MM). DNA methylation is one of the new approach parameters. DNA methylation occurs by the addition of a methyl group to cytosines in CpG dinucleotides. In this study, besides comparing the global DNA and APC 2 gene promotor hypermethylation between our patients with MM and healthy control group, we aimed to demonstrate the effect of hypermethylation on MM treatment responses and survival. Methods and results 38 patients diagnosed with MM between January 2016 and January 2020 and 50 healthy controls were included in the study. The initial hypermethylation of the patients and the healthy control group were statistically analyzed. In addition, the increase in hypermethylation in the MM group before and after the first series of treatments were analyzed within themselves. There is a significant difference between the patients with MM diagnosis and the healthy control group in terms of the initial global hypermethylation (P = 0.001). In patients with MM, hypermethylation was significantly higher. Global hypermethylation in the post-treatment measurements was significantly increased in comparison to the pre-treatment state (P = 0.012). In terms of APC 2 promotor gene-specific hypermethylation, no significant differences were detected between pre- and post-treatment values (P = 0.368). Conclusions This study represents valuable data with the initial global DNA hypermethylation results in the MM patient group and the increase in hypermethylation post-treatment. it will shed light on future studies.
Collapse
|
4
|
Mikkelsen SU, Gillberg L, Lykkesfeldt J, Grønbæk K. The role of vitamin C in epigenetic cancer therapy. Free Radic Biol Med 2021; 170:179-193. [PMID: 33789122 DOI: 10.1016/j.freeradbiomed.2021.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
The role of vitamin C in the treatment of cancer has been subject to controversy for decades. Within the past 10 years, mechanistic insight into the importance of vitamin C in epigenetic regulation has provided a new rationale for its potential anti-cancer effects. At physiological concentrations, vitamin C is a potent antioxidant and thereby co-factor for a range of enzymes including the Fe(II)- and α-ketoglutarate-dependent dioxygenases that represent some of the most important epigenetic regulators; the ten-eleven translocation (TET) methylcytosine dioxygenases and the Jumonji-C domain-containing histone demethylases. Epigenetic deregulation is a hallmark of many cancers and reduced activity of these enzymes or somatic loss-of-function mutations in the genes encoding them, are observed in many cancer types. The present review outlines the growing literature on the role of vitamin C in epigenetic therapy of cancer. In the vast majority of in vitro, animal and clinical studies included in this review, vitamin C showed ability across cancer types to increase the hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine catalyzed by the TET enzymes - the first step in DNA demethylation. Most consistently, vitamin C in combination with the class of epigenetic drugs, DNA methyltransferase inhibitors, has demonstrated efficacy in the treatment of hematological malignancies in both preclinical and the limited number of available clinical studies. Yet, the pertinent question of what is the optimal dose of vitamin C in cancer studies remains to be answered. High-quality randomized placebo-controlled trials are needed to determine whether supplementation with vitamin C may benefit subgroups of patients with (pre-)cancer.
Collapse
Affiliation(s)
- Stine Ulrik Mikkelsen
- Department of Hematology, Rigshospitalet, Juliane Maries Vej 10, 2100, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Building 2, 3rd Floor, 2200, Copenhagen, Denmark
| | - Linn Gillberg
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1st Floor, 1870, Frederiksberg, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Juliane Maries Vej 10, 2100, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Building 2, 3rd Floor, 2200, Copenhagen, Denmark; DanStem, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Saelee P, Pongtheerat T. APC Promoter Hypermethylation as a Prognostic Marker in Breast Cancer Patients. Asian Pac J Cancer Prev 2020; 21:3627-3632. [PMID: 33369461 PMCID: PMC8046330 DOI: 10.31557/apjcp.2020.21.12.3627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Adenomatous polyposis coli (APC) promoter hypermethylation implicated in breast cancer development through Wnt signaling pathway, hypermethylation may result in inactivation of APC expression. This study aimed to investigated whether hypermethylation of APC promoter, the aggressive behavior of breast cancer cells, and correlated them with clinicopathological parameters and survival. Methods: Sixty-one fresh tissues of breast tumor were evaluated for APC promoter hypermethylation with methylation-specific PCR techniques (MS-PCR) and APC mRNA expression level analysis by quantitative real-time reverse transcription-PCR. Results: Our results show aberrant APC hypermethylation status was founded in 27 of 61 cases (44%), and significantly associated with chemotherapy treatment (OR= 6.9, 95%CI=1.5-31.01, P = 0.01), distant metastasis (OR = 5.52, 95%CI = 1.27-24.08, P = 0.04) as well as APC methylated status also associated with shorter overall survival than those without (8.4 and 11.0 years respectively, P = 0.02). Conclusion: The findings indicated hypermethylation of APC promoter may be used as a useful prognostic biomarker in breast cancer patients.
Collapse
Affiliation(s)
- Pensri Saelee
- Research Division, National Cancer Institute, Bangkok 10400, Thailand
| | - Tanett Pongtheerat
- Unit of Biochemistry, Department of Medical Sciences, Faculty of Science, Rangsit University, Patumthani, Thailand
| |
Collapse
|
6
|
Ma Y, Chai N, Jiang Q, Chang Z, Chai Y, Li X, Sun H, Hou J, Linghu E. DNA methyltransferase mediates the hypermethylation of the microRNA 34a promoter and enhances the resistance of patient-derived pancreatic cancer cells to molecular targeting agents. Pharmacol Res 2020; 160:105071. [PMID: 32659427 DOI: 10.1016/j.phrs.2020.105071] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
DNA methyltransferase (DNMT) participates in the transformation or progression of human cancers by mediating the hypermethylation of cancer suppressors. However, the regulatory role of DNMT in pancreatic cancer cells remains poorly understood. In the present study, we demonstrated that DNMT1 repressed the expression of microRNA 34a (miR-34a) and enhanced the activation of the Notch pathway by mediating the hypermethylation of the miR-34a promoter. In patients with pancreatic cancer, the expression levels of DNMT1 were negatively related with those of miR-34a. Mechanistically, knockdown of DNMT1 decreased the methylation of the miR-34a promoter and enhanced the expression of miR-34a to inhibit the activation of the Notch pathway. Downregulation of the Notch pathway via the DNMT1/miR-34a axis significantly enhanced the sensitivity of pancreatic cells to molecular targeting agents. Therefore, the results of our study suggest that downregulation of DNMT enhances the expression of miR-34a and may be a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Yan Ma
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.
| | - Ningli Chai
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.
| | - Qiyu Jiang
- Research Center for Clinical and Transitional Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Zhengyao Chang
- Department of General Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yantao Chai
- Research Center for Clinical and Transitional Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Xiaojuan Li
- Research Center for Clinical and Transitional Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Huiwei Sun
- Research Center for Clinical and Transitional Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Jun Hou
- Research Center for Clinical and Transitional Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Enqiang Linghu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
7
|
Yan YL, Huang ZN, Zhu Z, Cui YY, Li MQ, Huang RM, Yan J, Shen B. Downregulation of TET1 Promotes Bladder Cancer Cell Proliferation and Invasion by Reducing DNA Hydroxymethylation of AJAP1. Front Oncol 2020; 10:667. [PMID: 32528872 PMCID: PMC7253684 DOI: 10.3389/fonc.2020.00667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Ten-eleven translocation 1 (TET1) is a member of methylcytosine dioxygenase, which catalyzes 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC) to promote the demethylation process. The dysregulated TET1 protein and 5 hmC level were reported to either suppress or promote carcinogenesis in a cancer type-dependent manner. Currently, the role of TET1 in the development of urinary bladder cancer (UBC) and its underlying molecular mechanisms remain unclear. Herein, we found that TET1 expression was downregulated in UBC specimens compared with normal urothelium and was inversely related to tumor stage and grade and overall survival, suggesting its negative association with UBC progression. TET1 silencing in UBC cells increased cell proliferation and invasiveness while the ectopic expression of wild-type TET1-CD, but not its enzymatic inactive mutant, reversed these effects and suppressed tumorigenicity in vivo. In addition, as a direct regulator of TET1 activity, vitamin C treatment increased 5 hmC level and inhibited the anchorage-independent growth and tumorigenicity of UBC cells. Furthermore, we found that TET1 maintained the hypomethylation in the promoter of the AJAP1 gene, which codes for adherens junction-associated protein 1. The downregulation of AJAP1 reversed TET1-CD-induced nuclear translocation of β-catenin, thus inhibiting the expression of its downstream genes. In human UBC specimens, AJAP1 is frequently downregulated and positively associated with TET1. Notably, low expression levels of both TET1 and AJAP1 predict poor prognosis in UBC patients. In conclusion, we found that the frequently downregulated TET1 level reduces the hydroxymethylation of AJAP1 promoter and subsequently activates β-catenin signaling to promote UBC development. The downregulation of both TET1 and AJAP1 might be a promising prognostic biomarker for UBC patients.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zheng-Nan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Zhu
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yang-Yan Cui
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Mei-Qian Li
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Rui-Min Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|