1
|
Temperini ME, Di Giacinto F, Romanò S, Di Santo R, Augello A, Polito R, Baldassarre L, Giliberti V, Papi M, Basile U, Niccolini B, Krasnowska EK, Serafino A, De Spirito M, Di Gaspare A, Ortolani M, Ciasca G. Antenna-enhanced mid-infrared detection of extracellular vesicles derived from human cancer cell cultures. J Nanobiotechnology 2022; 20:530. [PMID: 36514065 PMCID: PMC9746222 DOI: 10.1186/s12951-022-01693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Extracellular Vesicles (EVs) are sub-micrometer lipid-bound particles released by most cell types. They are considered a promising source of cancer biomarkers for liquid biopsy and personalized medicine due to their specific molecular cargo, which provides biochemical information on the state of parent cells. Despite this potential, EVs translation process in the diagnostic practice is still at its birth, and the development of novel medical devices for their detection and characterization is highly required. RESULTS In this study, we demonstrate mid-infrared plasmonic nanoantenna arrays designed to detect, in the liquid and dry phase, the specific vibrational absorption signal of EVs simultaneously with the unspecific refractive index sensing signal. For this purpose, EVs are immobilized on the gold nanoantenna surface by immunocapture, allowing us to select specific EV sub-populations and get rid of contaminants. A wet sample-handling technique relying on hydrophobicity contrast enables effortless reflectance measurements with a Fourier-transform infrared (FTIR) spectro-microscope in the wavelength range between 10 and 3 µm. In a proof-of-principle experiment carried out on EVs released from human colorectal adenocarcinoma (CRC) cells, the protein absorption bands (amide-I and amide-II between 5.9 and 6.4 µm) increase sharply within minutes when the EV solution is introduced in the fluidic chamber, indicating sensitivity to the EV proteins. A refractive index sensing curve is simultaneously provided by our sensor in the form of the redshift of a sharp spectral edge at wavelengths around 5 µm, where no vibrational absorption of organic molecules takes place: this permits to extract of the dynamics of EV capture by antibodies from the overall molecular layer deposition dynamics, which is typically measured by commercial surface plasmon resonance sensors. Additionally, the described metasurface is exploited to compare the spectral response of EVs derived from cancer cells with increasing invasiveness and metastatic potential, suggesting that the average secondary structure content in EVs can be correlated with cell malignancy. CONCLUSIONS Thanks to the high protein sensitivity and the possibility to work with small sample volumes-two key features for ultrasensitive detection of extracellular vesicles- our lab-on-chip can positively impact the development of novel laboratory medicine methods for the molecular characterization of EVs.
Collapse
Affiliation(s)
- Maria Eleonora Temperini
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
- Center for Life Neuro and Nano Sciences IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabrina Romanò
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Santo
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Raffaella Polito
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - Leonetta Baldassarre
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - Valeria Giliberti
- Center for Life Neuro and Nano Sciences IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Basile
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168, Rome, Italy
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ewa K Krasnowska
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Di Gaspare
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- NEST, CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Michele Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy.
- Center for Life Neuro and Nano Sciences IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
2
|
Villota H, Santa-González GA, Uribe D, Henao IC, Arroyave-Ospina JC, Barrera-Causil CJ, Pedroza-Díaz J. Modulatory Effect of Chlorogenic Acid and Coffee Extracts on Wnt/β-Catenin Pathway in Colorectal Cancer Cells. Nutrients 2022; 14:nu14224880. [PMID: 36432565 PMCID: PMC9693551 DOI: 10.3390/nu14224880] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The Wnt/β-Catenin pathway alterations present in colorectal cancer (CRC) are of special interest in the development of new therapeutic strategies to impact carcinogenesis and the progression of CRC. In this context, different polyphenols present in natural products have been reported to have modulatory effects against the Wnt pathway in CRC. In this study, we evaluate the effect of two polyphenol-rich coffee extracts and chlorogenic acid (CGA) against SW480 and HT-29 CRC cells. This involved the use of MTT and SRB techniques for cell viability; wound healing and invasion assay for the evaluation of the migration and invasion process; T cell factor (TCF) reporter plasmid for the evaluation of transciption factor (TCF) transcriptional activity; polymerase chain reaction (PCR) of target genes and confocal fluorescence microscopy for β-Catenin and E-Cadherin protein fluorescence levels; and subcellular localization. Our results showed a potential modulatory effect of the Wnt pathway on CRC cells, and we observed a reduction in the transcriptional activity of β-catenin. All the results were prominent in SW480 cells, where the Wnt pathway deregulation has more relevance and implies a constitutive activation of the signaling pathway. These results establish a starting point for the discovery of a mechanism of action associated with these effects and corroborate the anticancer potential of polyphenols present in coffee, which could be explored as chemopreventive molecules or as adjunctive therapy in CRC.
Collapse
Affiliation(s)
- Hernán Villota
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia
| | - Diego Uribe
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia
| | - Isabel Cristina Henao
- Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Johanna C. Arroyave-Ospina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Carlos J. Barrera-Causil
- Grupo de Investigación Davinci, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Johanna Pedroza-Díaz
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia
- Correspondence: ; Tel.: +57-604-440-5291
| |
Collapse
|
3
|
Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA. Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers (Basel) 2022; 14:1100. [PMID: 35267408 PMCID: PMC8909202 DOI: 10.3390/cancers14051100] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is a life-threatening disease and is considered to be among the leading causes of death worldwide. Chemoresistance, severe toxicity, relapse and metastasis are the major obstacles in cancer therapy. Therefore, introducing new therapeutic agents for cancer remains a priority to increase the range of effective treatments. Terpenoids, a large group of secondary metabolites, are derived from plant sources and are composed of several isoprene units. The high diversity of terpenoids has drawn attention to their potential anticancer and pharmacological activities. Some terpenoids exhibit an anticancer effect by triggering various stages of cancer progression, for example, suppressing the early stage of tumorigenesis via induction of cell cycle arrest, inhibiting cancer cell differentiation and activating apoptosis. At the late stage of cancer development, certain terpenoids are able to inhibit angiogenesis and metastasis via modulation of different intracellular signaling pathways. Significant progress in the identification of the mechanism of action and signaling pathways through which terpenoids exert their anticancer effects has been highlighted. Hence, in this review, the anticancer activities of twenty-five terpenoids are discussed in detail. In addition, this review provides insights on the current clinical trials and future directions towards the development of certain terpenoids as potential anticancer agents.
Collapse
Affiliation(s)
- Sareh Kamran
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.K.); (A.S.)
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.K.); (A.S.)
| | - Mahfoudh A. M. Abdulghani
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Al Qassim 51911, Saudi Arabia;
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.K.); (A.S.)
| |
Collapse
|
4
|
Malekinejad F, Kheradmand F, Khadem-Ansari MH, Malekinejad H. Lupeol synergizes with doxorubicin to induce anti-proliferative and apoptotic effects on breast cancer cells. Daru 2022; 30:103-115. [PMID: 35113358 PMCID: PMC9114251 DOI: 10.1007/s40199-022-00436-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Anti-cancer and anti-migration effects of lupeol as a biological pentacyclic triterpenoid were investigated individually and in combination with Doxorubicin (DOX) on MCF-7 and MDA-MB-231 breast cancer cells and human foreskin fibroblasts. METHODS To uncover the anticancer effect of lupeol and the impact of its combination with DOX, cell viability and scratch assays and dual acridine-orange apoptotic staining were performed. Moreover, the expression of proapoptotic caspase-3 and metastasis-related MMP-9 at the mRNA and protein levels was analyzed using qPCR and western blot techniques. RESULTS Lupeol synergistically increased the anti-proliferative effect of DOX with IC50 values of 42.55, 62.24 and 65.9 μM on MCF-7, MDA-MB-231 and HFF cells, respectively. Lupeol reduced the cell migration and lowered the DOX-induced cell migration, significantly (p < 0.05). The number of apoptotic cells elevated significantly (p < 0.05) when cancer cells were treated with the combination of lupeol and DOX. Lupeol individually and in combination with DOX up-regulated the expression of caspase-3. The proposed combination therapy synergized (3-4 fold) the down-regulation of MMP-9 expression in MCF-7 and MDA-MB-231 cells. CONCLUSION Our results indicate that lupeol could be considered as an anticancer agent and anticancer adjuvant in breast cancer-therapy. The anticancer properties of lupeol attribute to its antiproliferative, antimigrative and apoptotic effects.
Collapse
Affiliation(s)
- Faezeh Malekinejad
- grid.412763.50000 0004 0442 8645Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Kheradmand
- grid.412763.50000 0004 0442 8645Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Hassan Khadem-Ansari
- grid.412763.50000 0004 0442 8645Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- grid.412763.50000 0004 0442 8645Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran ,grid.412763.50000 0004 0442 8645Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Pinto KB, Santos PHBD, Krause LC, Caramão EB, Bjerk TR. Preliminary prospection of phytotherapic compounds from the essential oils from barks and leaves of Umburana (Commiphora Leptophloeos). BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
| | | | | | - Elina Bastos Caramão
- Universidade Tiradentes, Brasil; Instituto de Tecnologia e Pesquisa, Brasil; INCT, Brasil
| | | |
Collapse
|
6
|
Investigation of Lupeol as Anti-Melanoma Agent: An In Vitro-In Ovo Perspective. Curr Oncol 2021; 28:5054-5066. [PMID: 34940064 PMCID: PMC8700590 DOI: 10.3390/curroncol28060425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma (MM) represents the most life-threatening skin cancer worldwide, with a narrow and inefficient chemotherapeutic arsenal available in advanced disease stages. Lupeol (LUP) is a triterpenoid-type phytochemical possessing a broad spectrum of pharmacological properties, including a potent anticancer effect against several neoplasms (e.g., colorectal, lung, and liver). However, its potential as an anti-melanoma agent has been investigated to a lesser extent. The current study focused on exploring the impact of LUP against two human MM cell lines (A375 and RPMI-7951) in terms of cell viability, confluence, morphology, cytoskeletal distribution, nuclear aspect, and migration. Additionally, the in ovo antiangiogenic effect has been also examined. The in vitro results indicated concentration-dependent and selective cytotoxicity against both MM cell lines, with estimated IC50 values of 66.59 ± 2.20 for A375, and 45.54 ± 1.48 for RPMI-7951, respectively, accompanied by a reduced cell confluence, apoptosis-specific nuclear features, reorganization of cytoskeletal components, and inhibited cell migration. In ovo, LUP interfered with the process of angiogenesis by reducing the formation of neovascularization. Despite the potential anti-melanoma effect illustrated in our in vitro-in ovo study, further investigations are required to elucidate the underlying LUP-induced effects in A375 and RPMI-7951 MM cells.
Collapse
|
7
|
Eldohaji LM, Fayed B, Hamoda AM, Ershaid M, Abdin S, Alhamidi TB, Mohammad MG, Omar HA, Soliman SSM. Potential targeting of Hep3B liver cancer cells by lupeol isolated from Avicennia marina. Arch Pharm (Weinheim) 2021; 354:e2100120. [PMID: 34085721 DOI: 10.1002/ardp.202100120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 11/08/2022]
Abstract
Medicinal plants are valuable sources of different active constituents that are known to have important pharmacological activities including anticancer effects. Lupeol, a pentacyclic triterpenoid, present in many medicinal plants, has a wide range of biological activities. Although the anticancer activity of lupeol was reported, the published data are inconsistent and the clear mechanism of action has never been assigned. The current study aims at investigating the anticancer specificity and mechanism of lupeol isolated from Avicennia marina, which grows in the desert of the United Arab Emirates. The compound was purified by chromatography and identified by spectroscopy. Compared with a negative control, lupeol caused significant (p < .001) growth inhibitory activity on MCF-7 and Hep3B parental and resistant cells by 45%, 46%, 72%, and 35%, respectively. The mechanism of action of lupeol was further explored by measuring its effect on key players in cancer development and progression, BCL-2 anti-apoptotic and BAX pro-apoptotic proteins. Lupeol significantly (p < .01) downregulated BCL-2 gene expression in parental and resistant Hep3B cells by 33 and 3.5 times, respectively, contributing to the induction of apoptosis in Hep3B cells, whereas it caused no effect on BAX. Furthermore, the immunoblotting analysis revealed that lupeol cleaved the executioner caspase-3 into its active form. Interestingly, lupeol showed no significant effect on the proliferation of monocytes, whereas it caused an increase in the sub-G1 population and a reduction in the apoptosis rates of monocytes at 48 and 72 h, indicative of no immuno-inflammatory responses. Collectively, lupeol can be considered as promising effective and safe anticancer agent, particularly against Hep3B cancer cells.
Collapse
Affiliation(s)
- Leen M Eldohaji
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE.,Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE.,College of Medicine, University of Sharjah, Sharjah, UAE.,Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mai Ershaid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Shifaa Abdin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Tasneem B Alhamidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Mohammad G Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE.,College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE.,College of Pharmacy, University of Sharjah, Sharjah, UAE
| |
Collapse
|
8
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
9
|
Selvakumar M, Palanichamy P, Arumugam V, Venkatesan M, Aathmanathan S, Krishnamoorthy H, Pugazhendhi A. In silico potential of nutraceutical plant of Pithecellobium dulce against GRP78 target protein for breast cancer. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01840-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 2020; 164:105373. [PMID: 33316380 DOI: 10.1016/j.phrs.2020.105373] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Lupeol is a natural triterpenoid that widely exists in edible fruits and vegetables, and medicinal plants. In the last decade, a plethora of studies on the pharmacological activities of lupeol have been conducted and have demonstrated that lupeol possesses an extensive range of pharmacological activities such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. Pharmacokinetic studies have indicated that absorption of lupeol by animals was rapid despite its nonpolar characteristics, and lupeol belongs to class II BCS (biopharmaceutics classification system) compounds. Moreover, the bioactivities of some isolated or synthesized lupeol derivatives have been investigated, and these results showed that, with modification to C-3 or C-19, some derivatives exhibit stronger activities, e.g., antiprotozoal or anticancer activity. This review aims to summarize the advances in pharmacological and pharmacokinetic studies of lupeol in the last decade with an emphasis on its anticancer and anti-inflammatory activities, as well as the research progress of lupeol derivatives thus far, to provide researchers with the latest information, point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
11
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
12
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020. [DOI: 10.3389/fphar.2020.00451
expr 967555229 + 995954239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
13
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020; 11:451. [PMID: 32390834 PMCID: PMC7193898 DOI: 10.3389/fphar.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Considerable pharmacological studies have demonstrated that the extracts and ingredients from different parts (seeds, peels, pulps, and flowers) of Litchi exhibited anticancer effects by affecting the proliferation, apoptosis, autophagy, metastasis, chemotherapy and radiotherapy sensitivity, stemness, metabolism, angiogenesis, and immunity via multiple targeting. However, there is no systematical analysis on the interaction network of “multiple ingredients-multiple targets-multiple pathways” anticancer effects of Litchi. In this study, we summarized the confirmed anticancer ingredients and molecular targets of Litchi based on published articles and applied network pharmacology approach to explore the complex mechanisms underlying these effects from a perspective of system biology. The top ingredients, top targets, and top pathways of each anticancer function were identified using network pharmacology approach. Further intersecting analyses showed that Epigallocatechin gallate (EGCG), Gallic acid, Kaempferol, Luteolin, and Betulinic acid were the top ingredients which might be the key ingredients exerting anticancer function of Litchi, while BAX, BCL2, CASP3, and AKT1 were the top targets which might be the main targets underling the anticancer mechanisms of these top ingredients. These results provided references for further understanding and exploration of Litchi as therapeutics in cancer as well as the application of “Component Formula” based on Litchi’s effective ingredients.
Collapse
Affiliation(s)
- Sisi Cao
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yaoyao Han
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Qiaofeng Li
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yanjiang Chen
- Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Maurya SK, Shadab G, Siddique HR. Chemosensitization of Therapy Resistant Tumors: Targeting Multiple Cell Signaling Pathways by Lupeol, A Pentacyclic Triterpene. Curr Pharm Des 2020; 26:455-465. [DOI: 10.2174/1381612826666200122122804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
The resistance of cancer cells to different therapies is one of the major stumbling blocks
for successful cancer treatment. Various natural and pharmaceuticals drugs are unable to control drug-resistance
cancer cell's growth. Also, chemotherapy and radiotherapy have several side effects and cannot apply to the patient
in excess. In this context, chemosensitization to the therapy-resistant cells by non-toxic phytochemicals
could be an excellent alternative to combat therapy-resistant cancers.
Objective:
To review the currently available literature on chemosensitization of therapy resistance cancers by
Lupeol for clinically approved drugs through targeting different cell signaling pathways.
Methods:
We reviewed relevant published articles in PubMed and other search engines from 1999 to 2019 to
write this manuscript. The key words used for the search were “Lupeol and Cancer”, “Lupeol and Chemosensitization”,
“Lupeol and Cell Signaling Pathways”, “Cancer Stem Cells and Lupeol” etc. The published results on the
chemosensitization of Lupeol were compared and discussed.
Results:
Lupeol chemosensitizes drug-resistant cancer cells for clinically approved drugs. Lupeol alone or in
combination with approved drugs inhibits inflammation in different cancer cells through modulation of expression
of IL-6, TNF-α, and IFN-γ. Lupeol, through altering the expression levels of BCL-2, BAX, Survivin, FAS,
Caspases, and PI3K-AKT-mTOR signaling pathway, significantly induce cell deaths among therapy-resistant
cells. Lupeol also modulates the molecules involved in cell cycle regulation such as Cyclins, CDKs, P53, P21,
and PCNA in different cancer types.
Conclusion:
Lupeol chemosensitizes the therapy-resistant cancer cells for the treatment of various clinically
approved drugs via modulating different signaling pathways responsible for chemoresistance cancer. Thus, Lupeol
might be used as an adjuvant molecule along with clinically approved drugs to reduce the toxicity and increase
the effectiveness.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - G.G.H.A. Shadab
- Molecular Toxicology & Cytogenetics Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
15
|
Jiang Y, Hong D, Lou Z, Tu X, Jin L. Lupeol inhibits migration and invasion of colorectal cancer cells by suppressing RhoA-ROCK1 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2185-2196. [PMID: 32025757 DOI: 10.1007/s00210-020-01815-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Metastasis is the main cause of death in colorectal cancer (CRC) patients. However, current treatment options for CRC metastasis are very limited. Lupeol, a triterpene that is widely found in vegetables and fruits, has been reported to possess the cancer-preventive and anti-inflammatory functions. However, the roles of Lupeol in the migration and invasion of colorectal cancer remain unclear. Here, we evaluated the effect of Lupeol treatment on colorectal cancer cell lines, HCT116 and SW620, and delineated its underlying mechanisms. Our results showed that Lupeol induced a dose-dependent inhibition of HCT116 and SW620 cells viability, measured by CCK8 assay. Wound healing and Transwell migration and invasion assays revealed that Lupeol significantly suppressed the migration and invasion of CRC cells. Using laser confocal microscope, we observed that the pseudopods and protrusions of HCT116 and SW620 cells decreased and disrupted after treatment with Lupeol. In addition, the quantitative real-time PCR and Western blotting results showed that Lupeol downregulated the expression of RhoA and RhoC, and their downstream effectors ROCK1, Cofilin, p-MLC, and the associated regulatory protein Cyclin A2. Interestingly, the migration and invasion capacity of CRC cells was reduced after RhoA knockdown. And there were no additional changes in CRC cells with RhoA knockdown to treat with Lupeol. These findings demonstrate that Lupeol can suppress the migration and invasion of colorectal cancer cells by remodeling the actin cytoskeleton via RhoA-ROCK1 pathway inhibition, which may provide an effective anti-metastatic agent for CRC patients.
Collapse
Affiliation(s)
- Yiwen Jiang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan Hong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhefeng Lou
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuezi Tu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Longjin Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
16
|
Li Q, Zhou X, Fang Z, Zhou H. Knockdown of KLK12 inhibits viability and induces apoptosis in human colorectal cancer HT-29 cell line. Int J Mol Med 2019; 44:1667-1676. [PMID: 31485623 PMCID: PMC6777684 DOI: 10.3892/ijmm.2019.4327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
Kallikrein-related peptidase 12 (KLK12) is overexpressed in cancer tissues including gastric, breast and prostate cancer. However, the role of KLK12 in colorectal cancer is not fully understood. In the present study, the level of KLK12 was determined by performing reverse transcription-polymerase chain reaction (RT-qPCR) in colorectal cancer tissues and cell lines. Lipofectamine® 2000 was used to transfect HT-29 cells to overexpress and knockdown KLK12. Cell viability, migration, invasion and apoptosis were detected by MTT, wound healing, Transwell and flow cytometry assays, respectively. The mRNA and protein expression levels of EMT-associated proteins, apoptosis-associated proteins, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) and phosphorylated mammalian target of rapamycin (p-mTOR) were determined by RT-qPCR and western blot analysis. It was identified that the KLK12 mRNA levels were increased significantly in colorectal cancer tissues and cell lines. KLK12 small interfering RNA inhibited cell viability, migration and invasion. Furthermore, epithelial-mesenchymal transition (EMT)-associated proteins were altered by siKLK12. Cell apoptosis was induced by KLK12 downregulation, which was demonstrated by the changes in apoptosis-associated proteins; however, KLK12 overexpression produced the opposite effect. SiKLK12 enhanced the expression of p-AMPK and suppressed the expression of p-mTOR, while KLK12 overexpression had the opposite effect. Promotion of KLK12 overexpression-induced cell viability was reversed by 5-aminoimidazole-4-carboxamide ribonucleotide, an activator of the AMPK signaling pathway, and rapamycin, a specific inhibitor of the mTOR signaling pathway. Taken together, the results of the present study indicated that KLK12 was overexpressed in colorectal cancer and may regulate cell behavior, potentially via the AMPK and mTOR pathways.
Collapse
Affiliation(s)
- Qianyuan Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiukou Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhengyu Fang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Huamiao Zhou
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
17
|
Deng F, Miller J. A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J Histotechnol 2019; 42:226-239. [PMID: 31432761 DOI: 10.1080/01478885.2019.1646984] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are small membrane vesicles (ranging from 30 nm to 150 nm), secreted by different cell types upon fusion of multivesicular bodies (MVB) to the cell plasma membrane under a variety of normal and pathological conditions. Through transferring their cargos such as proteins, lipids and nucleic acids from donor cells to recipient cells, exosomes play a crucial role in cell-to-cell communication. Due to their presence in most body fluids (such as blood, breast milk, saliva, urine, bile, pancreatic juice, cerebrospinal and peritoneal fluids), and their role in carrying bioactive molecules from the cells of origin, exosomes have attracted great interest in their diagnostic and prognostic value for various diseases and therapeutic approaches. Although a large body of literature has documented the importance of exosomes over the past decade, there is no article systematically summarizing protein markers of exosome from different resources and the antibodies that are suited to characterize exosomes. In this review, we briefly summarize the exosome marker proteins, exosomal biomarkers for different diseases, and the antibodies suitable for different bio-resources exosomes characterization.
Collapse
Affiliation(s)
- Fengyan Deng
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| | - Josh Miller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|