1
|
Zhang P, Liu M, Zhang S, Lu C, Zu Q, Liang Y, Cui Z, Liu J, Wang Y, Bu C. Cytokeratin 17 activates AKT signaling to induce epithelial-mesenchymal transition and promote bladder cancer progression. BMC Urol 2025; 25:77. [PMID: 40189507 PMCID: PMC11974037 DOI: 10.1186/s12894-025-01760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
OBJECTIVE Bladder cancer is a common malignant tumor of the urinary tract as well as one of the most common cancers worldwide. Therefore, the study of key molecular targets involved in bladder carcinogenesis and progression is crucial for the prognosis of bladder cancer. Our study aims to investigate the mechanism by which cytokeratin 17 induces epithelial-mesenchymal transition and promotes bladder cancer progression. METHODS In this study, 78 bladder cancer tissue specimens were collected, the expression level of cytokeratin 17 (CK17) in bladder cancer and paracancerous tissues was detected by immunohistochemistry, and the relationship between the CK17 expression level and the prognosis of the patients was analyzed via follow-up visits. Western Blot was performed to detect the expression level of CK17 in common bladder cancer cell lines, and the CK17-silenced and overexpressed cell lines were constructed from the selected T24 cell line with high expression of CK17 and 5637 cell line with low expression of CK17. The effects of CK17 on the proliferation, migration and invasion abilities of bladder cancer cells were evaluated by flow cytometry, Cell Counting Kit-8 (CCK-8) assay, Trans-well assay, and scratch assay. The effect of CK17 on epithelial-mesenchymal transition (EMT) markers was further detected by Western Blot and immunofluorescence, and the phosphorylation levels of AKT Ser473 and Thr308 were detected by Western Blot. RESULTS In the clinical samples, CK17 expression was significantly up-regulated in cancer tissues compared with paracancerous tissues, and high levels of CK17 indicated shortened progression free survival and predicted a poorer clinical prognosis. By analyzing the relationship between CK17 and clinicopathological features, we found that the CK17 expression level was correlated with bladder cancer grade and TNM stage. Overexpression of CK17 promoted the proliferation, migration and invasion abilities of bladder cancer cells 5637, and silencing of CK17 inhibited the proliferation, migration and invasion abilities of bladder cancer cells T24. Further, we found that overexpression of CK17 in 5637 cells activated the AKT signaling pathway by increasing the phosphorylation level of AKT (Ser473), so as to up-regulate the expressions of the EMT mesenchymal markers vimentin, N-cadherin, and the transcription factors Slug and twist, while the opposite results were obtained by silencing CK17 in T24 cells. CONCLUSION We found that high expression of CK17 promoted the proliferation, migration and invasion of bladder cancer cells and induced EMT through AKT-Ser473 phosphorylation. These findings suggest that CK17 is significantly associated with malignant progression and poor prognosis of bladder cancer patients, and it may become a new biological target for bladder cancer treatment.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Pathology, Affiliated Hospital of Hebei University, No 212, Yuhua East Road, Baoding, Hebei, 071000, China
| | - Mingkai Liu
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Shun Zhang
- Department of Pathology, Affiliated Hospital of Hebei University, No 212, Yuhua East Road, Baoding, Hebei, 071000, China
| | - Cuijuan Lu
- Department of Pathology, Affiliated Hospital of Hebei University, No 212, Yuhua East Road, Baoding, Hebei, 071000, China
| | - Qianhe Zu
- School of Basic Medicine, HeBei University, Baoding, Hebei, China
| | - Yuemian Liang
- Department of Pathology, Affiliated Hospital of Hebei University, No 212, Yuhua East Road, Baoding, Hebei, 071000, China
| | - Zhenyu Cui
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Jialin Liu
- Department of Pathology, Affiliated Hospital of Hebei University, No 212, Yuhua East Road, Baoding, Hebei, 071000, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, No 212, Yuhua East Road, Baoding, Hebei, 071000, China.
| | - Chunyan Bu
- Department of Gynaecology, Baoding Maternal and Child Health HospitalAffiliated Hospital of Hebei University, No. 1, Huancheng South Road, Baoding, Hebei, 071000, China.
| |
Collapse
|
2
|
Wang L, Wang J, Qiang W, Ge W. Stanniocalcin-1 in tumor immunity: acts via macrophages. Front Immunol 2024; 15:1510182. [PMID: 39654892 PMCID: PMC11625730 DOI: 10.3389/fimmu.2024.1510182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Tumor immune escape has become a research hotspot in the field of cancer immunotherapy. Tumor-associated macrophages (TAMs) are the key component of tumor microenvironment, which play a pivotal role in tumor immune escape by regulating the immunity checkpoints, inhibiting the activity of T lymphocytes and natural killer (NK) cells, and modulating proportion of different T cells. Stanniocalcin-1(STC1)is ubiquitously expressed in human body, which is proven to involve with tumor progression and clinical prognosis. Recently, STC1 is implicated in tumor microenvironment as a phagocytosis checkpoint, as well as regulates the immunity via macrophages. In the review, we discussed the role of STC1 and TAMs in tumor immunity and their crosstalk, hoping to provide references for the research of STC1 in tumor immunotherapy.
Collapse
Affiliation(s)
- Lele Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jianjun Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Weijie Qiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Khatun M, Modhukur V, Piltonen TT, Tapanainen JS, Salumets A. Stanniocalcin Protein Expression in Female Reproductive Organs: Literature Review and Public Cancer Database Analysis. Endocrinology 2024; 165:bqae110. [PMID: 39186548 PMCID: PMC11398916 DOI: 10.1210/endocr/bqae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024]
Abstract
Stanniocalcin (STC) 1 and 2 serve as antihyperglycemic polypeptide hormones with critical roles in regulating calcium and phosphate homeostasis. They additionally function as paracrine and/or autocrine factors involved in numerous physiological processes, including female reproduction. STC1 and STC2 contribute to the pathophysiology of several diseases, including female infertility- and pregnancy-associated conditions, and even tumorigenesis of reproductive organs. This comprehensive review highlights the dynamic expression patterns and potential dysregulation of STC1 and STC2, restricted to female fertility, and infertility- and pregnancy-associated diseases and conditions, such as endometriosis, polycystic ovary syndrome (PCOS), abnormal uterine bleeding, uterine polyps, and pregnancy complications, like impaired decidualization, preeclampsia, and preterm labor. Furthermore, the review elucidates the role of dysregulated STC in the progression of cancers of the reproductive system, including endometrial, cervical, and ovarian cancers. Additionally, the review evaluates the expression patterns and prognostic significance of STC in gynecological cancers by utilizing existing public datasets from The Cancer Genome Atlas to help decipher the multifaceted roles of these pleiotropic hormones in disease progression. Understanding the intricate mechanisms by which STC proteins influence all these reviewed conditions could lead to the development of targeted diagnostic and therapeutic strategies in the context of female reproductive health and oncology.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
- Department of Obstetrics and Gynaecology, HFR—Cantonal Hospital of Fribourg and University of Fribourg, 79085 Fribourg, Switzerland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14152 Huddinge, Stockholm, Sweden
| |
Collapse
|
4
|
Du R, Tripathi S, Najem H, Brat DJ, Lukas RV, Zhang P, Heimberger AB. Glioblastoma Phagocytic Cell Death: Balancing the Opportunities for Therapeutic Manipulation. Cells 2024; 13:823. [PMID: 38786045 PMCID: PMC11119757 DOI: 10.3390/cells13100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Macrophages and microglia are professional phagocytes that sense and migrate toward "eat-me" signals. The role of phagocytic cells is to maintain homeostasis by engulfing senescent or apoptotic cells, debris, and abnormally aggregated macromolecules. Usually, dying cells send out "find-me" signals, facilitating the recruitment of phagocytes. Healthy cells can also promote or inhibit the phagocytosis phenomenon of macrophages and microglia by tuning the balance between "eat-me" and "don't-eat-me" signals at different stages in their lifespan, while the "don't-eat-me" signals are often hijacked by tumor cells as a mechanism of immune evasion. Using a combination of bioinformatic analysis and spatial profiling, we delineate the balance of the "don't-eat-me" CD47/SIRPα and "eat-me" CALR/STC1 ligand-receptor interactions to guide therapeutic strategies that are being developed for glioblastoma sequestered in the central nervous system (CNS).
Collapse
Affiliation(s)
- Ruochen Du
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Daniel J. Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Rimas V. Lukas
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
5
|
Wang J, Ford JC, Mitra AK. Defining the Role of Metastasis-Initiating Cells in Promoting Carcinogenesis in Ovarian Cancer. BIOLOGY 2023; 12:1492. [PMID: 38132318 PMCID: PMC10740540 DOI: 10.3390/biology12121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Ovarian cancer is the deadliest gynecological malignancy with a high prevalence of transcoelomic metastasis. Metastasis is a multi-step process and only a small percentage of cancer cells, metastasis-initiating cells (MICs), have the capacity to finally establish metastatic lesions. These MICs maintain a certain level of stemness that allows them to differentiate into other cell types with distinct transcriptomic profiles and swiftly adapt to external stresses. Furthermore, they can coordinate with the microenvironment, through reciprocal interactions, to invade and establish metastases. Therefore, identifying, characterizing, and targeting MICs is a promising strategy to counter the spread of ovarian cancer. In this review, we provided an overview of OC MICs in the context of characterization, identification through cell surface markers, and their interactions with the metastatic niche to promote metastatic colonization.
Collapse
Affiliation(s)
- Ji Wang
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - James C. Ford
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Maharati A, Moghbeli M. Forkhead box proteins as the critical regulators of cisplatin response in tumor cells. Eur J Pharmacol 2023; 956:175937. [PMID: 37541368 DOI: 10.1016/j.ejphar.2023.175937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cisplatin (CDDP) is one of the most common chemotherapy drugs used in a wide range of cancer patients; however, there is a high rate of CDDP resistance among cancer patients. Considering the side effects of cisplatin in normal tissues, it is necessary to predict the CDDP response in cancer patients. Therefore, identifying the molecular mechanisms involved in CDDP resistance can help to introduce the prognostic markers. Several molecular mechanisms such as apoptosis inhibition, drug efflux, drug detoxification, and increased DNA repair are involved in CDDP resistance. Regarding the key role of transcription factors in regulation of many cellular processes related to drug resistance, in the present review, we discussed the role of Forkhead box (FOX) protein family in CDDP response. It has been reported that FOX proteins mainly promote CDDP resistance through the regulation of DNA repair, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. Therefore, FOX proteins can be introduced as the prognostic markers to predict CDDP response in cancer patients. In addition, considering that oncogenic role of FOX proteins, the CDDP treatment along with FOX inhibition can be used as a therapeutic strategy in cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Kayacık Günday Ö, Fırat F, Yalçın GŞ, Yılmazer M. Association of endometrial polyps with STC-1 and STC-2 in infertile patients. J Obstet Gynaecol Res 2023. [PMID: 37082818 DOI: 10.1111/jog.15658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE The present study aimed to evaluate the impact of endometrial polyps (EPs) on the endometrium of patients with unexplained infertility using stanniocalcin-1 and -2 proteins (STC), whose effects on endometrial receptivity have been reported recently. MATERIALS AND METHODS A case-control study was performed, consisting of 26 patients who underwent endometrial sampling for diagnosis and/or treatment and diagnosed with EP on biopsy and/or excision material, and 23 patients with normal endometrial findings in the pathology, for a total of 49 patients with unexplained infertility. An immunohistochemistry examination was performed on paraffin-embedded tissue samples from both groups to understand whether there was a relationship between EP and STC. Staining results of the polyp and control groups for STC-1 and STC-2 were compared, and it was investigated whether STCs were predictive for EP. RESULTS In the comparison performed between the H-score evaluation results of the control and polyp groups after the immunohistochemical staining method, the staining in the polyp group was significantly higher for both STC-1 (p < 0.001) and STC-2 (p < 0.001). There was more staining with STC-1 than STC-2 in all groups (STC-1: 15.08; STC-2: 8.27; p < 0.05). In the logistic regression analysis established with STC-1, STC-2, and age, the predictive effect of STC-1 for EP was statistically significant (p = 0.040; odds ratio: 1.66; 95% confidence interval: 1.02-2.68). In EP, according to receiver operating characteristic curve analysis, area under the curve was 0.980 (likelihood ratio: 20.35; p < 0.05), and the cut-off value was 18 for STC-1. CONCLUSION In infertile patients, since STC-1, which affects endometrial receptivity, is found to be significantly higher in polyps and has a predictive effect on polyps, in patients with unexplained infertility, routine uterine cavity evaluation and routine excision of polypoid lesions detected during this period may have a positive effect on endometrial receptivity.
Collapse
Affiliation(s)
- Özlem Kayacık Günday
- Faculty of Medicine, Department of Obstetrics and Gynecology, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Fatma Fırat
- Faculty of Medicine, Department of Histology and Embryology, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Gülsüm Şeyma Yalçın
- Faculty of Medicine, Department of Pathology, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Mehmet Yılmazer
- Faculty of Medicine, Department of Obstetrics and Gynecology, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| |
Collapse
|
8
|
Bajwa P, Kordylewicz K, Bilecz A, Lastra RR, Wroblewski K, Rinkevich Y, Lengyel E, Kenny HA. Cancer-associated mesothelial cell-derived ANGPTL4 and STC1 promote the early steps of ovarian cancer metastasis. JCI Insight 2023; 8:e163019. [PMID: 36795484 PMCID: PMC10070116 DOI: 10.1172/jci.insight.163019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Ovarian cancer (OvCa) preferentially metastasizes in association with mesothelial cell-lined surfaces. We sought to determine if mesothelial cells are required for OvCa metastasis and detect alterations in mesothelial cell gene expression and cytokine secretion upon interaction with OvCa cells. Using omental samples from patients with high-grade serous OvCa and mouse models with Wt1-driven GFP-expressing mesothelial cells, we validated the intratumoral localization of mesothelial cells during human and mouse OvCa omental metastasis. Removing mesothelial cells ex vivo from human and mouse omenta or in vivo using diphtheria toxin-mediated ablation in Msln-Cre mice significantly inhibited OvCa cell adhesion and colonization. Human ascites induced angiopoietin-like 4 (ANGPTL4) and stanniocalcin 1 (STC1) expression and secretion by mesothelial cells. Inhibition of STC1 or ANGPTL4 via RNAi obstructed OvCa cell-induced mesothelial cell to mesenchymal transition while inhibition of ANGPTL4 alone obstructed OvCa cell-induced mesothelial cell migration and glycolysis. Inhibition of mesothelial cell ANGPTL4 secretion via RNAi prevented mesothelial cell-induced monocyte migration, endothelial cell vessel formation, and OvCa cell adhesion, migration, and proliferation. In contrast, inhibition of mesothelial cell STC1 secretion via RNAi prevented mesothelial cell-induced endothelial cell vessel formation and OvCa cell adhesion, migration, proliferation, and invasion. Additionally, blocking ANPTL4 function with Abs reduced the ex vivo colonization of 3 different OvCa cell lines on human omental tissue explants and in vivo colonization of ID8p53-/-Brca2-/- cells on mouse omenta. These findings indicate that mesothelial cells are important to the initial stages of OvCa metastasis and that the crosstalk between mesothelial cells and the tumor microenvironment promotes OvCa metastasis through the secretion of ANGPTL4.
Collapse
Affiliation(s)
- Preety Bajwa
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology
| | | | - Agnes Bilecz
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology
- Department of Pathology, and
| | | | - Kristen Wroblewski
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology
| | - Hilary A. Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology
| |
Collapse
|
9
|
Dong L, Sun Q, Song F, Song X, Lu C, Li Y, Song X. Identification and verification of eight cancer-associated fibroblasts related genes as a prognostic signature for head and neck squamous cell carcinoma. Heliyon 2023; 9:e14003. [PMID: 36938461 PMCID: PMC10018481 DOI: 10.1016/j.heliyon.2023.e14003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) can exert their immunosuppressive effects by secreting various effectors that are involved in the regulation of tumor-infiltrating immune cells as well as other immune components in the tumor immune microenvironment (TIME), thereby promoting tumorigenesis, progression, metastasis, and drug resistance. Although a large number of studies suggest that CAFs play a key regulatory role in the development of head and neck squamous cell carcinoma (HNSCC), there are limited studies on the relevance of CAFs to the prognosis of HNSCC. In this study, we identified a prognostic signature containing eight CAF-related genes for HNSCC by univariate Cox analysis, lasso regression, stepwise regression, and multivariate Cox analysis. Our validation in primary cultures of CAFs from human HNSCC and four human HNSCC cell lines confirmed that these eight genes are indeed characteristic markers of CAFs. Immune cell infiltration differences analysis between high-risk and low-risk groups according to the eight CAF-related genes signature hinted at CAFs regulatory roles in the TIME, further revealing its potential role on prognosis. The signature of the eight CAF-related genes was validated in different independent validation cohorts and all showed that it was a valid marker for prognosis. The significantly higher overall survival (OS) in the low-risk group compared to the high-risk group was confirmed by Kaplan-Meier (K-M) analysis, suggesting that the signature of CAF-related genes can be used as a non-invasive predictive tool for HNSCC prognosis. The low-risk group had significantly higher levels of tumor-killing immune cell infiltration, as confirmed by CIBERSORT analysis, such as CD8+ T cells, follicular helper T cells, and Dendritic cells (DCs) in the low-risk group. In contrast, the level of infiltration of pro-tumor cells such as M0 macrophages and activated Mast cells (MCs) was lower. It is crucial to delve into the complex mechanisms between CAFs and immune cells to find potential regulatory targets and may provide new evidence for subsequently targeted immunotherapy. These results suggest that the signature of the eight CAF-related genes is a powerful indicator for the assessment of the TIME of HNSCC. It may provide a new and reliable potential indicator for clinicians to predict the prognosis of HNSCC, which may be used to guide treatment and clinical decision-making in HNSCC patients. Meanwhile, CAF-related genes are expected to become tumor biomarkers and effective targets for HNSCC.
Collapse
Key Words
- CAFs, Cancer-associated fibroblasts
- CSCs, cancer stem cells
- Cancer-associated fibroblasts
- DCs, Dendritic cells
- EMT, epithelial mesenchymal transition
- GEO, Gene Expression Omnibus
- GEPIA, Gene Expression Profiling Interactive Analysis
- GO, Gene Ontology
- GSEA, Gene Set Enrichment Analysis
- HNSCC, head and neck squamous cell carcinoma
- HR, Hazard Ratio
- Head and neck squamous cell carcinoma
- Immune cell infiltration
- K-M, Kaplan-Meier
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MCs, Mast cells
- NFs, normal fibroblasts
- OS, overall survival
- OSCC, oral squamous cell carcinomas
- Prognostic signature
- ROC, receiver operating characteristic
- TAMs, tumor-associated macrophages
- TCGA, The Cancer Genome Atlas
- TIME, tumor immune microenvironment
- TME, tumor microenvironment
Collapse
Affiliation(s)
- Lei Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Qi Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Fei Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Xiaoyu Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Congxian Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Corresponding author. Yumei Li: Department of Otorhinolaryngology Head and Neck Surgery. Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264000, China.
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Corresponding author. Xicheng Song: Department of Otorhinolaryngology Head and Neck Surgery. Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264000, China.
| |
Collapse
|
10
|
Zhang Y, Zhang J, Wang F, Wang L. Hypoxia-Related lncRNA Prognostic Model of Ovarian Cancer Based on Big Data Analysis. JOURNAL OF ONCOLOGY 2023; 2023:6037121. [PMID: 37064863 PMCID: PMC10104744 DOI: 10.1155/2023/6037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 04/18/2023]
Abstract
Background Hypoxia is regarded as a key factor in promoting the occurrence and development of ovarian cancer. In ovarian cancer, hypoxia promotes cell proliferation, epithelial to mesenchymal transformation, invasion, and metastasis. Long non-coding RNAs (lncRNAs) are extensively involved in the regulation of many cellular mechanisms, i.e., gene expression, cell growth, and cell cycle. Materials and Methods In our study, a hypoxia-related lncRNA prediction model was established by applying LASSO-penalized Cox regression analysis in public databases. Patients with ovarian cancer were divided into two groups based on the median risk score. The survival rate was analyzed in the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets, and the mechanisms were investigated. Results Through the prognostic analysis of DElncRNAs (differentially expressed long non-coding RNAs), a total of 5 lncRNAs were found to be closely associated with OS (overall survival) in ovarian cancer patients. It was evaluated through Kaplan-Meier analysis that low-risk patients can live longer than high-risk patients (TCGA: p = 1.302e - 04; ICGC: 1.501e - 03). The distribution of risk scores and OS status revealed that higher risk score will lead to lower OS. It was evaluated that low-risk group had higher immune score (p = 0.0064) and lower stromal score (p = 0.00023). Conclusion It was concluded that a hypoxia-related lncRNA model can be used to predict the prognosis of ovarian cancer. Our designed model is more accurate in terms of age, grade, and stage when predicting the overall survival of the patients of ovarian cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gynecology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Jing Zhang
- Department of Gynecology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Fei Wang
- Department of Gynecology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Le Wang
- Department of Neurology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| |
Collapse
|
11
|
Lin F, Li X, Wang X, Sun H, Wang Z, Wang X. Stanniocalcin 1 promotes metastasis, lipid metabolism and cisplatin chemoresistance via the FOXC2/ITGB6 signaling axis in ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:129. [PMID: 35392966 PMCID: PMC8988421 DOI: 10.1186/s13046-022-02315-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Stanniocalcin 1 (STC1) plays an integral role in ovarian cancer (OC). However, the functional role of STC1 in metastasis, lipid metabolism and cisplatin (DDP) chemoresistance in OC is not fully understood. METHODS Single-cell sequencing and IHC analysis were performed to reveal STC1 expression profiles in patient tissues. Metastasis, lipid metabolism and DDP chemoresistance were subsequently assessed. Cell-based in vitro and in vivo assays were subsequently conducted to gain insight into the underlying mechanism of STC1 in OC. RESULTS Single-cell sequencing assays and IHC analysis verified that STC1 expression was significantly enhanced in OC tissues compared with para-carcinoma tissues, and it was further up-regulated in peritoneal metastasis tissues compared with OC tissues. In vitro and in vivo experiments demonstrated that STC1 promoted metastasis, lipid metabolism and DDP chemoresistance in OC. Simultaneously, STC1 promoted lipid metabolism by up-regulating lipid-related genes such as UCP1, TOM20 and perilipin1. Mechanistically, STC1 directly bound to integrin β6 (ITGB6) to activate the PI3K signaling pathway. Moreover, STC1 was directly regulated by Forkhead box C2 (FOXC2) in OC. Notably, targeting STC1 and the FOXC2/ITGB6 signaling axis was related to DDP chemoresistance in vitro. CONCLUSIONS Overall, these findings revealed that STC1 promoted metastasis, lipid metabolism and DDP chemoresistance via the FOXC2/ITGB6 signaling axis in OC. Thus, STC1 may be used as a prognostic indicator in patients with metastatic OC. Meanwhile, STC1 could be a therapeutic target in OC patients, especially those who have developed chemoresistance to DDP.
Collapse
Affiliation(s)
- Feikai Lin
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Xinjing Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Huizhen Sun
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Ziliang Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China.
| | - Xipeng Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
12
|
Chan KKS, Hon TC, Au KY, Choi HL, Wong DKH, Chan ACY, Yuen MF, Lai CL, Lo RCL. Stanniocalcin 1 is a serum biomarker and potential therapeutic target for HBV-associated liver fibrosis. J Pathol 2022; 257:227-238. [PMID: 35122667 DOI: 10.1002/path.5880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/09/2022] [Accepted: 02/03/2022] [Indexed: 11/06/2022]
Abstract
Stanniocalcin 1 (STC1), a secreted protein, is upregulated in human cancers including hepatocellular carcinoma (HCC). While most HCCs develop from chronic liver disease which involves progressive parenchymal injury and fibrosis, the role of STC1 in this pre-neoplastic stage remains poorly understood. In this study, we investigated the clinical relevance and functional significance of secreted STC1 in liver fibrosis. To this end, STC1 level was determined in the serum samples of chronic hepatitis B patients and correlated with the degree of liver fibrosis. Diagnostic performance of STC1 was analysed by area under receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value, and negative predictive value. The results were compared with other well-characterised serum biomarkers for liver fibrosis, aspartate transaminase to Platelet Ratio Index (APRI) and Fibrosis-4 (FIB-4). The functional role of STC1 was interrogated by in vitro experiments using cell line models. Expression of fibrogenic markers was quantified by RT-qPCR and western blotting. Our results showed that serum STC1 level in chronic hepatitis B patients was positively correlated with the degree of liver fibrosis and showed a stepwise increase in accordance with the severity of fibrosis. The AUROCs for detecting significant fibrosis (>9.0 kPa) and cirrhosis (>12.0 kPa) was 0.911 and 0.880, respectively. STC1 demonstrated a superior specificity and positive predictive value when compared to APRI and FIB-4. Consistent with this, STC1 was elevated in the liver tissues and sera of CCl4 -treated mice showing marked liver fibrosis. In vitro, STC1 was secreted by the human hepatic stellate cell line LX2. Human recombinant STC1 (rhSTC1) induced expression of fibrogenic markers in LX2 cells. The pro-fibrogenic phenotype conferred by rhSTC1 or TGF-β1 in LX2 cells could be attenuated using anti-STC1 antibody. Taken together, STC1 is a specific serum biomarker for HBV-associated liver fibrosis. STC1 functionally promotes liver fibrogenesis and is a potential actionable target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Tsz-Chun Hon
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Kwan-Yung Au
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Hiu-Lam Choi
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Danny Ka-Ho Wong
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.,Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ching-Lung Lai
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| |
Collapse
|
13
|
Khatun M, Urpilainen E, Ahtikoski A, Arffman RK, Pasanen A, Puistola U, Tapanainen JS, Andersson LC, Butzow R, Loukovaara M, Piltonen TT. Low Expression of Stanniocalcin 1 (STC-1) Protein Is Associated With Poor Clinicopathologic Features of Endometrial Cancer. Pathol Oncol Res 2021; 27:1609936. [PMID: 34650342 PMCID: PMC8505533 DOI: 10.3389/pore.2021.1609936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Stanniocalcin-1 (STC-1) is a glycoprotein hormone involved in diverse biological processes, including regulation of calcium phosphate homeostasis, cell proliferation, apoptosis, inflammation, oxidative stress responses, and cancer development. The role of STC-1 in endometrial cancer (EC) is yet to be elucidated. In this study, we investigated the protein expression pattern of STC-1 in a tissue microarray (TMA) cohort of hysterectomy specimens from 832 patients with EC. We then evaluated the prognostic value of STC-1 expression regarding the clinicopathologic features and patients survival over a period of 140 months. Our results revealed that in EC tissue samples, STC-1 is mainly localized in the endometrial epithelium, although some expression was also observed in the stroma. Decreased STC-1 expression was associated with factors relating to a worse prognosis, such as grade 3 endometrioid tumors (p = 0.030), deep myometrial invasion (p = 0.003), lymphovascular space invasion (p = 0.050), and large tumor size (p = 0.001). Moreover, STC-1 expression was decreased in tumors obtained from obese women (p = 0.014) and in women with diabetes mellitus type 2 (DMT2; p = 0.001). Interestingly, the data also showed an association between DNA mismatch repair (MMR) deficiency and weak STC-1 expression, specifically in the endometrial epithelium (p = 0.048). No association was observed between STC-1 expression and disease-specific survival. As STC-1 expression was particularly low in cases with obesity and DMT2 in the TMA cohort, we also evaluated the correlation between metformin use and STC-1 expression in an additional EC cohort that only included women with DMT2 (n = 111). The analysis showed no difference in STC-1 expression in either the epithelium or the stroma in women undergoing metformin therapy compared to metformin non-users. Overall, our data may suggest a favorable role for STC-1 in EC behavior; however, further studies are required to elucidate the detailed mechanism and possible applications to cancer treatment.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Elina Urpilainen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Anne Ahtikoski
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ulla Puistola
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Obstetrics and Gynaecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ralf Butzow
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mikko Loukovaara
- Department of Obstetrics and Gynaecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Khatun M, Arffman RK, Lavogina D, Kangasniemi M, Laru J, Ahtikoski A, Lehtonen S, Paulson M, Hirschberg AL, Salumets A, Andersson LC, Piltonen TT. Women with polycystic ovary syndrome present with altered endometrial expression of stanniocalcin-1†. Biol Reprod 2021; 102:306-315. [PMID: 31494675 PMCID: PMC7016287 DOI: 10.1093/biolre/ioz180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Stanniocalcin-1 (STC-1) is a pro-survival factor that protects tissues against stressors, such as hypoxia and inflammation. STC-1 is co-expressed with the endometrial receptivity markers, and recently endometrial STC-1 was reported to be dysregulated in endometriosis, a condition linked with endometrial progesterone resistance and inflammation. These features are also common in the endometrium in women with polycystic ovary syndrome (PCOS), the most common endocrine disorder in women. Given that women with PCOS present with subfertility, pregnancy complications, and increased risk for endometrial cancer, we investigated endometrial STC-1 expression in affected women. Endometrial biopsy samples were obtained from women with PCOS and controls, including samples from overweight/obese women with PCOS before and after a 3-month lifestyle intervention. A total of 98 PCOS and 85 control samples were used in immunohistochemistry, reverse-transcription polymerase chain reaction, or in vitro cell culture. STC-1 expression was analyzed at different cycle phases and in endometrial stromal cells (eSCs) after steroid hormone exposure. The eSCs were also challenged with 8-bromo-cAMP and hypoxia for STC-1 expression. The findings indicate that STC-1 expression is not steroid hormone mediated although secretory-phase STC-1 expression was blunted in PCOS. Lower expression seems to be related to attenuated STC-1 response to stressors in PCOS eSCs, shown as downregulation of protein kinase A activity. The 3-month lifestyle intervention did not restore STC-1 expression in PCOS endometrium. More studies are warranted to further elucidate the mechanisms behind the altered endometrial STC-1 expression and rescue mechanism in the PCOS endometrium.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Darja Lavogina
- Department of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia.,Competence Centre on Health Technologies, Tartu, Estonia
| | - Marika Kangasniemi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Johanna Laru
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Anne Ahtikoski
- Department of Pathology, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Siri Lehtonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Mariana Paulson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, Tartu, Estonia.,Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Zhang C, Shen Y, Gao L, Wang X, Huang D, Xie X, Xu D, He H. Targeting POLE2 Creates a Novel Vulnerability in Renal Cell Carcinoma via Modulating Stanniocalcin 1. Front Cell Dev Biol 2021; 9:622344. [PMID: 33644060 PMCID: PMC7905105 DOI: 10.3389/fcell.2021.622344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Objective The aim of this study is to investigate the biological functions and the underlying mechanisms of DNA polymerase epsilon subunit 2 (POLE2) in renal cell carcinoma (RCC). Methods The datasets of POLE2 expression in The Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) and International Cancer Genome Consortium (ICGC) databases was selected and the correlation between POLE2 and various clinicopathological parameters was analyzed. The POLE2 expression in RCC tissues was examined by immunohistochemistry. The POLE2 knockdown cell lines were constructed. In vitro and in vivo experiments were carried out to investigate the function of POLE2 on cellular biology of RCC, including cell viability assay, clone formation assay, flow cytometry, wound-healing assay, Transwell assay, qRT-PCR, Western blot, etc. Besides, microarray, co-immunoprecipitation, rescue experiment, and Western blot were used to investigate the molecular mechanisms underlying the functions of POLE2. Results POLE2 was overexpressed in RCC tissues, and high expression of POLE2 was correlated with poor prognosis of RCC. Furthermore, knockdown of POLE2 significantly inhibited cell proliferation, migration, and facilitated apoptosis in vitro. In vivo experiments revealed that POLE2 attenuated RCC tumorigenesis and tumor growth. we also illuminated that stanniocalcin 1 (STC1) was a downstream gene of POLE2, which promoted the occurrence and development of RCC. Besides, knockdown of POLE2 significantly upregulated the expression levels of Bad and p21 while the expression levels of HSP70, IGF-I, IGF-II, survivin, and sTNF-R1 were significantly downregulated. Western blot analysis also showed that knockdown of POLE2 inhibited the expression levels of Cancer-related pathway proteins including p-Akt, CCND1, MAPK9, and PIK3CA. Conclusion Knockdown of POLE2 attenuates RCC cells proliferation and migration by regulating STC1, suggesting that POLE2-STC1 may become a potential target for RCC therapy.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shen
- Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Gao
- Department of Pathology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Huang
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xie
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Xu
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongchao He
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|