1
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
2
|
Ke B, Liang ZK, Li B, Wang XJ, Liu N, Liang H, Zhang RP. EDIL3 is a potential prognostic biomarker that correlates with immune infiltrates in gastric cancer. PeerJ 2023; 11:e15559. [PMID: 37576496 PMCID: PMC10422953 DOI: 10.7717/peerj.15559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/24/2023] [Indexed: 08/15/2023] Open
Abstract
Background EDIL3, which contains epidermal growth factor-like repeats and discoidin I-like domains, is a secretory protein that plays an important role in embryonic development and various illnesses. However, the biological function of EDIL3 in gastric cancer (GC) is still unclear. The objective of this research was to explore the role and potential mechanism of EDIL3 in GC. Methods In this study, we used the GEPIA, HPA, MethSurv, SMART, STRING, GeneMANIA, LinkedOmics TIMER, TIMER2.0, TISIDB, and RNAactDrug databases to comprehensively analyze the roles of EDIL3 in GC. To validate the in silico findings, EDIL3 expression was measured in our collected GC tissues. Meanwhile, several in vitro experiments were performed to test the function of EDIL3 in GC. Results We found that EDIL3 was highly expressed in GC and associated with adverse clinical features. In vitro assays revealed that EDIL3 promoted the proliferation, migration, and invasion of GC cells. The functions of EDIL3 and co-expression genes were significantly associated with extracellular structure organization and matrix receptor interaction. EDIL3 expression was positively associated with numerous tumor-infiltrating immune cells and their biomarkers. Conclusion This study determined that EDIL3 may function as an oncogene and is associated with immune infiltration in GC. EDIL3 could be used as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Bin Ke
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zheng-Kai Liang
- Department of Gastrointestinal Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Bin Li
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xue-Jun Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ning Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ru-Peng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
3
|
miR-373-3p Regulates the Proliferative and Migratory Properties of Human HTR8 Cells via SLC38A1 Modulation. DISEASE MARKERS 2022; 2022:6582357. [PMID: 35837487 PMCID: PMC9274228 DOI: 10.1155/2022/6582357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
The genetic pathogenesis of selective intrauterine growth restriction (sIUGR) remains elusive, with evidence suggesting an important role of epigenetic factors such as microRNAs. In this study, we explored the relevance of miR-373-3p to the occurrence of sIUGR. Hypoxia enhanced the levels of miR-373-3p and hypoxia-inducible factor (HIF)-1α, while HIF-1α knockdown not only boosted the migration and proliferation of HTR8 cells but also suppressed the hypoxia-induced upregulation of miR-373-3p and SLC38A1. By contrast, HIF-1α overexpression induced miR-373-3p downregulation and SLC38A1 upregulation, reducing cell growth and migration, which could be reversed by a miR-373-3p inhibitor. Importantly, the miR-373-3p inhibitor and mimic reproduced phenomena similar to those induced by HIF-1α downregulation and overexpression, respectively (including altered SLC38A1 expression, mTOR activation, cell growth, and migration). Mechanistically, the miRNA regulated cell behaviors and related mTOR signaling by targeting SLC38A1 expression through an interaction with the 3′-untranslated region of SLC38A1. The placental tissues of smaller sIUGR fetuses exhibited miR-373-3p and HIF-1α upregulation, SLC38A1 downregulation, and activated mTOR. Overall, miR-373-3p appears to restrict the growth and migration of HTR8 trophoblast cells by targeting SLC38A1, as observed in the placental tissues associated with smaller sIUGR fetuses, and it could have utility in the diagnosis and treatment of this disorder.
Collapse
|
4
|
miR-373-3p Regulates Invasion and Migration Abilities of Trophoblast Cells via Targeted CD44 and Radixin. Int J Mol Sci 2021; 22:ijms22126260. [PMID: 34200891 PMCID: PMC8230484 DOI: 10.3390/ijms22126260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
Preterm labor (PTL) is one of the obstetric complications, and is known to be associated with abnormal maternal inflammatory response and intrauterine inflammation and/or infection. However, the expression of specific miRNAs associated with PTL is not clear. In this study, we performed combination analysis of miRNA array and gene array, and then selected one miRNA (miR-373-3p) and its putative target genes (CD44 and RDX) that exhibited large expression differences in term and PTL placentas with or without inflammation. Using qRT-PCR and luciferase assays, we confirmed that miR-373-3p directly targeted CD44 and RDX. Overexpression of miR-373-3p reduced the migration and invasion of trophoblast cells, while inhibition of miR-373-3p restored the migration and invasion abilities of trophoblast cells. Finally, we validated the expression of miR-373-3p and its target genes in clinical patients’ blood. miR-373-3p was increased in PTL patients’ blood, and was the most expressed in PTL patients’ blood with inflammation. In addition, by targeting the miR-373-3p, CD44 and RDX was decreased in PTL patients’ blood, and their expression were the lowest in PTL patients’ blood with inflammation. Taken together, these findings suggest that miR-373-3p and its target genes can be potential biomarkers for diagnosis of PTL.
Collapse
|
5
|
Simatou A, Simatos G, Goulielmaki M, Spandidos DA, Baliou S, Zoumpourlis V. Historical retrospective of the SRC oncogene and new perspectives (Review). Mol Clin Oncol 2020; 13:21. [PMID: 32765869 PMCID: PMC7403812 DOI: 10.3892/mco.2020.2091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Since its first discovery as part of the Rous sarcoma virus (RSV) genome, the c-SRC (SRC) proto-oncogene has been proved a key regulator of cancer development and progression, and thus it has been highlighted as an attractive target for anti-cancer therapeutic strategies. Though the exact mechanisms of its action are still not fully understood, SRC protein mediates crucial normal cell functions, such as cell development, proliferation and survival, and its dysregulation is considered as an oncogenic signature and a driving force for cancer initiation. In the present review, we present a flashback to the history of the Src research, while focusing on the most important milestones in the field. Moreover, we investigate the proposed regulatory mechanisms and molecules that mediate its action in order to designate putative therapeutic targets and useful prognostic and/or diagnostic tools. Furthermore, we present and discuss existing therapeutic approaches that are explored in clinical settings.
Collapse
Affiliation(s)
| | - George Simatos
- First Breast Unit, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
6
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
7
|
Sun QH, Yin ZX, Li Z, Tian SB, Wang HC, Zhang FX, Li LP, Zheng CN, Kong S. miR-874 inhibits gastric cancer cell proliferation by targeting SPAG9. BMC Cancer 2020; 20:522. [PMID: 32503577 PMCID: PMC7275545 DOI: 10.1186/s12885-020-06994-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background microRNAs (miRNAs) play essential roles in the development and progression of gastric cancer (GC). Although aberrant miR-874 expression has been reported in various human cancers, its role in GC remains obscure. Methods miR-874 expression was assessed by real-time quantitative polymerase chain reaction (RT-qPCR) in 62 matched GC and adjacent normal tissues, as well as in GC cell lines and immortalized human gastric epithelial cells. CCK8 assay, colony formation assay, and flow cytometry were used to assess the role of miR-874 in GC cell proliferation and apoptosis in vitro. Additionally, to determine the effects of miR-874 on GC cell proliferation and apoptosis in vivo, BALB/c nude mice were injected with GC cells transfected with a miR-874 mimic. The role of miR-874 in SPAG9 expression was assessed by luciferase assay, Western blotting, and RT-qPCR. Results miR-874 was downregulated in GC cell lines and tissues. miR-874 overexpression in GC cells led to inhibition of cell proliferation and induction of apoptosis. Moreover, SPAG9 was identified as a direct miR-874 target, the expression of which was suppressed by miR-874. SPAG9 overexpression markedly promoted GC cell proliferation. Conclusions miR-874 inhibited cell proliferation and induced apoptosis in GC cells. SPAG9 downregulation was crucial for the tumor-suppressive effects of miR-874. Hence, the miR-874/SPAG9 axis could serve as a novel therapeutic target in GC.
Collapse
Affiliation(s)
- Qin Hui Sun
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Zong Xiu Yin
- Department of Respiration Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| | - Zhi Li
- Department of Operating Room, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| | - Shu Bo Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Road No.324, Jinan, 250021, China
| | - Hong Chang Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Road No.324, Jinan, 250021, China
| | - Fang Xu Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Le Ping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Road No.324, Jinan, 250021, China
| | - Chun Ning Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Road No.324, Jinan, 250021, China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Road No.324, Jinan, 250021, China.
| |
Collapse
|