1
|
Yang J, Zou Y, Wu J, Chen B, Luo C, Chen X, Shen H, Luo L. The Long Noncoding RNA ZEB2-AS1 Contributes to Proliferation and Epithelial-to-Mesenchymal Transition of Osteosarcoma. Cancer Biother Radiopharm 2023; 38:596-603. [PMID: 33085924 DOI: 10.1089/cbr.2019.3433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Long non-coding RNA Zinc finger E-box binding homeobox 2 (ZEB2) antisense RNA 1 (ZEB2-AS1) has been shown to promote tumor progression. However, the clinical significance and fundamental function role of ZEB2-AS1 in osteosarcoma (OS) has been poorly understood. Methods: The expression of ZEB2-AS1 was determined in tumor tissues and matched normal tissues from 67 OS patients using quantitative reverse transcriptase PCR analysis. Clinical value of ZEB2-AS1 was evaluated by χ2 test and Kaplan-Meier method. Cell proliferation was analyzed using CCK-8 assay, colony formation. Cell apoptosis status was determined by caspase-3 activity assay. Cell migration, invasion and epithelial-mesenchymal transition (EMT) were investigated by scratch wound healing, transwell invasion assays and Western blotting. Results: Clinical association analysis revealed that high ZEB2-AS1 expression correlated with tumor size, distant metastasis and poor prognosis of OS patients. Moreover, ZEB2-AS1 expression was identified as an independent prognostic factor for OS patients. Loss-of-function assays demonstrated that ZEB2-AS1 knockdown suppressed the proliferation and induced apoptosis in OS cells. In addition, ZEB2-AS1 knockdown inhibited cell migration, invasion, EMT of OS cells in vitro. Conclusions: Taken together, our data demonstrate that ZEB2-AS1 serves a putative oncogenic role and associates with unfavorable prognosis in OS.
Collapse
Affiliation(s)
- Jiexiang Yang
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Yonggen Zou
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Jian Wu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Bo Chen
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Cheng Luo
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Xiaojun Chen
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Huarui Shen
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Lin Luo
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| |
Collapse
|
2
|
Zarei M, Malekzadeh K, Omidi M, Mousavi P. Clinical significance of long non-coding RNA ZEB2-AS1 and EMT-related markers in ductal and lobular breast cancer. Cancer Rep (Hoboken) 2023; 6:e1826. [PMID: 37088469 PMCID: PMC10172159 DOI: 10.1002/cnr2.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Breast cancer is considered the most prevalent type of cancer in women and accounts for a high rate of death. A body of research has demonstrated that lncRNAs have a regulatory function in human diseases, especially cancers. ZEB2-AS1 is known as an oncogenic lncRNA in various types of cancers, and its deregulation may contribute to cancer development and progression. Therefore, we aimed to reveal the association of ZEB2-AS1 expression with epithelial-mesenchymal transition (EMT) markers, as a hallmark of cancer progression, in a clinical setting. METHODS A recent study suggested that ZEB2-AS1 is significantly involved in EMT. Here we intended to explore the roles of lncRNA ZEB2-AS1 in breast cancer (BC) using bioinformatics tools and laboratory settings. We first evaluated the expression of ZEB2-AS1 mRNA in tumor and healthy control tissues by lnCAR database. Furthermore, ZEB2-AS1 expression level, ZEB2, E-cadherin, and vimentin was measured via qRT-PCR in 30 paired ductal and lobular carcinoma tissues from breast cancer patients and the normal adjacent ones. The correlation between the lncRNA ZEB2-AS1 expression and clinicopathological characteristics of the breast cancer patients was evaluated. RESULTS ZEB2-AS1 showed an upregulation in breast cancer tissues (p = .04) compared to normal adjacent samples. In addition, its level was higher in breast cancer patients with advanced Stages (III & IV) (n = 18) compared to early Stages (I & II) (n = 12) (p = .04). Moreover, ZEB2 (p = .01) and vimentin (p = .02) expression were upregulated in the BC sample, but the expression level of E-cadherin (p = .02) was downregulated when compared with the adjacent normal tissues. By comparison of the expression of EMT-markers between different stages of breast cancer, overexpression of ZEB2 (p = .04) and vimentin (p = .04) and down expression of E-cadherin (p = .03) was observed in advance stages. CONCLUSIONS Collectively, our findings suggest that ZEB2-AS1 expression is significantly upregulated in tumor tissues, especially in advanced stages and ZEB2-AS1 is associated with the aggressiveness of tumors by functioning as putative oncogenic lncRNA. In addition, a combination of ZEB2-AS1 and these EMT markers in breast cancer potentiates these genes as biomarkers for tumor progression.
Collapse
Affiliation(s)
- Mahboobeh Zarei
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kianoosh Malekzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Omidi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
3
|
Li Q, Xu P, Zhang C, Gao Y. MiR-362-5p inhibits cartilage repair in osteoarthritis via targeting plexin B1. J Orthop Surg (Hong Kong) 2022; 30:10225536221139887. [PMID: 36523183 DOI: 10.1177/10225536221139887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) exerts great function during the pathogenesis of osteoarthritis (OA). Studies have reported the association of plexin B1 (PLXNB1) with OA pathogenesis. In this study, the upstream mechanism and function of PLXNB1 in this disease were explored. METHODS Flow cytometry was applied to test BMSC characterization. Chondrogenic differentiation of BMSCs was evaluated by Alcian blue staining. The expression of PLXNB1, miR-362-5p, miR-501-5p, miR-1827, miR-500-5p was measured using RT-qPCR analysis. The protein levels of PLXNB1, Aggrecan, and Silent information regulator factor 2-related enzyme 1 (SIRT1) were determined by western blotting. Binding relationship between miR-362-5p and PLXNB1 was confirmed using bioinformatics analysis and luciferase reporter assay. The in vivo model of OA was established in Sprague-Dawley rats which received medial meniscus instability surgery. For histopathological examination, cartilage tissues in the knee joint of rats were stained with hematoxylin and eosin. Micro-CT analysis was employed to observe the changes of morphometric indices including average trabecular separation, average trabecular thickness, and bone volume fraction. RESULTS BMSCs were identified to possess the characteristics of mesenchymal stem cells. PLXNB1 was observed to be highly expressed during chondrogenic differentiation of BMSCs and PLXNB1 overexpression promoted BMSC chondrogenic differentiation. Mechanically, PLXNB1 was targeted by miR-362-5p. In rescue assays, miR-362-5p reversed the effects of PLXNB1 on chondrogenic differentiation of BMSCs. In the in vivo experiments, upregulated PLXNB1 expression alleviated joint injury of OA rats. Additionally, overexpressed miR-362-5p and downregulated PLXNB1 expression levels were detected in OA rats. CONCLUSION MiR-362-5p promotes OA progression by suppressing PLXNB1.
Collapse
Affiliation(s)
- Qian Li
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ping Xu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Chi Zhang
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yang Gao
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
4
|
Wu S, Chen J, Liang Y, Luo Q, Tong Y, Xie L. Long Non-Coding RNA ZEB2-AS1 Promotes Hepatocellular Carcinoma Progression by Regulating The miR-582-5p/FOXC1 Axis. CELL JOURNAL 2022; 24:285-293. [PMID: 35892230 PMCID: PMC9315215 DOI: 10.22074/cellj.2022.7963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/26/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) feature prominently in tumors. Reportedly, lncRNA zinc finger E-box-binding homeobox 2 antisense RNA 1 (ZEB2-AS1) is aberrantly expressed in a variety of tumors. The present study was aimed to explore ZEB2-AS1 functions and determine mechanism in hepatocellular carcinoma (HCC) progression. MATERIALS AND METHODS In this experimental study, expressions of ZEB2-AS1, microRNA (miR)-582-5p and forkhead box C1 (FOXC1) mRNA in HCC tissues and cell lines were detected via quantitative reveres transcription polymerase chain reaction (qRT-PCR). After establishing gain- and loss-of-functions models, cell counting kit-8, 5-bromo-2'-deoxyuridine (BrdU), Transwell assays and flow cytometry analysis were conducted to examine HCC cell multiplication, migration, invasion and apoptosis, respectively. The targeted relationship between miR-582- 5p and ZEB2-AS1 was verified via dual-luciferase reporter gene assay. Western blot was utilized for detecting FOXC1 expression in HCC cells after selectively regulating ZEB2-AS1 and miR-582-5p. RESULTS In HCC tissues and cells, ZEB2-AS1 expression was increased. High ZEB2-AS1 expression was related to relatively large tumor volume, increased tumor-node-metastasis (TNM) stage and positive lymph node metastasis of the patients. ZEB2-AS1 overexpression facilitated HCC cell multiplication, migration, invasion and suppressed apoptosis, while ZEB2-AS1 knock-down caused the opposite effects. It was also confirmed that ZEB2-AS1 could competitively bind with miR-582-5p to repress its expression, and indirectly up-regulate FOXC1 expression level in HCC cells. CONCLUSION The current study revealed that ZEB2-AS1 was over-expressed in HCC tissues and cells. It also upregulated (FOXC1), through sponging miR-582-5p, to promote HCC progression. This provides new perspectives for elucidating the pathogenesis of HCC.
Collapse
Affiliation(s)
- Shimin Wu
- Center for Clinical LaboratoryGeneral Hospital of The Yangtze River ShippingWuhan Brain HospitalWuhanHubeiChina
| | | | | | | | | | | |
Collapse
|
5
|
Ma S, Xie Z, Zhang L, Yang Y, Jiang H, Ouyang X, Zhao Y, Liu Q, Xu X, Li L. Identification of a Potential miRNA-mRNA Regulatory Network Associated With the Prognosis of HBV-ACLF. Front Mol Biosci 2021; 8:657631. [PMID: 33996909 PMCID: PMC8113841 DOI: 10.3389/fmolb.2021.657631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Background Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a life-threatening disease with a high mortality rate; the systemic inflammatory response plays a vital role in disease progression. We aimed to determine if a miRNA–mRNA co-regulatory network exists in the peripheral blood mononuclear cells (PBMCs) of HBV-ACLF patients, which might be important for prognosis. Methods Transcriptome-wide microRNA (miRNA) and mRNA microarrays were used to define the miRNA and mRNA expression profiles of the PBMCs of HBV-ACLF patients in a discovery cohort. The targets of the miRNAs were predicted. We built a miRNA-mRNA regulatory network through bioinformatics analysis, and used quantitative real-time polymerase chain reaction (qRT-PCR) to assess the importance of candidate miRNAs and mRNAs. We also assessed the direct and transcriptional regulatory effects of miRNAs on target mRNAs using a dual-luciferase reporter assay. Results The miRNA/mRNA PBMC expression profiles of the discovery cohort, of whom eight survived and eight died, revealed a prognostic interactive network involving 38 miRNAs and 313 mRNAs; this was constructed by identifying the target genes of the miRNAs. We validated the expression data in another cohort, of whom 43 survived and 35 died; miR-6840-3p, miR-6861-3p, JADE2, and NR3C2 were of particular interest. The levels of miR-6840-3p and miR-6861-3p were significantly increased in the PBMCs of the patients who died, and thus predicted prognosis (areas under the curve values = 0.665 and 0.700, respectively). The dual-luciferase reporter assay indicated that miR-6840-3p directly targeted JADE2. Conclusion We identified a prognostic miRNA-mRNA co-regulatory network in the PBMCs of HBV-ACLF patients. miR-6840-3p-JADE2 is a potential miRNA–mRNA pair contributing to a poor prognosis.
Collapse
Affiliation(s)
- Shanshan Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - He Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiuhong Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaowei Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zhang H, Zhao X, Wang M, Ji W. Long noncoding RNA LINC01638 contributes to laryngeal squamous cell cancer progression by modulating miR-523-5p/BATF3 axis. Aging (Albany NY) 2021; 13:8611-8619. [PMID: 33714208 PMCID: PMC8034946 DOI: 10.18632/aging.202675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022]
Abstract
Long noncoding RNA (lncRNA) plays a critical role in tumorigenesis. How lncRNA regulates laryngeal squamous cell carcinoma (LSCC) progression remains poorly understood. In the present study, we found that LINC01638 was highly expressed in LSCC tissues. And LINC01638 expression was positively correlated with clinical stage and lymph node metastasis. Patients with LINC01638 high expression displayed a low survival rate. Results from CCK8, colony formation, and transwell assays showed that LINC01638 knockdown suppressed the proliferation, migration and invasion of LSCC cells in vitro. Animal experiments indicated that LINC01638 silencing attenuated tumor growth in vivo. In terms of mechanism, LINC01638 was found to sponge miR-523-5p and promote BATF3 expression. In summary, our results demonstrated that LINC01638/miR-523-5p/BATF3 axis plays a crucial function in initiating LSCC development and may be a potential target for tumor therapy.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xudong Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mengmeng Wang
- The Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wenyue Ji
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
7
|
Li W, Chen Y, Nie X. Regulatory Mechanisms of lncRNAs and Their Target Gene Signaling Pathways in Laryngeal Squamous Cell Carcinoma. Front Pharmacol 2020; 11:1140. [PMID: 32848755 PMCID: PMC7397781 DOI: 10.3389/fphar.2020.01140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor that occurs in the head and neck. People living in areas with serious air pollution and those who smoke and drink for a long time belong to high-risk groups. Although great progress has been made in chemotherapy, radiotherapy, and molecular targeted therapy in recent years, the prognosis of patients is still not good. The proliferation, invasion, and apoptosis of LSCC are controlled by many factors, which are the key factors influencing the prognosis of patients. Previous researches have demonstrated that long noncoding RNAs (lncRNAs) can be used as oncogenes or tumor suppressor genes in the occurrence and development of cancer and regulate cancer through various ways including epigenetic regulation and post-transcriptional regulation. The characteristics and roles of lncRNAs in LSCC, however, are not clear. In this review, we will discuss the role and function of lncRNAs in the proliferation, invasion, and apoptosis of LSCC and analyze the relationship between lncRNAs and lncRNA-regulated signaling pathways in LSCC pathological process. The difficulties faced by the related research of LSCC are discussed. It provides reference ideas for the molecular mechanism research of LSCC targeting lncRNA and its signaling pathways, the development of clinical prevention and therapeutic drug and individualized treatment, thereby improving the quality of life of patients.
Collapse
Affiliation(s)
- Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu Chen
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|