1
|
Lv Y, Yu W, Xuan R, Yang Y, Xue X, Ma X. Human Placental Mesenchymal Stem Cells-Exosomes Alleviate Endothelial Barrier Dysfunction via Cytoskeletal Remodeling through hsa-miR-148a-3p/ROCK1 Pathway. Stem Cells Int 2024; 2024:2172632. [PMID: 38681858 PMCID: PMC11055650 DOI: 10.1155/2024/2172632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Background Endothelial barrier disruption of human pulmonary vascular endothelial cells (HPVECs) is an important pathogenic factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Mesenchymal stem cells-exosome (MSCs-Exo) represents an ideal carrier for cell-free therapy. The therapeutic implication and underlying mechanism of human placental MSCs-Exo (HPMSCs-Exo) in ALI/ARDS need to be further explored. Materials and Methods HPMSCs-Exo was extracted from HPMSCs and characterized. Then, the therapeutic effects of exosomes were evaluated in ALI mice and HPVECs. RNA-sequencing was applied to reveal the miRNA profile of HPMSCs-Exo and differentially expressed genes (DEGs) in HPMSCs-Exo-pretreated HPVECs. The targets of miRNAs were predicted by bioinformatics methods and correlated to DEGs. Finally, the role of hsa-miR-148a-3p/ROCK1 pathway in HPVECs has been further discussed. Results The results showed that HPMSCs-Exo could downregulate Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), upregulate the expression of zonula occludens-1 (ZO-1) and F-actin, promote HPVECs migration and tube formation, reduce cytoskeletal disorders and cell permeability, and thus improve ALI/ARDS. RNA-sequencing revealed the DEGs were mainly enriched in cell junction, angiogenesis, inflammation, and energy metabolism. HPMSCs-Exo contains multiple miRNAs which are associated with cytoskeletal function; the expression abundance of hsa-miR-148a-3p is the highest. Bioinformatic analysis identified ROCK1 as a target of hsa-miR-148a-3p. The overexpression of hsa-miR-148a-3p in HPMSCs-Exo promoted the migration and tube formation of HPVECs and reduced ROCK1 expression. However, the overexpression of ROCK1 on HPVECs reduced the therapeutic effect of HPMSCs-Exo. Conclusions HPMSCs-Exo represents a protective regimen against endothelial barrier disruption of HPVECs in ALI/ARDS, and the hsa-miR-148a-3p/ROCK1 pathway plays an important role in this therapeutics implication.
Collapse
Affiliation(s)
- Yuzhen Lv
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
- Ningxia Institute for Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750003, China
| | - Wenqin Yu
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
- Ningxia Institute for Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750003, China
| | - Ruiui Xuan
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
| | - Yulu Yang
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
| | - Xiaolan Xue
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
| | - Xiaowei Ma
- Intensive Care Unit, Cardiocerebral Vascular Disease Hospital, General Hospital of Ningxia Medical University, Yinchuan 750003, China
| |
Collapse
|
2
|
Pan Z, Yun H, Xiao Y, Tong F, Liu G, Zhang G, Han J. MiR-934 Exacerbates Malignancy of Gastric Cancer Cells by Targeting ZFP36. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1720-1729. [PMID: 37744530 PMCID: PMC10512137 DOI: 10.18502/ijph.v52i8.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 09/26/2023]
Abstract
Background In order to explore new targets for the treatment of gastric cancer (GC), we investigated the regulatory mechanism of miR-934 in the malignant phenotype of gastric cancer. Methods The miRNA and mRNA expressions were determined by RT-qPCR, and protein levels were quantified by western blotting assay. Malignancy of AGS cell line was evaluated by MTT, flow cytometry, wound healing and Transwell assays. The putative binding site between miR-934 and ZFP36 was validated using luciferase reporter assay. Immunohistochemistry (IHC) assay was used to visualize the ZFP36-positive cells in the xenograft sections. All experiments were conducted in General Surgery Laboratory of Nanjing Red Cross Hospital Jiangsu Province, China from June 2019 to June 2021. Results GC tissues and cell lines showed notably higher levels of miR-934. Overexpression of miR-934 promoted cell viability, migration and invasion, while inhibited cell apoptosis of GC cells. ZFP36 was predicted and verified to be the target of miR-934 and low protein levels of ZFP36 were observed in GC tissues. The ZFP36 protein expressions were suppressed by miR-934 overexpression, while were facilitated by miR-934 inhibition. Furthermore, the carcinogenic functions of miR-934 were partially reversed after ZFP36 overexpression. The results of in vivo experiments further demonstrated that miR-934 promoted tumor growth and repressed the protein expression of ZFP36. Conclusion miR-934 served as a tumor promoter in GC via targeting ZFP36, and ZFP36 overexpression could efficiently relieve malignant phenotypes caused by miR-934, which prompted an exploitable molecular target for GC treatment.
Collapse
Affiliation(s)
- Zhicheng Pan
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Huazhong Yun
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Yun Xiao
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Fei Tong
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Guodong Liu
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Ge Zhang
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Jianbo Han
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| |
Collapse
|
3
|
Peng Y, Li X, Liu H, Deng X, She C, Liu C, Wang X, Liu A. Retraction Note: microRNA-18a from M2 Macrophages Inhibits TGFBR3 to Promote Nasopharyngeal Carcinoma Progression and Tumor Growth via TGF-β Signaling Pathway. DISCOVER NANO 2023; 18:26. [PMID: 36853476 PMCID: PMC9975121 DOI: 10.1186/s11671-023-03811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Ya Peng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Changsha Hospital of Hunan Normal University, The Fourth Hospital of Changsha, Changsha, Hunan, 410006, People's Republic of China
| | - Xiangsheng Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Changsha Hospital of Hunan Normal University, The Fourth Hospital of Changsha, Changsha, Hunan, 410006, People's Republic of China
| | - Huowang Liu
- Department of Otolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Xiaowen Deng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Changsha Hospital of Hunan Normal University, The Fourth Hospital of Changsha, Changsha, Hunan, 410006, People's Republic of China
| | - Chang She
- 5th Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Chenxi Liu
- Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Xinxing Wang
- Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - An Liu
- Department of Otolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
4
|
Ming Y, Deng Z, Tian X, Jia Y, Ning M, Cheng S. m6A Methyltransferase METTL3 Reduces Hippocampal Neuron Apoptosis in a Mouse Model of Autism Through the MALAT1/SFRP2/Wnt/β-catenin Axis. Psychiatry Investig 2022; 19:771-787. [PMID: 36327957 PMCID: PMC9633173 DOI: 10.30773/pi.2021.0370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Hippocampal neuron apoptosis contributes to autism, while METTL3 has been documented to possess great potentials in neuron apoptosis. Our study probed into the role of METTL3 in neuron apoptosis in autism and to determine the underlying mechanism. METHODS Bioinformatics analysis was used to analyze expressed genes in autism samples. Institute of Cancer Research mice were treated with valproic acid to develop autism models. The function of METTL3 in autism-like symptoms in mice was analyzed with behavioral tests and histological examination of their hippocampal tissues. Primary mouse hippocampal neurons were extracted for in vitro studies. Downstream factors of METTL3 were explored and validated. RESULTS METTL3, MALAT1, and Wnt/β-catenin signaling were downregulated, while SFRP2 was upregulated in the hippocampal tissues of a mouse model of autism. METTL3 stabilized MALAT1 expression by promoting m6A modification of MALAT1. MALAT1 promoted SFRP2 methylation and led to reduced SFRP2 expression by recruiting DNMT1, DNMT3A, and DNMT3B to the promoter region of SFRP2. Furthermore, SFRP2 facilitated activation of the Wnt/β-catenin signaling. By this mechanism, METTL3 suppressed autism-like symptoms and hippocampal neuron apoptosis. CONCLUSION This research suggests that METTL3 can reduce autism-like symptoms and hippocampal neuron apoptosis by regulating the MALAT1/SFRP2/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Yue Ming
- Department of Applied Psychology, College of Teacher Education, Qiqihar University, Qiqihar, China
| | - Zhihui Deng
- Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xianhua Tian
- Department of Applied Psychology, College of Teacher Education, Qiqihar University, Qiqihar, China
| | - Yuerong Jia
- Department of Applied Psychology, College of Teacher Education, Qiqihar University, Qiqihar, China
| | - Meng Ning
- Department of Applied Psychology, College of Teacher Education, Qiqihar University, Qiqihar, China
| | - Shuhua Cheng
- Department of Applied Psychology, College of Teacher Education, Qiqihar University, Qiqihar, China
| |
Collapse
|
5
|
Candidate microRNAs as prognostic biomarkers in heart failure: A systematic review. Rev Port Cardiol 2022; 41:865-885. [DOI: 10.1016/j.repc.2021.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
|
6
|
Wu X, Pan Z, Liu W, Zha S, Song Y, Zhang Q, Hu K. The Discovery, Validation, and Function of Hypoxia-Related Gene Biomarkers for Obstructive Sleep Apnea. Front Med (Lausanne) 2022; 9:813459. [PMID: 35372438 PMCID: PMC8970318 DOI: 10.3389/fmed.2022.813459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
While there is emerging evidence that hypoxia critically contributes to the pathobiology of obstructive sleep apnea (OSA), the diagnostic value of measuring hypoxia or its surrogates in OSA remains unclear. Here we investigated the diagnostic value of hypoxia-related genes and explored their potential molecular mechanisms of action in OSA. Expression data from OSA and control subjects were downloaded from the Gene Expression Omnibus database. Differentially-expressed genes (DEGs) between OSA and control subjects were identified using the limma R package and their biological functions investigated with the clusterProfiler R package. Hypoxia-related DEGs in OSA were obtained by overlapping DEGs with hypoxia-related genes. The diagnostic value of hypoxia-related DEGs in OSA was evaluated by receiver operating curve (ROC) analysis. Random forest (RF) and lasso machine learning algorithms were used to construct diagnostic models to distinguish OSA from control. Geneset enrichment analysis (GSEA) was performed to explore pathways related to key hypoxia-related genes in OSA. Sixty-three genes associated with hypoxia, transcriptional regulation, and inflammation were identified as differentially expressed between OSA and control samples. By intersecting these with known hypoxia-related genes, 17 hypoxia-related DEGs related to OSA were identified. Protein-protein interaction network analysis showed that 16 hypoxia-related genes interacted, and their diagnostic value was further explored. The 16 hypoxia-related genes accurately predicted OSA with AUCs >0.7. A lasso model constructed using AREG, ATF3, ZFP36, and DUSP1 had a better performance and accuracy in classifying OSA and control samples compared with an RF model as assessed by multiple metrics. Moreover, GSEA revealed that AREG, ATF3, ZFP36, and DUSP1 may regulate OSA via inflammation and contribute to OSA-related cancer risk. Here we constructed a reliable diagnostic model for OSA based on hypoxia-related genes. Furthermore, these transcriptional changes may contribute to the etiology, pathogenesis, and sequelae of OSA.
Collapse
|
7
|
Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing. Sci Rep 2022; 12:4279. [PMID: 35277538 PMCID: PMC8915158 DOI: 10.1038/s41598-022-08073-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
The pandemic threat of COVID-19 has severely destroyed human life as well as the economy around the world. Although, the vaccination has reduced the outspread, but people are still suffering due to the unstable RNA sequence patterns of SARS-CoV-2 which demands supplementary drugs. To explore novel drug target proteins, in this study, a transcriptomics RNA-Seq data generated from SARS-CoV-2 infection and control samples were analyzed. We identified 109 differentially expressed genes (DEGs) that were utilized to identify 10 hub-genes/proteins (TLR2, USP53, GUCY1A2, SNRPD2, NEDD9, IGF2, CXCL2, KLF6, PAG1 and ZFP36) by the protein–protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of hub-DEGs revealed some important functions and signaling pathways that are significantly associated with SARS-CoV-2 infections. The interaction network analysis identified 5 TFs proteins and 6 miRNAs as the key regulators of hub-DEGs. Considering 10 hub-proteins and 5 key TFs-proteins as drug target receptors, we performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 FDA approved drugs. We found Torin-2, Rapamycin, Radotinib, Ivermectin, Thiostrepton, Tacrolimus and Daclatasvir as the top ranked seven candidate drugs. We investigated their resistance performance against the already published COVID-19 causing top-ranked 11 independent and 8 protonated receptor proteins by molecular docking analysis and found their strong binding affinities, which indicates that the proposed drugs are effective against the state-of-the-arts alternatives independent receptor proteins also. Finally, we investigated the stability of top three drugs (Torin-2, Rapamycin and Radotinib) by using 100 ns MD-based MM-PBSA simulations with the two top-ranked proposed receptors (TLR2, USP53) and independent receptors (IRF7, STAT1), and observed their stable performance. Therefore, the proposed drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections.
Collapse
|
8
|
Analysis of Stemness and Prognosis of Subtypes in Breast Cancer Using the Transcriptome Sequencing Data. JOURNAL OF ONCOLOGY 2022; 2022:5694033. [PMID: 35310908 PMCID: PMC8926471 DOI: 10.1155/2022/5694033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022]
Abstract
The stem characteristics of tumor cells have been proposed in theory very early, and we can use the signature of gene expression to speculate the stemness of tumor cells. However, systematic studies on the stemness of breast cancer as well as breast cancer subtypes, and the relationship between stemness and metastasis and prognosis, are still lacking. In the present research, using the transcriptome data of patients with breast cancer in the TCGA database, a stemness prediction model was utilized to derive the stemness of the patients’ tumors. We compared the stemness values among different subtypes and the differences with metastasis. COX regression was employed to evaluate the correlation between stemness value as well as prognosis. Using the Lasso-penalized Cox regression machine learning model, we obtained the gene signature of the basal subtype that is related to stemness and can also predict the prognosis of the patient. Patients can be stratified into two groups of high and low stemness, corresponding to good and poor prognosis. Based on further prediction of tumor infiltration by CIBERSORT and prediction of drug response by a connectivity map, we found that the difference in stemness between these two groups is associated with the activation of tumor-killing immune cells and drug response. Our findings can promote the understanding and research of subtypes of basal breast cancer and provide corresponding molecular markers for clinical detection and therapy.
Collapse
|
9
|
Jing HY, Gu W, Tan XY, Ma YR. Ferroptosis-related genes are candidate diagnostic and prognostic biomarkers for skin cutaneous melanoma. Biomark Med 2022; 16:179-196. [DOI: 10.2217/bmm-2021-0998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is a disease with the highest mortality rate among skin cancers. As a new type of programmed cell death, ferroptosis has been confirmed to be related to the occurrence and development of a variety of cancers. At present, the expression and prognostic value of ferroptosis-related genes (FRGs) in SKCM are still unclear. In this study, we selected seven FRGs that were differentially expressed in SKCM and related to the patient’s prognosis through the databases. Further studies have shown that these genes are closely related to immune cell infiltration and immune checkpoints. All in all, these seven FRGs may be potential targets for clinical diagnosis, prognosis and treatment of SKCM patients.
Collapse
Affiliation(s)
- Hao-Yue Jing
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Gu
- Department of Orthopedic, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiao-Yang Tan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue-Rong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
10
|
Morales-Pison S, Jara L, Carrasco V, Gutiérrez-Vera C, Reyes JM, Gonzalez-Hormazabal P, Carreño LJ, Tapia JC, Contreras HR. Genetic Variation in MicroRNA-423 Promotes Proliferation, Migration, Invasion, and Chemoresistance in Breast Cancer Cells. Int J Mol Sci 2021; 23:ijms23010380. [PMID: 35008806 PMCID: PMC8745459 DOI: 10.3390/ijms23010380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-423 (miR-423) is highly expressed in breast cancer (BC). Previously, our group showed that the SNP rs6505162:C>A located in the pre-miR-423 was significantly associated with increased familial BC risk in patients with a strong family history of BC. Therefore, in this study, we evaluated the functional role of rs6505162 in mammary tumorigenesis in vitro to corroborate the association of this SNP with BC risk. We found that rs6505162:C>A upregulated expression of both mature miR-423 sequences (3p and 5p). Moreover, pre-miR-423-A enhanced proliferation, and promoted cisplatin resistance in BC cell lines. We also showed that pre-miR-423-A expression decreased cisplatin-induced apoptosis, and increased BC cell migration and invasion. We propose that the rs6505162-A allele promotes miR-423 overexpression, and that the rs6505162-A allele induces BC cell proliferation, viability, chemoresistance, migration, and invasion, and decreases cell apoptosis as a consequence. We suggest that rs6505162:C>A is a functional SNP site with potential utility as a marker for early diagnosis, prognosis, and treatment efficacy monitoring in BRCA1/2-negative BC patients, as well as a possible therapeutic target.
Collapse
Affiliation(s)
- Sebastian Morales-Pison
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (S.M.-P.); (L.J.); (P.G.-H.)
| | - Lilian Jara
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (S.M.-P.); (L.J.); (P.G.-H.)
| | - Valentina Carrasco
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 8380453, Chile;
| | - Cristian Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.G.-V.); (L.J.C.)
| | | | - Patricio Gonzalez-Hormazabal
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (S.M.-P.); (L.J.); (P.G.-H.)
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.G.-V.); (L.J.C.)
| | - Julio C. Tapia
- Laboratorio de Transformación Celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (J.C.T.); (H.R.C.); Tel.: +56-2-9788647 (J.C.T.)
| | - Héctor R. Contreras
- Laboratorio de Biología Celular y Molecular, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (J.C.T.); (H.R.C.); Tel.: +56-2-9788647 (J.C.T.)
| |
Collapse
|
11
|
Ghafouri-Fard S, Khanbabapour Sasi A, Abak A, Shoorei H, Khoshkar A, Taheri M. Contribution of miRNAs in the Pathogenesis of Breast Cancer. Front Oncol 2021; 11:768949. [PMID: 34804971 PMCID: PMC8602198 DOI: 10.3389/fonc.2021.768949] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer among females. Gene expression profiling methods have shown the deregulation of several genes in breast cancer samples and have confirmed the heterogeneous nature of breast cancer at the genomic level. microRNAs (miRNAs) are among the recently appreciated contributors in breast carcinogenic processes. These small-sized transcripts have been shown to partake in breast carcinogenesis through modulation of apoptosis, autophagy, and epithelial-mesenchymal transition. Moreover, they can confer resistance to chemotherapy. Based on the contribution of miRNAs in almost all fundamental aspects of breast carcinogenesis, therapeutic intervention with their expression might affect the course of this disorder. Moreover, the presence of miRNAs in the peripheral blood of patients potentiates these transcripts as tools for non-invasive diagnosis of breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Khanbabapour Sasi
- Biochemistry Group, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Khoshkar
- Department of Surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zhang L, Yang C, Qiu B. LncRNA RP11-400K9.4 Aggravates Cardiomyocytes Apoptosis After Hypoxia/Reperfusion Injury by Targeting miR-423. Int Heart J 2021; 62:1124-1134. [PMID: 34497168 DOI: 10.1536/ihj.20-828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our study was aimed at exploring the roles of lncRNA RP11-400K9.4 (RP11-400K9.4) on hypoxia/reoxygenation (H/R) -induced cardiomyocytes apoptosis. H/R model was constructed in rat primary cardiomyocytes (PC) and H9c2 cells. In this study, the results showed that H/R significantly induced the apoptosis of PC and H9c2 cells. The expression of RP11-400K9.4 was upregulated in H/R-induced PC and H9c2 cells, but miR-423 expression was downregulated. Silencing RP11-400K9.4 could attenuate H/R-induced apoptosis in PC and H9c2 cells. We also found that miR-423 was a potential target of RP11-400K9.4. The effect of silencing RP11-400K9.4 on H/R-induced apoptosis of PC and H9c2 cells was significantly reversed by miR-423 inhibitor transfection. Furthermore, our data confirmed that silencing RP11-400K9.4 promoted the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) /extracellular signal-regulated kinase (ERK) pathways and these phenomena can be reversed by miR-423 inhibitor transfection. In conclusion, our study demonstrated that silencing RP11-400K9.4 could alleviate H/R-induced cardiomyocytes damages via suppressing apoptosis by targeting miR-423 with the activation of PI3K/AKT and MEK/ERK signaling pathways.
Collapse
Affiliation(s)
- Liqiong Zhang
- Department of Geriatrics, Qujing Number 1 People's Hospital
| | - Chao Yang
- Department of ECG Room, Weifang Yidu Central Hospital
| | - Binghua Qiu
- Department of General Practice, Weifang people's Hospital
| |
Collapse
|
13
|
Ke R, Lv L, Zhang S, Zhang F, Jiang Y. Functional mechanism and clinical implications of MicroRNA-423 in human cancers. Cancer Med 2020; 9:9036-9051. [PMID: 33174687 PMCID: PMC7724490 DOI: 10.1002/cam4.3557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/16/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs play a vital role in the regulatory mechanisms of tumorigenesis. Current research indicates that microRNA-423 (miR-423) is abnormally expressed in various human tumors and participates in multiple signaling pathways of cancer progression. In most studies, miR-423 was confirmed as oncomiR, while a few contradictory reports considered miR-423 as an anticancer miRNA. The paradoxical role in cancer may hinder the application of miR-423 as a diagnostic and therapeutic target. Simultaneously, the interaction mechanism between miR-423 and lncRNA also needs attention. In this review, we have summarized the dual role of aberrant miR-423 expression and its mechanisms in tumorigenesis, and the therapeutic potential of miR-423 in human tumors.
Collapse
Affiliation(s)
- RuiSheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China
| | - LiZhi Lv
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| | - SiYu Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - FuXing Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yi Jiang
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| |
Collapse
|
14
|
Zanfi ED, Fantini S, Lotti R, Bertesi M, Marconi A, Grande A, Manfredini R, Pincelli C, Zanocco-Marani T. Wnt/CTNNB1 Signal Transduction Pathway Inhibits the Expression of ZFP36 in Squamous Cell Carcinoma, by Inducing Transcriptional Repressors SNAI1, SLUG and TWIST. Int J Mol Sci 2020; 21:ijms21165692. [PMID: 32784485 PMCID: PMC7461120 DOI: 10.3390/ijms21165692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
The Wnt/CTNNB1 pathway is often deregulated in epithelial tumors. The ZFP36 gene, encoding the mRNA binding protein Tristetraprolin (TTP), is downregulated in several cancers, where it has been described to behave as a tumor suppressor. By this report, we show that Wnt/CTNNB1 pathway is constitutively activated, and ZFP36 expression is downregulated in Squamous Cell Carcinoma (SCC) cell lines compared to normal keratinocytes. Moreover, we suggest that the decrease of ZFP36 expression might depend on the activity of transcriptional repressors SNAI1, SLUG and TWIST, whose expression is induced by Wnt/CTNNB1, highlighting a potential regulatory mechanism underlying ZFP36 downregulation in epithelial cancers.
Collapse
Affiliation(s)
- Emma D. Zanfi
- Laboratory of Applied Biology, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (A.G.)
| | - Sebastian Fantini
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (R.M.)
| | - Roberta Lotti
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.L.); (A.M.); (C.P.)
| | - Matteo Bertesi
- Laboratory of Applied Biology, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (A.G.)
| | - Alessandra Marconi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.L.); (A.M.); (C.P.)
| | - Alexis Grande
- Laboratory of Applied Biology, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (A.G.)
| | - Rossella Manfredini
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (R.M.)
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.L.); (A.M.); (C.P.)
| | - Tommaso Zanocco-Marani
- Laboratory of Applied Biology, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (A.G.)
- Correspondence:
| |
Collapse
|