1
|
Ma Y, Zhang H, Jin C, Kang C. Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks. Front Genet 2023; 14:1136672. [PMID: 36845380 PMCID: PMC9948011 DOI: 10.3389/fgene.2023.1136672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes. Investigation of the lncRNA-protein interaction contributes to discovering the undetected molecular functions of lncRNAs. In recent years, increasingly computational approaches have substituted the traditional time-consuming experiments utilized to crack the possible unknown associations. However, significant explorations of the heterogeneity in association prediction between lncRNA and protein are inadequate. It remains challenging to integrate the heterogeneity of lncRNA-protein interactions with graph neural network algorithms. Methods: In this paper, we constructed a deep architecture based on GNN called BiHo-GNN, which is the first to integrate the properties of homogeneous with heterogeneous networks through bipartite graph embedding. Different from previous research, BiHo-GNN can capture the mechanism of molecular association by the data encoder of heterogeneous networks. Meanwhile, we design the process of mutual optimization between homogeneous and heterogeneous networks, which can promote the robustness of BiHo-GNN. Results: We collected four datasets for predicting lncRNA-protein interaction and compared the performance of current prediction models on benchmarking dataset. In comparison with the performance of other models, BiHo-GNN outperforms existing bipartite graph-based methods. Conclusion: Our BiHo-GNN integrates the bipartite graph with homogeneous graph networks. Based on this model structure, the lncRNA-protein interactions and potential associations can be predicted and discovered accurately.
Collapse
Affiliation(s)
- Yuzhou Ma
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Han Zhang
- College of Artificial Intelligence, Nankai University, Tianjin, China,*Correspondence: Han Zhang,
| | - Chen Jin
- College of Computer Science, Nankai University, Tianjin, China
| | - Chuanze Kang
- College of Artificial Intelligence, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Ren D, Lu J, Han X, Xiong W, Jiang H, Wei Y, Wang Y. LINC00641 contributes to nasopharyngeal carcinoma cell malignancy through FOXD1 upregulation at the post-transcriptional level. Biochem Cell Biol 2021; 99:750-758. [PMID: 34767742 DOI: 10.1139/bcb-2020-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common tumor in the head and neck and is prevalent in China, especially in the southern regions. Molecular mechanisms have attracted much attention in NPC research. FOXD1 has been reported to be a tumor promoter in various cancers. The present study was designed to explore the function of FOXD1 in NPC cells. Functional analyses, including the trypan blue staining assay, EdU and JC-1 assay, and flow cytometry analysis, revealed that FOXD1 facilitated NPC cell proliferation and inhibited NPC cell apoptosis. Next, by means of "starBase" database and mechanism analyses, such as RIP assay, RNA pull-down assay and luciferase reporter assay, miR-378a-3p was found to target FOXD1 and negatively regulate FOXD1 expression in NPC cells. Moreover, miR-378a-3p plays a suppressive role in NPC cells. LINC00641 was identified as a sponge of miR-378a-3p and positively modulated FOXD1 expression in NPC cells. Finally, a series of rescue assays indicated that LINC00641 accelerated NPC cell proliferation and hindered NPC cell apoptosis through FOXD1 upregulation. In conclusion, the present study demonstrated an innovative ceRNA mechanism of LINC00641/miR-378a-3p/FOXD1 in NPC cells, which might provide new insights into NPC treatment.
Collapse
Affiliation(s)
- Dan Ren
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinlong Lu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Xing Han
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Weiming Xiong
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - He Jiang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Yunzhong Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Yongli Wang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
Li Q, Liang Y, Liu Z, Yu C. Associations of GWAS-Identified Risk Loci with Progression, Efficacy and Toxicity of Radiotherapy of Head and Neck Squamous Cell Carcinoma Treated with Radiotherapy. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1205-1210. [PMID: 34584443 PMCID: PMC8464356 DOI: 10.2147/pgpm.s325349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) ranks the sixth most common cancer worldwide. This study aims to evaluate the associations of GWAS-identified HNSCC risk loci with progression, efficacy and toxicity of radiotherapy of HNSCC treated with radiotherapy. Methods Six GWAS-identified risk loci were genotyped and evaluated. Multivariate logistic regression was used to determine the associations of these SNPs with progression, efficacy and toxicity of radiotherapy of HNSCC treated with radiotherapy. Results We found that rs259919 was significantly associated with higher TNM stage (allele A vs G: OR=1.49; 95% CI: 1.09–2.03; P=0.012), while rs3135001 was significantly associated with better efficacy of radiotherapy (allele T vs C: OR=1.80, 95% CIs=1.19–2.73, P=0.005). Both SNP rs1265081 (allele A vs C: OR=1.41, 95% CIs=1.08–1.86, P=0.012) and rs3135001 (allele T vs allele C: OR=0.53, 95% CIs=0.35–0.79, P=0.002) were significantly associated with the occurrence of grade 3–4 oral mucositis. Conclusion We identified that three GWAS-identified HNSCC risk loci were significantly associated with progression, efficacy and toxicity of radiotherapy of HNSCC. Our findings strengthen the understanding of the essential role of genetic background in the progression and therapeutic effects of HNSCC.
Collapse
Affiliation(s)
- Qinghuan Li
- Oncology Radiotherapy Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People's Republic of China
| | - Yi Liang
- Oncology Radiotherapy Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People's Republic of China
| | - Zeng Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People's Republic of China
| | - Chuanyun Yu
- Oncology Radiotherapy Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People's Republic of China
| |
Collapse
|
4
|
Yang G, Zeng C, Liu Y, Li D, Cui J. ZNRD1-AS1 knockdown alleviates malignant phenotype of retinoblastoma through miR-128-3p/BMI1 axis. Am J Transl Res 2021; 13:5866-5879. [PMID: 34306331 PMCID: PMC8290669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND ZNRD1-AS1 plays an important role in liver cancer, endometrial cancer and other diseases. However, the relationship between ZNRD1-AS1 and retinoblastoma has not been studied in detail. This study aimed to determine the role of ZNRD1-AS1 in retinoblastoma. METHODS Differentially expressed genes in retinoblastoma downloaded from GEO database were identified by Limma package, and the expression and cell location of ZNRD1-AS1 were detected by real-time quantitative PCR (RT-qPCR). The relationships between miR-128-3p and two genes (ZNRD1-AS1 and BMI1) were analyzed by bioinformatics and dual-luciferase assay. After manipulating the expressions of ZNRD1-AS1, miR-128-3p and BMI1, cell viability, tube length, migration, invasion and the protein expressions (PCNA, E-Cadherin, N-Cadherin) of retinoblastoma cells were determined by cell counting kit-8 (CCK-8), tube formation, transwell and Western blot assays, respectively. Subcutaneous transplantation tumor assay, immunohistochemistry, and RT-qPCR were applied to verify the functions of the target gene in vivo. RESULTS ZNRD1-AS1 was up-regulated in the cytoplasm of retinoblastoma and regulated BMI1 via sponging miR-128-3p. ZNRD1-AS1 knockdown alleviated the malignant phenotype (viability, tube length, migration and invasion) of retinoblastoma cells, reduced tumor volume and weight, and inhibited BMI1 and CD34 expressions. Different from miR-128-3p mimic, miR-128-3p inhibitor promoted malignant phenotype of retinoblastoma cells, and partially reversed the inhibitory effect of siZNRD1-AS1. MiR-128-3p mimic down-regulated BMI1, PNCA, N-Cadherin expressions, and up-regulated p16 and E-Cadherin expressions. The regulatory effect of miR-128-3p was partially reversed by BMI1. CONCLUSION ZNRD1-AS1, acting as a "sponge" of miR-128-3p, up-regulates BMI1, thereby promoting the progression of retinoblastoma.
Collapse
Affiliation(s)
- Guanghua Yang
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Chen Zeng
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Yang Liu
- Department of Pediatric Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Dongliang Li
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Juanjuan Cui
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| |
Collapse
|
5
|
Ye L, Wang F, Wu H, Yang H, Yang Y, Ma Y, Xue A, Zhu J, Chen M, Wang J, Zhang QA. Functions and Targets of miR-335 in Cancer. Onco Targets Ther 2021; 14:3335-3349. [PMID: 34045870 PMCID: PMC8144171 DOI: 10.2147/ott.s305098] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18~25 nt in length) that act as master regulators of eukaryotic gene expression. They might play an oncogenic or tumor-suppressive role in multiple cancers. In recent decades, several studies have focused on the functions and mechanisms of miR-335 in cancer. The expression level of miR-335 in tissues and cells varies with cancer types, and miR-335 has been proposed as a potential biomarker for the prognosis of cancer. Besides, miR-335 may serve as an oncogene or tumor suppressor via regulating different targets or pathways in tumor initiation, development, and metastasis. Furthermore, miR-335 also influences tumor microenvironment and drug sensitivity. MiR-335 is regulated by various factors such as lncRNAs and microRNAs. In this review, we reveal the functions and targets of miR-335 in various cancers and its potential application as a possible biomarker in prognostic judgment and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lingling Ye
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Fen Wang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hao Wu
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yajun Ma
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Aili Xue
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhu
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Meili Chen
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jinyan Wang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Quan An Zhang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Du M, Hu X, Jiang X, Yin L, Chen J, Wen J, Fan Y, Peng F, Qian L, Wu J, He X. LncRNA EPB41L4A-AS2 represses Nasopharyngeal Carcinoma Metastasis by binding to YBX1 in the Nucleus and Sponging MiR-107 in the Cytoplasm. Int J Biol Sci 2021; 17:1963-1978. [PMID: 34131399 PMCID: PMC8193272 DOI: 10.7150/ijbs.55557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is known for its potential to progress to the lymph nodes and distant metastases at an early stage. As an important regulator in tumorigenesis biological processes, the functions of lncRNA in NPC tumor development remain largely unclear. In this research, the expression of EPB41L4A-AS2 in NPC tissues and cells was analyzed via real-time quantitative polymerase chain reaction (qRT-PCR). CCK8, colony formation, and EDU experiments were used to determine the viability of NPC cells. Transwell and wound healing assays were performed to test NPC cell migration and invasion. RNA pull-down and mass spectrometry analysis were used to identify potential binding proteins. Then, a popliteal lymph node metastasis model was established to test NPC metastasis. EPB41L4A-AS2 is repressed by transforming growth factor-beta, which is downregulated in NPC cells and tissue. It is associated with the presence of distant metastasis and adverse outcomes. The univariate and multivariate survival assays confirmed that EPB41L4A-AS2 expression was an independent predictor of progression-free survival (PFS) in patients with NPC. Biological analyses showed that overexpression of EPB41L4A-AS2 reduced the metastasis and invasion of NPC in vitro and in vivo, but had no significant effect on cell proliferation. Mechanistically, in the nucleus we identified that EPB41L4A-AS2 relies on binding to YBX1 to reduce the stability of Snail mRNA to enhance the expression of E-cadherin and reverse the progression of epithelial-to-mesenchymal transition (EMT). In the cytoplasm, we found that EPB41L4A-AS2 blocked the invasion and migration of NPC cells by promoting LATS2 expression via sponging miR-107. In a whole, the findings of this study help to further understand the metastasis mechanism of NPC and could help in the prevention and treatment of NPC metastasis.
Collapse
Affiliation(s)
- Mingyu Du
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Xinyu Hu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Xuesong Jiang
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Li Yin
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Jie Chen
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Jing Wen
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Yanxin Fan
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Fanyu Peng
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Luxi Qian
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Jing Wu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Xia He
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| |
Collapse
|
7
|
Zhang X, Song X, Lai Y, Zhu B, Luo J, Yu H, Yu Y. Identification of key pseudogenes in nasopharyngeal carcinoma based on RNA-Seq analysis. BMC Cancer 2021; 21:483. [PMID: 33931030 PMCID: PMC8088053 DOI: 10.1186/s12885-021-08211-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant head and neck tumor, and more than 70% of new cases are in East and Southeast Asia. However, association between NPC and pseudogenes playing important roles in genesis of multiple tumor types is still not clear and needs to be investigated. METHODS Using RNA-Sequencing (RNA-seq) technology, we analyzed pseudogene expression in 13 primary NPC and 6 recurrent NPC samples as well as their paracancerous counterparts. Quantitative PCR was used to validate the differentially expressed pseudogenes. RESULTS We found 251 differentially expressed pseudogenes including 73 up-regulated and 178 down-regulated ones between primary NPC and paracancerous tissues. Enrichment analysis of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were conducted to filter out the key pseudogenes. We reported that pseudogenes from cytochrome P450 (CYP) family, such as CYP2F2P, CYP2G1P, CYP4F24P, CYP2B7P and CYP2G2P were significantly down-regulated in NPC compared to paracancerous tissues, while IGHV1OR15-2, IGHV3-11, FCGR1CP and IGHV3-69-1 belonging to Fc gamma receptors were significantly up-regulated. CYP2B7P, CYP2F2P and CYP4F26P were enriched in arachidonic acid metabolism pathway. The qRT-PCR analysis validated the lower expression of pseudogenes CYP2F2P and CYP2B7P in NPC tissues and cell lines compared to paracancerous tissues and normal human nasopharyngeal epithelial cell line. CYP2B7P overexpression weakened migratory and invasive capacity of NPC cell line. Moreover, the expression pattern of those pseudogenes in recurrent NPC tissues was different from the primary NPC. CONCLUSION This study suggested the role of pseudogenes in tumorigenesis and progression, potentially functioning as therapeutic targets to NPC.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Xiaole Song
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Yuting Lai
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Bijun Zhu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Jiqin Luo
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China. .,Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yiqun Yu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China.
| |
Collapse
|
8
|
LncRNA SNHG6 accelerates nasopharyngeal carcinoma progression via modulating miR-26a-5p/ARPP19 axis. Bioorg Med Chem Lett 2021; 40:127955. [PMID: 33744438 DOI: 10.1016/j.bmcl.2021.127955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Long noncoding RNAs (lncRNAs) have been reported to be involved in multiple cancer progression, yet the biological role of lncRNA SNHG6 in nasopharyngeal carcinoma (NPC) is still unclear. This research aims to explore the molecular mechanism of SNHG6 in the development and progression of NPC. DESIGN Prospective feasibility study. SETTING The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital. Long noncoding RNAs (lncRNAs) have been reported to be involved in multiple cancer progression, yet the biological role of lncRNA SNHG6 in nasopharyngeal carcinoma (NPC) is still unclear. This research aims to explore the molecular mechanism of SNHG6 in the development and progression of NPC. RT-qPCR assay was used to examine the expression of SNHG6, miR-26a-5p, and ARPP19 in NPC. CCK-8 and transwell assays were employed to detect NPC cell viability, migration, and invasion. The interaction between miR-26a-5p and SNHG6 or ARPP19 was determined by the luciferase reporter, RIP and RNA pull-down assays. We observed that SNHG6 expression was enhanced in NPC tissues and cells. SNHG6 deletion attenuated NPC cell viability and metastasis. MiR-26a-5p was predicted and validated to interact with SNHG6, and miR-26a-5p expression was markedly elevated in NPC after SNHG6 silence. Moreover, miR-26a-5p inhibitor rescued the suppressive effect of SNHG6 depletion on NPC cell viability, migration and invasion. Besides, ARPP19 was a target of SNHG6 and positively regulated by SNHG6. ARPP19 overexpression neutralized the repressive effect of SNHG6 knockdown on NPC progression. Our results indicated that SNHG6 regulated NPC progression through modulating miR-26a-5/ARPP19 axis, which might provide new insights into NPC diagnosis and treatment.
Collapse
|