1
|
Zhang S, Nie S, Wu R, Chen X, Huang P. Extraction, purification, structural characterization, and bioactivities of Radix Aconiti Lateralis Preparata (Fuzi) polysaccharides: A review. Int J Biol Macromol 2025; 292:139285. [PMID: 39736284 DOI: 10.1016/j.ijbiomac.2024.139285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Radix Aconiti Lateralis Preparata (Fuzi) polysaccharide (FZP) is a key bioactive macromolecule derived from the root of Aconitum carmichaeli Debx. FZP has a variety of biological activities, including immunomodulatory, anti-tumor, anti-depressant, organ-protective, hypoglycemic, anti-inflammatory, and other activities. The biological activities of polysaccharides are closely related to their structures, and different extraction and purification methods will yield different polysaccharide structures. In this review, we summarized the advancements in FZP research, including extraction techniques, biological activities, and mechanism to provide basic reference for developing and applying as therapeutic agents and functional foods. At the same time, the shortcomings of FZP research are discussed in depth, and the potential development prospects and future research direction are prospected.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shanshan Nie
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ruipeng Wu
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinju Chen
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Li J, Sun M, Xu C, Zhou C, Jing SJ, Jiang YY, Liu B. An integrated strategy for rapid discovery and identification of the potential effective fragments of polysaccharides from Saposhnikoviae Radix. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117099. [PMID: 37640255 DOI: 10.1016/j.jep.2023.117099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saposhnikoviae Radix (SR) is a traditional Chinese medicine, known as "Fangfeng". As one of the main active components, Saposhnikoviae Radix polysaccharides (SP) demonstrated a range of biological activities, especially immunity regulation activity. AIMS OF THE STUDY This study aimed at exploring whether polysaccharides have activity after degradation, then discovering the potential effective fragments of SP. MATERIALS AND METHODS Here we establish the chromatographic fingerprints method for 32 batches of 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatives of oligosaccharides by HPLC, meanwhile evaluating its immunomodulatory activity in vivo. Then, the potential effective fragments of SP were screened out based on the spectrum-effect relationship analysis between fingerprints and the pharmacological results. Besides, liquid chromatography ion trap-time of flight mass spectrometry (LC-IT-TOF MS) coupled with multiple data-mining techniques was used to identify the potential effective oligosaccharides. RESULTS These findings showed that the hydrolysate of SP have significant immunomodulatory, and the immunity regulation activity varies under different hydrolysis conditions. The 4 potential effective peaks of the hydrolysate of SP were mined by spectrum-effect relationship. Finally, the chemical structure of 4 potential effective oligosaccharide fragments of SP was elucidated based on LC-IT-TOF MS. F10 was inferred tentatively to be Hex1→6Hex1→6Hex1→6Hex1→6Hex1→6Gal; F18 was confirmed to be Rhamnose; F14 was inferred tentatively to be Hex1→4Hex1→ 4Hex1→4Gal and F25 was tentatively inferred to be Ara1→6Gal. CONCLUSIONS This study may provide a sound experimental foundation in the exploration of the active fragments from macromolecular components with relatively complex structures such as polysaccharides.
Collapse
Affiliation(s)
- Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Meng Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chang Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shu-Jin Jing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan-Yan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 102488, China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 102488, China.
| |
Collapse
|
3
|
Liang X, Li X, Sun S, Zhang H, Wang B, Xu F, Zhang Y, Liu Z. Effects and potential mechanisms of Saposhnikovia divaricata (Turcz.) Schischk. On type I allergy and pseudoallergic reactions in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116942. [PMID: 37487961 DOI: 10.1016/j.jep.2023.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of allergic disease is constantly increasing, but its pathogenesis is not fully understood. Saposhnikovia divaricata (SD), called 'Fangfeng' in China, not only can be used for antipyretic, analgesic and anti-inflammatory as a traditional Chinese medicine, but also as an active ingredient in about 8% prescriptions. However, its effects on type I allergy and pseudoallergy have not been clarified. AIM OF THE STUDY To explore the treatment and potential mechanisms of SD and its major bioactive component Prim-O-glucosylcimifugin (POG) on type I allergy and pseudoallergy in vitro and in vivo. MATERIALS AND METHODS The inhibitory effect of SD decoction and POG on type I allergy and its possible mechanism were evaluated by using RBL-2H3 cells model in vitro and the passive cutaneous anaphylaxis (PCA) mouse model in vivo. The cell degranulation of RBL-2H3 cells induced by DNP-IgE/DNP-BSA and Compound 48/80 (C48/80) was investigated, and the molecules of degranulation related signaling pathway was further detected by qRT-PCR and Western Blot analysis. Meanwhile, therapeutic effect of SD Decoction and POG were evaluated using PCA models in vivo. The molecular docking technology was conducted to explore the potential mechanisms. RESULTS In cells model induced by DNP-IgE/DNP-BSA, the release rate of β-Hex in high dose of SD and POG groups were 43.79% and 57.01%, and the release amount of HA in high dose of SD and POG groups were 26.19 ng/mL and 24.20 ng/mL. They were significantly lower than that in the model group. Besides, SD decoction and POG could significantly inhibit intracellular Ca2+ increasing and cell apoptosis. But there is no obvious effect on cells degranulation induced by C48/80. The molecular docking results showed that 5-O-Methylvisamioside and POG could bind with FcεRI α with stronger binding ability, but weak binding ability to Mrgprx2. Moreover, qPCR and Western blot analyses indicated that SD could down-regulate Lyn/Syk/PLCγ, MAPK and PI3K/AKT/NF-κB signal pathway to inhibit IgE-dependent cell degranulation. In mice PCA model, both SD and POG could dose-dependently attenuate the Evans Blue extravasation, paw and ear swelling induced by DNP-IgE/DNP-BSA, but no significant inhibition under the PCA models induced by C48/80. CONCLUSION In conclusion, SD is effective for the therapeutic of type I allergies, suggesting that SD is a potential candidate for the treatment of type I allergy, and the underlying mechanism of these effects needs to be further studied.
Collapse
Affiliation(s)
- Xiangyu Liang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Shusen Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Han Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Bikun Wang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Feng Xu
- Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China.
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| |
Collapse
|
4
|
Rao Z, Zhou H, Li Q, Zeng N, Wang Q. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Radix Saposhnikoviae: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116956. [PMID: 37487960 DOI: 10.1016/j.jep.2023.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Saposhnikoviae (R. Saposhnikoviae), commonly known as FangFeng, is a renowned medicinal herb in China extensively utilized in traditional Chinese medicine. It expels pathogenic wind from the body surface, alleviates pain by removing dampness, and relieves convulsion. Therefore, it is mainly used for treating exterior syndrome, itchy wind papules, rheumatic arthralgia, and splenic asthenia-induced dampness. R. saposhnikoviae has important medicinal value, and the polysaccharide component is one of its important active ingredients. AIM OF THE REVIEW This review summarizes the factors influencing the content of polysaccharides in R. Saposhnikoviae (PRSs), the techniques employed for their extraction, separation, and purification, their structural characterization, and their biological activities. MATERIALS AND METHODS Relevant research reports on PRSs were collected from the Chinese National Knowledge Infrastructure, Web of Science, PubMed, Wanfang Data Knowledge Service Platform, China Master Theses Full-text Database, and China Doctoral Dissertations Full-text Database. RESULTS The content of PRSs can vary depending on cultivation methods and harvesting time. PRSs were extracted using various extraction techniques such as hot water, ultrasonic-assisted, microwave-assisted, and enzymatic extractions, as well as water extraction and alcohol precipitation. Effective purification methods involve protein removal using trifluoro-trichloroethane and the decolorization of the polysaccharide using column chromatography with D280 anion exchange resins. Current research highlights the significant pharmacological activities of PRSs in R. Saposhnikoviae, including immunomodulatory, antioxidant, anti-allergic, anti-cancer, and anti-osteoporotic effects as well as prevention of calcium loss and maintenance of mucosal function. CONCLUSIONS PRSs play a crucial role as bioactive constituents of R. Saposhnikoviae, exhibiting diverse biological activities and promising applications. A deeper understanding of PRSs will contribute to the improved utilization of R. Saposhnikoviae and the development of related derivatives of the active ingredients.
Collapse
Affiliation(s)
- Zhili Rao
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine/The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, 400021, PR China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Qian Li
- Rehabilitation Department, Chongqing Hospital of Traditional Chinese Medicine/The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, 400021, PR China
| | - Nan Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China.
| | - Qin Wang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine/The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, 400021, PR China.
| |
Collapse
|
5
|
Liu Q, Song B, Tong S, Yang Q, Zhao H, Guo J, Tian X, Chang R, Wu J. Research Progress on the Anticancer Activity of Plant Polysaccharides. Recent Pat Anticancer Drug Discov 2024; 19:573-598. [PMID: 37724671 DOI: 10.2174/1574892819666230915103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023]
Abstract
Tumor is a serious threat to human health, with extremely high morbidity and mortality rates. However, tumor treatment is challenging, and the development of antitumor drugs has always been a significant research focus. Plant polysaccharides are known to possess various biological activities. They have many pharmacological properties such as immunomodulation, antitumor, antiviral, antioxidative, antithrombotic, and antiradiation effects, reduction of blood pressure and blood sugar levels, and protection from liver injury. Among these effects, the antitumor effect of plant polysaccharides has been widely studied. Plant polysaccharides can inhibit tumor proliferation and growth by inhibiting tumor cell invasion and metastasis, inducing cell apoptosis, affecting the cell cycle, and regulating the tumor microenvironment. They also have the characteristics of safety, high efficiency, and low toxicity, which can alleviate, to a certain extent, the adverse reactions caused by traditional tumor treatment methods such as surgery, radiotherapy, and chemotherapy. Therefore, this paper systematically summarizes the direct antitumor effects of plant polysaccharides, their regulatory effects on the tumor microenvironment, and intervening many common high-incidence tumors in other ways. It also provides data support for the administration of plant polysaccharides in modern tumor drug therapy, enabling the identification of new targets and development of new drugs for tumor therapy.
Collapse
Affiliation(s)
- Qiaoyan Liu
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bo Song
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Sen Tong
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qiuqiong Yang
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jia Guo
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xuexia Tian
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Renjie Chang
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Junzi Wu
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
6
|
Min SH, Lei W, Jun CJ, Yan ZS, Guang YX, Tong Z, Yong ZP, Hui LZ, Xing H. Design strategy and research progress of multifunctional nanoparticles in lung cancer therapy. Expert Opin Investig Drugs 2023; 32:723-739. [PMID: 37668152 DOI: 10.1080/13543784.2023.2254683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Lung cancer is one of the cancer types with the highest mortality rate, exploring a more effective treatment modality that improves therapeutic efficacy while mitigating side effects is now an urgent requirement. Designing multifunctional nanoparticles can be used to overcome the limitations of drugs and conventional drug delivery systems. Nanotechnology has been widely researched, and through different needs, suitable nanocarriers can be selected to load anti-cancer drugs to improve the therapeutic effect. It is foreseeable that with the rapid development of nanotechnology, more and more lung cancer patients will benefit from nanotechnology. This paper reviews the merits of various multifunctional nanoparticles in the treatment of lung cancer to provide novel ideas for lung cancer treatment. AREAS COVERED This review focuses on summarizing various nanoparticles for targeted lung cancer therapy and their advantages and disadvantages, using nanoparticles loaded with anti-cancer drugs, delivered to lung cancer sites, enhancing drug half-life, improving anti-cancer drug efficacy and reducing side effects. EXPERT OPINION The delivery mode of nanoparticles with superior pharmacokinetic properties in the in vivo circulation enhances the half-life of the drug, and provides tissue-targeted selectivity and the ability to overcome biological barriers, bringing a revolution in the field of oncology.
Collapse
Affiliation(s)
- Shen Hui Min
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Jia Jun
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Shao Yan
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Xu Guang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Tong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Pei Yong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zhen Hui
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huang Xing
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Li B, Yang Z, Mao F, Wang Q, Fang H, Gu X, Zheng K, Zheng Y, Zhao Y, Jiang J. Phytochemical profile and biological activities of the essential oils in the aerial part and root of Saposhnikovia divaricata. Sci Rep 2023; 13:8672. [PMID: 37248268 DOI: 10.1038/s41598-023-35656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
The dried root of Saposhnikovia divaricata (Turcz.) Schischk. is popular as a good medicinal material, however the abundant aerial part is often discarded, which caused the waste of resources. In order to exploit resources, the essential oils of the plant aerial part and root were extracted, separately called as VOA and VOR, their chemicals were identified. The tumor necrosis factor-α, interleukin-6, nitric oxide and interleukin-1β were detected to evaluate the oils anti-inflammatory activities. Then, the oils free radical scavenging rates were measured with DPPH, ABTS and hydroxyl free radical. The oils antitumor activities were evaluated with HeLa and HCT-8 cancer cell lines. The results showed the concentrations of VOA and VOR were separately 0.261% and 0.475%. Seventeen components of VOA were identified, accounting for 80.48% of VOA, including phytol, spathulenol, phytone, 4(15),5,10(14)-Germacratrien-1-ol, neophytadiene, etc. Seven components of VOR were determined, representing 90.73% of VOR, consisted of panaxynol, β-bisabolene, etc. VOA and VOR significantly inhibited the secretion of nitric oxide, interleukin-1β, interleukin-6 and tumor necrosis factor-α, effectively scavenged the DPPH, ABTS and hydroxyl free radicals, and showed significant antiproliferative activity against HeLa and HCT-8. The two oils presented important biological activity, which provided a hopeful utilized basis, and helped to reduce the waste of the aerial non-medicinal resources of S. divaricata.
Collapse
Affiliation(s)
- Bing Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
| | - Zhenmin Yang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
| | - Fuying Mao
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Qian Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Huiyong Fang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Kaiyan Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, 050026, China
| | - Yunsheng Zhao
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| | - Jianming Jiang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| |
Collapse
|
8
|
Fan H, Sun M, Li J, Zhang S, Tu G, Liu K, Xia Q, Jiang Y, Liu B. Structure characterization and immunomodulatory activity of a polysaccharide from Saposhnikoviae Radix. Int J Biol Macromol 2023; 233:123502. [PMID: 36736976 DOI: 10.1016/j.ijbiomac.2023.123502] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
A new polysaccharide, named SP800201 with Mw of 2.17 × 105 g/mol, was isolated from Saposhnikoviae Radix. The monosaccharide composition of SP800201 mainly contained Gal, GalA, Ara, and Rha. SP800201 has a core structure containing GalA as the backbone and side chains consisting of GalA, Gal, Ara and Rha. Cell and zebrafish experiments were used to explore the immunomodulatory activity of SP800201. Results of vitro RAW264.7 cell experiments showed that SP800201 could significantly improve the proliferation and phagocytosis of macrophages, and promote the release of NO, TNF-α, IL-1β, and IL-6. Results of vivo experiments in immunocompromised zebrafish showed that SP800201 could also significantly increase the density of immune cells, the number of macrophages, and reduce NO, TNF-α, IL-1β, and IL-6. The above results showed that the Saposhnikoviae Radix polysaccharide has certain immunomodulatory activity.
Collapse
Affiliation(s)
- Haitao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; College of Bioengineering, Beijing Polytechnic, Beijing 100029, China
| | - Meng Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 102488, China
| | - Guangzhong Tu
- Beijing Institute of Microchemistry, Beijing 100091, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Yanyan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 102488, China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 102488, China.
| |
Collapse
|
9
|
Chen Y, Zhang T, Chen C, Xu Z, Liu C. Transcriptomics explores the potential of flavonoid in non-medicinal parts of Saposhnikovia divaricata (Turcz.) Schischk. FRONTIERS IN PLANT SCIENCE 2023; 14:1067920. [PMID: 36923128 PMCID: PMC10010146 DOI: 10.3389/fpls.2023.1067920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Saposhnikovia divaricata is a traditional Chinese medicine in China, which is widely used in clinic. The root of S. divaricata is often used as medicine, but little research has been done on its other tissues. METHODS In this study, the contents of root and leaf of S. divaricata were determined by HPLC, the differentially expressed genes were screened by transcriptome sequencing at molecular level, and then verified by network pharmacology. RESULTS The results showed that the content of 4'-O-β-D-glucosyl-5-O-methylvisamminol in the leaves was significantly higher than that in the roots, which was about 3 times higher than that in the roots. In addition, 10 differentially expressed key enzyme genes were screened in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthetic pathways. C4H and CYP98A were up-regulated in root, while F3H was down-regulated in root. They can be used as important candidate genes for the mechanism of quality difference of S. divaricata. Finally, network pharmacological validation showed that 5-O-methylvesamitol plays an important role in the treatment of ulcerative colitis. DISCUSSION These findings not only provide insight into flavonoid biosynthesis in S. divaricata associated molecular regulation, but also provide a theoretical basis for the development and utilization of S. divaricata.
Collapse
Affiliation(s)
| | - Tao Zhang
- *Correspondence: Tao Zhang, ; Changbao Chen,
| | | | | | | |
Collapse
|
10
|
Li X, Li H, Wang T, Zhao Y, Shao Y, Sun Y, Zhang Y, Liu Z. Network pharmacology-based analysis of the mechanism of Saposhnikovia divaricata for the treatment of type I allergy. PHARMACEUTICAL BIOLOGY 2022; 60:1224-1236. [PMID: 35760567 PMCID: PMC9246231 DOI: 10.1080/13880209.2022.2086583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Saposhnikovia divaricata (Turcz.) Schischk (Apiaceae) (SD) has various pharmacological activities, but its effects on type I allergy (TIA) have not been comprehensively studied. OBJECTIVE This study evaluates the treatment and molecular mechanisms of SD against TIA. MATERIALS AND METHODS The effective components and action targets of SD were screened using TCMSP database, and allergy-related targets of SD were predicted using GeneCards and OMIM database. The obtained target intersections were imported into David database for GO analysis, and used R software to perform KEGG analysis. The RBL-2H3 cells sensitised by DNP-IgE/DNP-BSA were treated with different concentrations of SD (root decoction, 0.5, 1, and 2 mg/mL), prim-O-glucosylcimifugin (POG, 10, 40, and 80 μg/mL) and the positive control drug-ketotifen fumarate (KF, 30 μM) for 12 h, then subjected to cell degranulation and qPCR analysis. RESULTS Eighteen active compounds of SD and 38 intersection targets were obtained: TIA-related signal pathways mainly include calcium signal pathway, PI3K-Akt signal pathway and MAPK signal pathway. Taking the β-Hex release rate of the model group as the base, the release rate of SD and POG in high dose groups were 43.79% and 57.01%, respectively, which were significantly lower than model group (p < 0.01), and significantly lower than KF group (63.83%, p < 0.01, p < 0.05). SD and POG could down-regulate the expression of related proteins in the Lyn/Syk, PI3K/AKT and MAPK signalling pathways. DISCUSSION AND CONCLUSION Saposhnikovia divaricata could inhibit IgE-induced degranulation of mast cells, providing a scientific basis for further research and clinical applications of SD in TIA treatment.
Collapse
Affiliation(s)
- Xiangsheng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hui Li
- Department of Urology, Peking University International Hospital, Beijing, China
| | - Tingting Wang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yang Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yuxin Shao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yizhao Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
11
|
Ding J, Guo Y. Recent Advances in Chitosan and its Derivatives in Cancer Treatment. Front Pharmacol 2022; 13:888740. [PMID: 35694245 PMCID: PMC9178414 DOI: 10.3389/fphar.2022.888740] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer has become a main public health issue globally. The conventional treatment measures for cancer include surgery, radiotherapy and chemotherapy. Among the various available treatment measures, chemotherapy is still one of the most important treatments for most cancer patients. However, chemotherapy for most cancers still faces many problems associated with a lot of adverse effects, which limit its therapeutic potency, low survival quality and discount cancer prognosis. In order to decrease these side effects and improve treatment effectiveness and patient’s compliance, more targeted treatments are needed. Sustainable and controlled deliveries of drugs with controllable toxicities are expected to address these hurdles. Chitosan is the second most abundant natural polysaccharide, which has excellent biocompatibility and notable antitumor activity. Its biodegradability, biocompatibility, biodistribution, nontoxicity and immunogenicity free have made chitosan become a widely used polymer in the pharmacology, especially in oncotherapy. Here, we make a brief review of the main achievements in chitosan and its derivatives in pharmacology with a special focus on their agents delivery applications, immunomodulation, signal pathway modulation and antitumor activity to highlight their role in cancer treatment. Despite a large number of successful studies, the commercialization of chitosan copolymers is still a big challenge. The further development of polymerization technology may satisfy the unmet medical needs.
Collapse
Affiliation(s)
- Jingxian Ding
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, China
| | - Yonghong Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yonghong Guo,
| |
Collapse
|