1
|
Dai P, Wang L. Targeting c-MYC has a key role in hepatocellular carcinoma therapy. Crit Rev Oncol Hematol 2025; 213:104786. [PMID: 40473083 DOI: 10.1016/j.critrevonc.2025.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/18/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a top cause of cancer-associated mortality worldwide, with limited effective treatment options. The oncogenic transcription factor c-MYC plays a pivotal role in HCC pathogenesis by regulating key cellular processes, including proliferation, metabolism, and apoptosis. Impaired c-MYC regulation strongly correlates with aberrant activation of multiple signaling pathways, such as PI3K/Akt/mTOR, Wnt/β-catenin, and MAPK/ERK, which collectively drive tumor progression. Furthermore, c-MYC facilitates metabolic reprogramming, enhancing glycolysis and glutamine metabolism to support rapid tumor growth. Recent advances highlight the critical interplay between c-MYC and epigenetic modulators, ubiquitination processes, and non-coding RNAs, which further sustain its oncogenic activity. Targeting c-MYC through direct inhibition, pathway-specific interventions, and combination therapies stands as a compelling option for HCC treatment. This review offers an in-depth overview of the molecular mechanisms governing c-MYC-driven hepatocarcinogenesis and explores emerging therapeutic approaches aimed at disrupting this oncogenic network. A deeper understanding of c-MYC's role in HCC will pave the way for novel treatment strategies with potential clinical applications.
Collapse
Affiliation(s)
- Peng Dai
- Comprehensive Internal Medicin,Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shan Xi Taiyuan, 030001, China.
| | - Liping Wang
- Colorectal Surgery,Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shan Xi Taiyuan, 030001, China.
| |
Collapse
|
2
|
Shao Y, Zhang S, Pan Y, Peng Z, Dong Y. miR-135b: A key role in cancer biology and therapeutic targets. Noncoding RNA Res 2025; 12:67-80. [PMID: 40124960 PMCID: PMC11930451 DOI: 10.1016/j.ncrna.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
miR-135b, a microRNA, is consistently up-regulated in various cancer tissues and cells, promoting cancer progression. By inhibiting one or more target genes, miR-135b regulates phenotypes such as cancer growth, apoptosis, migration, invasion, drug resistance, and angiogenesis, establishing it as a critical driver of cancer progression. Additionally, miR-135b is regulated by various oncogenes and therapeutic drugs, highlighting its complexity and therapeutic potential. Significant progress has been made in understanding miR-135b's impact on cancer cell behavior, establishing it as a promising biomarker for cancer diagnosis and prognosis, as well as a potential target for future cancer therapies. However, despite the extensive research on this topic, there has been no comprehensive review summarizing its role and mechanisms across different cancer types. This review aims to provide a detailed overview of the biological characteristics of miR-135b, its regulatory targets, upstream signaling pathways, and its therapeutic potential, including its influence on cancer chemoresistance. The review also addresses key controversies surrounding miR-135b in cancer research, aiming to deepen the understanding of its role, promote the transformation of its clinical application, and provide a theoretical foundation for developing more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Yingchun Shao
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yuxin Pan
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhan Peng
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
3
|
Su L, Luo H, Yan Y, Yang Z, Lu J, Xu D, Du L, Liu J, Yang G, Chi H. Exploiting gender-based biomarkers and drug targets: advancing personalized therapeutic strategies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1433540. [PMID: 38966543 PMCID: PMC11222576 DOI: 10.3389/fphar.2024.1433540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
This review systematically examines gender differences in hepatocellular carcinoma (HCC), identifying the influence of sex hormones, genetic variance, and environmental factors on the disease's epidemiology and treatment outcomes. Recognizing the liver as a sexually dimorphic organ, we highlight how gender-specific risk factors, such as alcohol consumption and obesity, contribute differently to hepatocarcinogenesis in men and women. We explore molecular mechanisms, including the differential expression of androgen and estrogen receptors, which mediate diverse pathways in tumor biology such as cell proliferation, apoptosis, and DNA repair. Our analysis underscores the critical need for gender-specific research in liver cancer, from molecular studies to clinical trials, to improve diagnostic accuracy and therapeutic effectiveness. By incorporating a gender perspective into all facets of liver cancer research, we advocate for a more precise and personalized approach to cancer treatment that acknowledges gender as a significant factor in both the progression of HCC and its response to treatment. This review aims to foster a deeper understanding of the biological and molecular bases of gender differences in HCC and to promote the development of tailored interventions that enhance outcomes for all patients.
Collapse
Affiliation(s)
- Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Huanyu Luo
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Danqi Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Linjuan Du
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Nuermaimaiti A, Chang L, Yan Y, Sun H, Xiao Y, Song S, Feng K, Lu Z, Ji H, Wang L. The role of sex hormones and receptors in HBV infection and development of HBV-related HCC. J Med Virol 2023; 95:e29298. [PMID: 38087447 DOI: 10.1002/jmv.29298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
Gender disparity in hepatitis B virus (HBV)-related diseases has been extensively documented. Epidemiological studies consistently reported that males have a higher prevalence of HBV infection and incidence of hepatocellular carcinoma (HCC). Further investigations have revealed that sex hormone-related signal transductions play a significant role in gender disparity. Sex hormone axes showed significantly different responses to virus entry and replication. The sex hormones axes change the HBV-specific immune responses and antitumor immunity. Additionally, Sex hormone axes showed different effects on the development of HBV-related disease. But the role of sex hormones remains controversial, and researchers have not reached a consensus on the role of sex hormones and the use of hormone therapies in HCC treatment. In this review, we aim to summarize the experimental findings on sex hormones and provide a comprehensive understanding of their roles in the development of HCC and their implications for hormone-related HCC treatment.
Collapse
Affiliation(s)
- Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Leo J, Dondossola E, Basham KJ, Wilson NR, Alhalabi O, Gao J, Kurnit KC, White MG, McQuade JL, Westin SN, Wellberg EA, Frigo DE. Stranger Things: New Roles and Opportunities for Androgen Receptor in Oncology Beyond Prostate Cancer. Endocrinology 2023; 164:bqad071. [PMID: 37154098 PMCID: PMC10413436 DOI: 10.1210/endocr/bqad071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.
Collapse
Affiliation(s)
- Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Wellberg
- Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Yavuz M, Sabour Takanlou L, Biray Avcı Ç, Demircan T. A Selective Androgen Receptor Modulator, S4, Displays Robust Anti-cancer Activity on Hepatocellular Cancer Cells by Negatively Regulating PI3K/AKT/mTOR Signaling Pathway. Gene 2023; 869:147390. [PMID: 36990257 DOI: 10.1016/j.gene.2023.147390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem that often correlates with poor prognosis. Due to the insufficient therapy options with limited benefits, it is crucial to identify new therapeutic approaches to overcome HCC. One of the vital signaling pathways in organ homeostasis and male sexual development is Androgen Receptor (AR) signaling. Its activity affects several genes that contribute to cancer characteristics and have essential roles in cell cycle progression, proliferation, angiogenesis, and metastasis. AR signaling has been shown to be misregulated in many cancers, including HCC, suggesting that it might contribute to hepatocarcinogenesis. Targeting AR signaling using anti-androgens, AR inhibitors, or AR-degrading molecules is a powerful and promising strategy to defeat HCC. In this study, AR signaling was targeted by a novel Selective Androgen Receptor Modulator (SARM), S4, in HCC cells to evaluate its potential anti-cancer effect. To date, S4 activity in cancer has not been demonstrated, and our data unrevealed that S4 significantly impaired HCC growth, migration, proliferation, and induced apoptosis through inhibiting PI3K/AKT/mTOR signaling. Since PI3K/AKT/mTOR signaling is frequently activated in HCC and contributes to its aggressiveness and poor prognosis, its negative regulation by the downregulation of critical components via S4 was a prominent finding. Further studies are necessary to investigate the S4 action mechanism and anti-tumorigenic capacity in in-vivo.
Collapse
|
7
|
Whole-Transcriptome Sequencing Combined with High-Dimensional Proteomic Technologies Reveals the Potential Value of miR-135b-5p as a Biomarker for Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6517963. [PMID: 36755690 PMCID: PMC9902149 DOI: 10.1155/2023/6517963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 01/31/2023]
Abstract
Purpose Hepatocellular carcinoma (HCC) is a disease with great heterogeneity and a high mortality rate. It is crucial to identify reliable biomarkers for diagnosis, prognosis, and treatment to improve clinical outcomes in patients with HCC. Alpha-fetoprotein (AFP) is not only a widely used biomarker in clinical practice but also plays a complicated role in HCC, and it has recently been considered to be related to immunotherapy. MicroRNAs (miRNAs) are regarded as key regulators and promising biomarkers of HCC. We investigated the role of an AFP-related miRNA, miR-135b-5p, in HCC progression. Methods Identification of miR-135b-5p was performed based on a cohort of 65 HCC cases and the liver hepatocellular carcinoma cohort of The Cancer Genome Atlas (Asian people only). A combination of whole-transcriptome sequencing and high-dimensional proteomic technologies was used to study the role of miR-135b-5p in HCC. Results Upregulation of miR-135b-5p was detected in patients with HCC with high serum AFP levels (AFP > 400 ng/ml). Elevated miR-135b-5p expression was associated with adverse prognosis. We also identified the relevance between high miR-135b-5p expression and tumor-related pathological characteristics, such as Edmondson grade and vascular invasion. We revealed tyrosine kinase nonreceptor 1 as a potential target of miR-135b-5p. Additionally, the transcriptional start site of miR-135b-5p had potential binding sites for SRY-box transcription factor 9, and the stemness properties of tumor cells were more remarkable in HCC with the upregulation of miR-135b-5p. The molecular characterization of the miR-135b-5p-high group was similar to that of the HCC subclasses containing moderately and poorly differentiated tumors. Finally, gene signatures associated with improved clinical outcomes in immune checkpoint inhibitor therapy were upregulated in the miR-135b-5p-high group. Conclusion miR-135b-5p could be a biomarker for predicting the prognosis and antiprogrammed cell death protein 1 monotherapy response in HCC.
Collapse
|
8
|
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021; 10:3198. [PMID: 34831421 PMCID: PMC8619311 DOI: 10.3390/cells10113198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-dependent or through interaction with other DNA-bound transcription factors, as well as a number of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly prostate cancer. In the current review, we summarize the available data on the role of microRNAs, long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling, as well as the effects of AR on their expression. Recognition of the complicated interaction between non-coding RNAs and AR has practical importance in the design of novel treatment options, as well as modulation of response to conventional therapeutics.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| |
Collapse
|
9
|
Han J, Wang P, Xia X, Zhang L, Zhang H, Huang Y, Li X, Zhao W, Zhang L. EGR1 promoted anticancer effects of Scutellarin via regulating LINC00857/miR-150-5p/c-Myc in osteosarcoma. J Cell Mol Med 2021; 25:8479-8489. [PMID: 34346162 PMCID: PMC8419195 DOI: 10.1111/jcmm.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022] Open
Abstract
Scutellarin, an active flavone extracted from Erigeron breviscapus, is known to exhibit antitumour activity in many cancers. However, the effects of Scutellarin on osteosarcoma remain unclear. In this study, we found that Scutellarin suppressed osteosarcoma cell growth, induced cell apoptosis and inhibited tumorigenesis. Mechanistically, our data revealed that EGR1 was significantly increased under Scutellarin treatment. Increased EGR1 enhanced tumour‐suppressive effects of Scutellarin on osteosarcoma cells via transcriptionally downregulating LINC00857 expression. Additionally, we found that LINC00857 acted as a competitive endogenous RNA of miR‐150‐5p and inhibited the activity of miR‐150‐5p, which resulted in c‐Myc increase. Scutellarin could suppress c‐Myc protein levels through decreasing LINC00857 expression in osteosarcoma. Thus, these findings demonstrate that EGR1/ LINC00857/miR‐150‐5p/c‐Myc axis plays a key role in promoting anticancer effects of Scutellarin and Scutellarin might have potential clinical implication in osteosarcoma clinical treatment.
Collapse
Affiliation(s)
- Jian Han
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Peng Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xin Xia
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Li Zhang
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - He Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu Huang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaodong Li
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenzhi Zhao
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lu Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Yang Y, Liu KY, Liu Q, Cao Q. Androgen Receptor-Related Non-coding RNAs in Prostate Cancer. Front Cell Dev Biol 2021; 9:660853. [PMID: 33869227 PMCID: PMC8049439 DOI: 10.3389/fcell.2021.660853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in the United States. Androgen receptor (AR) signaling is the dominant oncogenic pathway in PCa and the main strategy of PCa treatment is to control the AR activity. A large number of patients acquire resistance to Androgen deprivation therapy (ADT) due to AR aberrant activation, resulting in castration-resistant prostate cancer (CRPC). Understanding the molecular mechanisms underlying AR signaling in the PCa is critical to identify new therapeutic targets for PCa patients. The recent advances in high-throughput RNA sequencing (RNA-seq) techniques identified an increasing number of non-coding RNAs (ncRNAs) that play critical roles through various mechanisms in different diseases. Some ncRNAs have shown great potentials as biomarkers and therapeutic targets. Many ncRNAs have been investigated to regulate PCa through direct association with AR. In this review, we aim to comprehensively summarize recent findings of the functional roles and molecular mechanisms of AR-related ncRNAs as AR regulators or targets in the progression of PCa.
Collapse
Affiliation(s)
- Yongyong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kilia Y Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|