1
|
Zhang S, Zhu M, Chen S. Exploring the Interconnections Between Mitochondrial Dysfunction and Polycystic Ovary Syndrome: A Comprehensive Integrated Analysis. Biochem Genet 2025:10.1007/s10528-025-11104-4. [PMID: 40259200 DOI: 10.1007/s10528-025-11104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/09/2025] [Indexed: 04/23/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a leading cause of anovulatory infertility and is strongly linked to mitochondrial dysfunction (MD) in reproductive-age women. MD contributes to excessive reactive oxygen species (ROS) accumulation, exacerbating disease progression. This study aimed to identify key MD-related genes (MDRGs) involved in PCOS through bioinformatics analyses and experimental validation. Two PCOS transcriptome datasets (GSE34526 and GSE5850) were analyzed to identify differentially expressed genes (DEGs), which were then intersected with MDRGs to obtain MD-related DEGs (MDDEGs). Functional enrichment (GO, KEGG, GSEA) and protein-protein interaction (PPI) network analyses identified eight hub MDDEGs (MMP9, PPP1 CA, PSMD12, LIFR, PRKAA1, ITGAM, SUCLA2, GPBAR1). A rat PCOS model was established to validate hub gene expression via RT-qPCR, western blotting, and immunohistochemistry. The experimental data confirmed that seven hub genes exhibited consistent expression patterns with GSE34526 (P < 0.05), while only PRKAA1 and LIFR matched GSE5850 findings. Additionally, ROC analysis for the five most significant genes (LIFR, PBK, PRKAA1, RCAN1, MMP9) demonstrated promising diagnostic value (AUC > 0.85). This study highlights the role of MD in shaping the immune microenvironment of PCOS and identifies novel molecular targets for potential therapeutic interventions.
Collapse
Affiliation(s)
- Suqin Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Mingyue Zhu
- Department of Gynecology and Obstetrics Zhujiang Hospital, Southern Medical University, No.253 Guangzhou Industrial Avenue Road, Guangzhou, 510515, Guangdong, China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Zhang S, Xue X, Chen F, Yang Y, Zhang N, Chen Y, Wu W, Wang J, Zheng N. COL5A2 drives regorafenib resistance-induced metastatic phenotype via reducing LIFR expression in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:997-1010. [PMID: 38818582 PMCID: PMC11322875 DOI: 10.3724/abbs.2024058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/31/2024] [Indexed: 06/01/2024] Open
Abstract
Systemic therapies, the ultimate strategies for patients with advanced hepatocellular carcinoma (HCC), are suffering from serious clinical challenges, such as the occurrence and development of drug resistance. Treatment resistance aggravates tumor progression partly by inducing tumor metastasis. Regorafenib-resistant HCC cells exhibit a highly striking metastatic phenotype, but the detailed mechanisms underlying these aggressive behaviors remain elusive. Here, we conduct transcriptome sequencing analysis to identify COL5A2 as a crucial driver of the metastatic characteristics of regorafenib-resistant HCC cells. COL5A2 is aberrantly highly expressed in resistant cells, and its genetic depletion significantly suppresses proliferation, migration, invasion, vasculogenic mimicry (VM) formation and lung metastasis in vitro and in vivo, concomitant with the downregulation of VE-cadherin, EphA2, Twist1, p-p38 and p-STAT3 expressions. LIFR is confirmed to be an essential downstream molecule of COL5A2, and its expression is observably elevated by COL5A2 depletion. Ectopic overexpression of LIFR drastically attenuates the proliferation, migration, invasion and VM of regorafenib-resistant cells and represses the expressions of VM-related molecules and the activation of p38/STAT3 signaling pathway. Interestingly, rescue experiments show that the inhibition of the above aggressive features of resistant cells by COL5A2 loss is clearly alleviated by silencing of LIFR. Collectively, our results reveal that COL5A2 promotes the ability of regorafenib-resistant HCC cells to acquire a metastatic phenotype by attenuating LIFR expression and suggest that therapeutic regimens targeting the COL5A2/LIFR axis may be beneficial for HCC patients with therapeutic resistance.
Collapse
Affiliation(s)
- Shaoqin Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative DiseasesThe School of Basic Medical SciencesFujian Medical UniversityFuzhou350122China
| | - Xuezhen Xue
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative DiseasesThe School of Basic Medical SciencesFujian Medical UniversityFuzhou350122China
| | - Fengdan Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative DiseasesThe School of Basic Medical SciencesFujian Medical UniversityFuzhou350122China
| | - Yahan Yang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative DiseasesThe School of Basic Medical SciencesFujian Medical UniversityFuzhou350122China
| | - Nan Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative DiseasesThe School of Basic Medical SciencesFujian Medical UniversityFuzhou350122China
| | - Yan Chen
- Department of PharmacologyThe School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical UniversityFuzhou350122China
| | - Wenda Wu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative DiseasesThe School of Basic Medical SciencesFujian Medical UniversityFuzhou350122China
| | - Jichuang Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative DiseasesThe School of Basic Medical SciencesFujian Medical UniversityFuzhou350122China
| | - Ning Zheng
- Department of PharmacologyThe School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical UniversityFuzhou350122China
| |
Collapse
|
3
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Mesenchymal stem cell-derived exosomes and non-coding RNAs: Regulatory and therapeutic role in liver diseases. Biomed Pharmacother 2023; 157:114040. [PMID: 36423545 DOI: 10.1016/j.biopha.2022.114040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Liver disease has become a major health problem worldwide due to its high morbidity and mortality. In recent years, a large body of literature has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) are able to play similar physiological roles as mesenchymal stem cells (MSCs). More importantly, there is no immune rejection caused by transplanted cells and the risk of tumor formation, which has become a new strategy for the treatment of various liver diseases. Moreover, accumulating evidence suggests that non-coding RNAs (ncRNAs) are the main effectors by which they exert hepatoprotective effects. Therefore, by searching the databases of Web of Science, PubMed, ScienceDirect, Google Scholar and CNKI, this review comprehensively reviewed the therapeutic effects of MSC-Exo and ncRNAs in liver diseases, including liver injury, liver fibrosis, and hepatocellular carcinoma. According to the data, the therapeutic effects of MSC-Exo and ncRNAs on liver diseases are closely related to a variety of molecular mechanisms, including inhibition of inflammatory response, alleviation of liver oxidative stress, inhibition of apoptosis of hepatocytes and endothelial cells, promotion of angiogenesis, blocking the cell cycle of hepatocellular carcinoma, and inhibition of activation and proliferation of hepatic stellate cells. These important findings will provide a direction and basis for us to explore the potential of MSC-Exo and ncRNAs in the clinical treatment of liver diseases in the future.
Collapse
|
5
|
Halder S, Parte S, Kshirsagar P, Muniyan S, Nair HB, Batra SK, Seshacharyulu P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188737. [PMID: 35680099 PMCID: PMC9793423 DOI: 10.1016/j.bbcan.2022.188737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| |
Collapse
|
6
|
Guo X, Wang Z, Deng X, Lu Y, Huang X, Lin J, Lan X, Su Q, Wang C. Circular RNA CircITCH (has-circ-0001141) suppresses hepatocellular carcinoma (HCC) progression by sponging miR-184. Cell Cycle 2022; 21:1557-1577. [PMID: 35400275 PMCID: PMC9291649 DOI: 10.1080/15384101.2022.2057633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of circular RNA (circRNA) is involved in the occurrence of various diseases and tumor development, in which plays a vital role, including hepatocellular carcinoma (HCC). Nevertheless, the regulation mechanism and biological function of circITCH in hepatocellular carcinoma (HCC) remain unclear. The expression level of circular RNA itchy E3 ubiquitin protein ligase (circ-ITCH) was identified and validated by real-time polymerase-chain reaction (RT-qPCR) in HCC cell lines. The stability of circITCH was confirmed by Ribonuclease R (RNase R) assay. Subsequently, through silencing and overexpression of circITCH to investigate the functional roles of circITCH in HCC proliferation, invasion, and apoptosis. We also carried out bioinformatics analysis, luciferase reporter assays to define the relationship between microRNA (miR)-184 and circITCH. Moreover, xenograft mouse models and immunohistochemistry were employed to assess the function of circITCH in HCC. CircITCH (hsa_circ_0001141) was a stable circRNA and downregulated in HCC cells. Overexpression of circITCH inhibited cell proliferation, migration, invasion, and promoted apoptosis in vitro and in vivo, whereas knockdown of circITCH had the opposite effects. Mechanistically, miR-184 could be sponged by circITCH, and its overexpression could mitigate the suppressive effects of circITCH overexpression on HCC progression. Through biological website to predict the target genes of miR-184 may be combined. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to investigate mRNAs with significant functional enrichment and pathways, also which its relationship with HCC-related pathway and immune cells. Our findings reveal that circITCH served as a repressor to restrain HCC malignancy via miR-184. Therefore, circITCH may serve as a potential prognostic marker and therapeutic target for HCC. Abbreviations: HCC: hepatocellular carcinoma; CircRNA: Circular RNA; miRNA: MicroRNA; Circ-ITCH: circular RNA itchy E3 ubiquitin protein ligase; RT-qPCR: real-time polymerase-chain reaction; RNase R: Ribonuclease R; CeRNA: competing endogenous RNAs; SiRNA: small interfering RNA
Collapse
Affiliation(s)
- Xuan Guo
- School of Medicine, South China University of Technology, Guangdong Province, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou, China
| | - Ziying Wang
- School of Medicine, South China University of Technology, Guangdong Province, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou, China
| | - Xue Deng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou, China
- Southern Medical University, Guangdong Province, Guangzhou, China
| | - Yantong Lu
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangdong Province, Guangzhou, China
| | - Xuhui Huang
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou, China
| | - Juze Lin
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou, China
| | - Xiaohe Lan
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou, China
| | - Qiao Su
- First Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Changjun Wang
- School of Medicine, South China University of Technology, Guangdong Province, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou, China
- Southern Medical University, Guangdong Province, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangdong Province, Guangzhou, China
| |
Collapse
|
7
|
Liao R, Liu L, Zhou J, Wei X, Huang P. Current Molecular Biology and Therapeutic Strategy Status and Prospects for circRNAs in HBV-Associated Hepatocellular Carcinoma. Front Oncol 2021; 11:697747. [PMID: 34277444 PMCID: PMC8284075 DOI: 10.3389/fonc.2021.697747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are newly classified noncoding RNA (ncRNA) members with a covalently closed continuous loop structure that are involved in immune responses against hepatitis B virus (HBV) infections and play important biological roles in the occurrence and pathogenesis of HCC progression. The roles of circRNAs in HBV-associated HCC (HBV-HCC) have gained increasing attention. Substantial evidence has revealed that both tissue and circulating circRNAs may serve as potential biomarkers for diagnostic, prognostic and therapeutic purposes. So far, at least four circRNA/miRNA regulatory axes such as circRNA_101764/miR-181, circRNA_100338/miR-141-3p, circ-ARL3/miR-1305, circ-ATP5H/miR-138-5p, and several circulating circRNAs were reported to be associated with HBV-HCC development. Notably, TGF/SMAD, JAK/STAT, Notch and Wnt/β-catenin signaling pathways may play pivotal roles in this HBV-driven HCC via several circRNAs. Moreover, in non-HBV HCC patients or HCC patients partially infected by HBV, numerous circRNAs have been identified to be important regulators impacting the malignant biological behavior of HCC. Furthermore, the role of circRNAs in HCC drug resistance has become a focus of research with the aim of reversing chemoresistance and immune resistance. Herein, we review the molecular biology of circRNAs in HBV-HCC and their potential in therapeutic strategies.
Collapse
Affiliation(s)
- Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery, The People’s Rongchang Hospital, Chongqing, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|