1
|
Guo X, Li S. Bone metastases of prostate cancer: Molecular mechanisms, targeted diagnosis and targeted therapy (Review). Oncol Rep 2025; 53:46. [PMID: 39981932 PMCID: PMC11865881 DOI: 10.3892/or.2025.8879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/12/2024] [Indexed: 02/22/2025] Open
Abstract
Prostate cancer (PCa) is second only to lung cancer in terms of death among men worldwide. Advanced PCa frequently results in bone metastases, which occur in ~90% of patients and frequently result in severe skeleton‑related events. Currently, the treatment for this disease is limited to alleviating its clinical symptoms and cannot provide a complete cure. Therefore, the development of novel treatment strategies is particularly important. In recent years, numerous novel strategies for the diagnosis and treatment of PCa have emerged, resulting in good clinical efficacy. For example, strategies targeting prostate specific membrane antigen, poly ADP‑ribose polymerase and programmed cell death protein 1 have been applied to PCa‑induced bone metastasis, and have shown initial efficacy and great potential. Therefore, understanding the molecular mechanisms underlying the formation of bone metastases in patients with PCa is of importance for the effective management of this disease. The purpose of the present review is to comprehensively outline the roles of protein‑coding genes and non‑coding RNAs in the development of bone metastases of PCa to elucidate their significance in the management of PCa. The aim is to offer clinicians and researchers a comprehensive understanding of this topic.
Collapse
Affiliation(s)
- Xutang Guo
- Department of Urology, Gansu Province Maternity and Child Health Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shaojun Li
- Department of Urology, Gansu Province Maternity and Child Health Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
2
|
Yang J, Luo Y, Yao Z, Wang Z, Jiang K. Theoretical perspectives and clinical applications of non-coding RNA in lung cancer metastasis: a systematic review. Discov Oncol 2025; 16:169. [PMID: 39937377 PMCID: PMC11822152 DOI: 10.1007/s12672-025-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer is one of the deadliest malignancies worldwide, with distant metastasis being a major cause of death. However, the specific mechanisms of lung cancer metastasis remain unclear. NcRNAs, a widely present type of non-coding RNAs in the body, constitute about 98% of the human genome, lacking protein-coding capacity but involved in various cellular processes such as proliferation, apoptosis, invasion, and migration. Studies have shown that ncRNAs play a crucial role in the metastasis of lung cancer, although research in this area is limited. This review summarizes the biological origins and functions of ncRNAs, their specific roles and mechanisms in lung cancer metastasis, and discusses their potential for early screening and therapeutic applications in lung cancer. Furthermore, it outlines the challenges in translating basic advancements of ncRNAs in lung cancer metastasis into clinical practice.
Collapse
Affiliation(s)
- Jie Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Yi Luo
- The Clinical Medical College, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Zuhuan Yao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Zhaokai Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Chen J, Yin Q, Xu S, Tan X, Liang Y, Chen C, Li L, Zhang T, Shen T. IFN-treated macrophage-derived exosomes prevents HBV-HCC migration and invasion via regulating miR-106b-3p/PCGF3/PI3K/AKT signaling axis. Front Cell Infect Microbiol 2024; 14:1421195. [PMID: 39529637 PMCID: PMC11551115 DOI: 10.3389/fcimb.2024.1421195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Studies revealed that exosomes from IFN-α-treated liver non-parenchymal cells (IFN-exo) mediate antiviral activity. MiR-106b-3p has been shown to play a paradoxical role in disease progressing from different studies. However, its specific role in HBV-related hepatocellular carcinoma (HBV-HCC) and the underlying mechanism remains unclear. METHOD Huh7 cells transient transfected with plasmids of HBV-C2 and B3 were co-cultured with IFN-exo. Cell supernatants were collected to detect miR-106b-3p, HBsAg, HBeAg and HBV DNA levels. Cell proliferation, apoptosis, migration and invasion were analyzed. The putative targets of miR-106b-3p were identified by a dual-luciferase reporter system. The expression of PCGF3, migratory proteins(MMP2/9), and the PI3K/AKT signaling pathway-related proteins were assessed by western blot. The expression of PCGF3 mRNA was quantitative analyzed by using 52 pairs of paraffin-embedded tissues from HCC patients. siRNAs-PCGF3 were used to knocked-down PCGF3 expression. RESULTS The expression of miR-106b-3p was significantly higher in THP-1 cells and supernatants treated with IFN-exo than those untreated. Significantly increased expression of miR-106b-3p and decreased expression of HBsAg and HBV DNA were observed in Huh7-C2/B3 cells treated with IFN-exo. In addition, miR-106b-3p was directly target to PCGF3. Scratch healing assay and transwell assay showed that either IFN-exo or miRNA-106-3p over-expression, or siRNAs-PCGF3 inhibited migration and invasion of Huh7-C2/B3 cells, and subsequently resulted in suppression of p-AKT/AKT and p-PI3K/PI3K. Notably, the expression level of PCGF3 was significantly lower in HBeAg (+)-HCC tumor tissues than HBeAg (-)-HCC tumor. CONCLUSION IFN-α-induced macrophage-derived miR-106b-3p inhibits HBV replication, HBV- Huh7 cells migration and invasion via regulating PCGF3/PI3K/AKT signaling axis. miR-106b-3p and PCGF3 were potential biomarkers in the prevention and treatment of HBV-HCC.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Yin
- Medical School, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Shiheng Xu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqing Tan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Liang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chaohui Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Li Li
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Infectious Diseases and Hepatic Disease, Yunnan Province Innovation Team of Intestinal Microecology Related Disease Research and Technological Transformation, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Tao Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Tao Shen
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Infectious Diseases and Hepatic Disease, Yunnan Province Innovation Team of Intestinal Microecology Related Disease Research and Technological Transformation, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
4
|
Jiang M, Yu H. Ginsenoside 20(S)-Rg3 Hinders Esophageal Squamous Cell Carcinoma Cells Malignant Behaviors by miR-210-3p/B4GALT5 Axis. Cell Biochem Biophys 2024:10.1007/s12013-024-01566-5. [PMID: 39422791 DOI: 10.1007/s12013-024-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Ginsenoside 20(S)-Rg3 (20(S)-Rg3) belongs to a natural chemical with an anti-tumor function, but its potential function and underlying mechanism in esophageal squamous cell carcinoma (ESCC) are unknown. Several reports have manifested that microRNA (miRNA) miR-210-3p functions as a tumor repressor in tumors, but its biofunction in ESCC remains obscure. Herein, the role and interaction of 20(S)-Rg3 and miR-210-3p in ESCC cells were investigated. We performed a series of functional experiments to validate that 20(S)-Rg3 notably restrained ESCC cell proliferation and migration while promoting cell apoptosis. Besides, miR-210-3p was found to be lowly expressed in ESCC cells. Overexpressing miR-210-3p suppressed the malignant behaviors of ESCC cells. More importantly, 20(S)-Rg3 could upregulate miR-210-3p expression in ESCC cells. MiR-210-3p knockdown offset the inhibitive impacts of 20(S)-Rg3 treatment on ESCC cell growth and migration. Furthermore, through luciferase reporter assay, beta-1,4-galactosyltransferase 5 (B4GALT5) was certified to be targeted by miR-210-3p. B4GALT5 upregulation neutralized the suppressive function of 20(S)-Rg3 on ESCC progression. Overall, 20(S)-Rg3 attenuated malignant behaviors of ESCC cells by modulating miR-210-3p/B4GALT5 axis, indicating 20(S)-Rg3 has therapeutic potential for ESCC.
Collapse
Affiliation(s)
- Min Jiang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
| |
Collapse
|
5
|
Dhilipkannah P, Sachdeva A, Holden VK, Jiang F. Integrative Biomarker Panel for Improved Lung Cancer Diagnosis Using Plasma microRNAs and Sputum Bacterial DNA. Curr Oncol 2024; 31:5949-5959. [PMID: 39451748 PMCID: PMC11506187 DOI: 10.3390/curroncol31100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to evaluate if integrating diverse molecular biomarkers in plasma and sputum could improve the diagnosis of lung cancer. The study analyzed miRNAs in plasma and bacterial DNA in sputum from 58 lung cancer patients and 62 cancer-free smokers using droplet digital PCR. The individual plasma miRNA and sputum bacterial biomarkers had sensitivities of 62-71% and specificities of 61-79% for diagnosing lung cancer. A panel of plasma miRNA or sputum bacterial biomarkers produced sensitivities of 79-85% and specificities of 74-82%. An integromic signature consisting of two miRNAs in plasma and three bacterial biomarkers in sputum had a higher sensitivity (87%) and specificity (89%) compared to individual biomarkers. The signature's diagnostic value was confirmed in a validation cohort of 56 lung cancer patients and 59 controls, independent of tumor stage, histological type, and demographic factors. Integrating diverse molecular biomarkers in plasma and sputum could improve the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Pushpa Dhilipkannah
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192, USA
| | - Ashutosh Sachdeva
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201-1192, USA (V.K.H.)
| | - Van K. Holden
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201-1192, USA (V.K.H.)
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192, USA
| |
Collapse
|
6
|
Liao J, Dhilipkannah P, Jiang F. Improving CT scan for lung cancer diagnosis with an integromic signature. J Biol Methods 2024; 11:e99010023. [PMID: 39544186 PMCID: PMC11557295 DOI: 10.14440/jbm.2024.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 11/17/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, making early detection crucial for reducing death rates. Low-dose computed tomography (LDCT) screening helps detect lung cancer early but often identifies indeterminate pulmonary nodules (PNs), leading to potential overtreatment. This study aimed to develop a diagnostic test that accurately differentiates malignant from benign PNs detected on LDCT scans by analyzing non-coding RNAs, DNA methylation, and bacterial DNA in patient samples. Using droplet digital polymerase chain reaction, we analyzed samples from a training set of 150 patients with malignant PNs and 250 smokers with benign PNs. Individual biomarkers in plasma and sputum showed moderate effectiveness, with sensitivities ranging from 62% to 77% and specificities from 54% to 87%. We developed an integromic signature by combining two plasma biomarkers and one sputum biomarker, along with additional clinical data, which demonstrated a sensitivity of 90% and specificity of 95%. The signature's diagnostic performance was further validated in a cohort consisting of 30 patients with malignant PNs and 50 smokers with benign PNs. The integromic signature showed high sensitivity and specificity in distinguishing malignant from benign PNs identified through LDCT. This tool has the potential to significantly lower both mortality and health-care costs associated with the overtreatment of benign nodules, offering a promising approach to improving lung cancer screening protocols.
Collapse
Affiliation(s)
- Jipei Liao
- Department of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD, United States of America
| | - Pushpawallie Dhilipkannah
- Department of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD, United States of America
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD, United States of America
| |
Collapse
|
7
|
Zhang L, Jia X, Zhang Z, Yu T, Geng Z, Yuan L. ceRNA Network Analysis Reveals Potential Key miRNAs and Target Genes in COVID-19-Related Chronic Obstructive Pulmonary Disease. Appl Biochem Biotechnol 2024; 196:4303-4316. [PMID: 37947947 DOI: 10.1007/s12010-023-04773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The continued spread of SARS-CoV-2 has presented unprecedented obstacles to the worldwide public health system. Especially, individuals with chronic obstructive pulmonary disease (COPD) are at a heightened risk of contracting SARS-CoV-2 infection due to their pre-existing respiratory symptoms that are not well-managed. However, the viral mechanism of affecting the expression of host genes, COPD progression, and prognosis is not clear yet.This study integrated the differential expression information of COPD patients and then calculated the correlation between mRNAs and miRNAs to construct a COPD-specific ceRNA network. The DEGs of individuals with SARS-CoV-2 infection and anticipated miRNAs and their targets were analyzed in 9 SARS-CoV-2 sequences from different geographic locations. Furthermore, combining the experimentally validated miRNAs and genes, the regulatory miRNA-mRNA relationships were identified. All the regulatory relationships were integrated into the COPD-specific network and the network modules were explored to get insight into the functional mechanism of SARS-CoV-2 infection in COPD patients.A higher proportion of DEGs compete with the same miRNA suggesting a higher expression of genes in the COPD-specific ceRNA network. Hsa-miR-21-3p is the largest connected point in the network, but the proportion of genes upregulated by hsa-miR-21-3p is low (P = 0.1406). This indicates that the regulatory relationship of competitive inhibition has little effect on has-miR-21, and the high expression pattern is a poor prognostic factor in COPD. Hsa-miR-15a-5p is the most significant miRNA with the highest proportion of DEGs. And ANXA2P3 is the only gene in the COPD ceRNA network that interferes with hsa-miR-15a-5p. In addition, we found that has-miR-1184- and has-miR-99-cored modules were significant, and genes ZDHHC18, PCGF3, and KIAA0319L interacting with them were all associated with COPD prognosis, and high expression of these genes could lead to poor prognosis in COPD.The key regulators such as miR-21, miR-15a, ANXA2P3, ZDHHC18, PCGF3, and KIAA0319L can be used as prognostic biomarkers for early intervention in COPD with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lihai Zhang
- Department of Respiratory and Critical Care, The First Hospital of Hebei Medical University, No.89, Donggang Road, Shijiazhuang City, 050000, Hebei Province, China
| | - Xiaodong Jia
- Joint Laboratory of Translational Medicine, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng City, 252000, China
| | - Zhipeng Zhang
- Respiratory Medicine, Jiyang District People's Hospital, No.9, Xinyuan Street, Jiyang District, Jinan, 251400, Shandong Province, China
| | - Tong Yu
- Department of Respiratory and Critical Care Medicine, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng City, 252000, China
| | - Zhangyan Geng
- Department of Geriatrics, First Hospital of Hebei Medical University, No.89, Donggang Road, Shijiazhuang City, 050000, Hebei Province, China
| | - Lindong Yuan
- Department of Respiratory and Critical Care Medicine, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng City, 252000, China.
| |
Collapse
|
8
|
Guo S, Mao C, Peng J, Xie S, Yang J, Xie W, Li W, Yang H, Guo H, Zhu Z, Zheng Y. Improved lung cancer classification by employing diverse molecular features of microRNAs. Heliyon 2024; 10:e26081. [PMID: 38384512 PMCID: PMC10878959 DOI: 10.1016/j.heliyon.2024.e26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
MiRNAs are edited or modified in multiple ways during their biogenesis pathways. It was reported that miRNA editing was deregulated in tumors, suggesting the potential value of miRNA editing in cancer classification. Here we extracted three types of miRNA features from 395 LUAD and control samples, including the abundances of original miRNAs, the abundances of edited miRNAs, and the editing levels of miRNA editing sites. Our results show that eight classification algorithms selected generally had better performances on combined features than on the abundances of miRNAs or editing features of miRNAs alone. One feature selection algorithm, i.e., the DFL algorithm, selected only three features, i.e., the frequencies of hsa-miR-135b-5p, hsa-miR-210-3p and hsa-mir-182_48u (an edited miRNA), from 316 training samples. Seven classification algorithms achieved 100% accuracies on these three features for 79 independent testing samples. These results indicate that the additional information of miRNA editing is useful in improving the classification of LUAD samples.
Collapse
Affiliation(s)
- Shiyong Guo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, i.e., The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Shaohui Xie
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, Yunnan 650223, China
| | - Wenping Xie
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wanran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Huaide Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Hao Guo
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Zexuan Zhu
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yun Zheng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
9
|
Zhang Z, Guo Q, Ma C, Zhao Z, Shi Q, Yu H, Rao L, Li M. USF1 transcriptionally activates USP14 to drive atherosclerosis by promoting EndMT through NLRC5/Smad2/3 axis. Mol Med 2024; 30:32. [PMID: 38424494 PMCID: PMC10905873 DOI: 10.1186/s10020-024-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Endothelial-to-Mesenchymal Transformation (EndMT) plays key roles in endothelial dysfunction during the pathological progression of atherosclerosis; however, its detailed mechanism remains unclear. Herein, we explored the biological function and mechanisms of upstream stimulating factor 1 (USF1) in EndMT during atherosclerosis. METHODS The in vivo and in vitro atherosclerotic models were established in high fat diet-fed ApoE-/- mice and ox-LDL-exposed human umbilical vein endothelial cells (HUVECs). The plaque formation, collagen and lipid deposition, and morphological changes in the aortic tissues were evaluated by hematoxylin and eosin (HE), Masson, Oil red O and Verhoeff-Van Gieson (EVG) staining, respectively. EndMT was determined by expression levels of EndMT-related proteins. Target molecule expression was detected by RT-qPCR and Western blotting. The release of pro-inflammatory cytokines was measured by ELISA. Migration of HUVECs was detected by transwell and scratch assays. Molecular mechanism was investigated by dual-luciferase reporter assay, ChIP, and Co-IP assays. RESULTS USF1 was up-regulated in atherosclerosis patients. USF1 knockdown inhibited EndMT by up-regulating CD31 and VE-Cadherin, while down-regulating α-SMA and vimentin, thereby repressing inflammation, and migration in ox-LDL-exposed HUVECs. In addition, USF1 transcriptionally activated ubiquitin-specific protease 14 (USP14), which promoted de-ubiquitination and up-regulation of NLR Family CARD Domain Containing 5 (NLRC5) and subsequent Smad2/3 pathway activation. The inhibitory effect of sh-USF1 or sh-USP14 on EndMT was partly reversed by USP14 or NLRC5 overexpression. Finally, USF1 knockdown delayed atherosclerosis progression via inhibiting EndMT in mice. CONCLUSION Our findings indicate the contribution of the USF1/USP14/NLRC5 axis to atherosclerosis development via promoting EndMT, which provide effective therapeutic targets.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, Henan, 450000, China
| | - Quan Guo
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, Henan, 450000, China
| | - Chao Ma
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, Henan, 450000, China
| | - Zhenzhou Zhao
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, Henan, 450000, China
| | - Qingbo Shi
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, Henan, 450000, China
| | - Haosen Yu
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, Henan, 450000, China
| | - Lixin Rao
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, Henan, 450000, China
| | - Muwei Li
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China.
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
10
|
Samson JS, Parvathi VD. Prospects of microRNAs as therapeutic biomarkers in non-small cell lung cancer. Med Oncol 2023; 40:345. [PMID: 37922117 DOI: 10.1007/s12032-023-02212-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Lung Cancer, the second most common cancer worldwide, remains the leading cause of cancer-related deaths, contemporarily. More than 85% of identified lung cancer cases are comprised of non-small-cell lung carcinoma (NSCLC). Despite the best advancements in the realm of NSCLC therapy, the five-year survival period of NSCLC patients remains unchanged. Underlying complex molecular heterogeneity, delay in early detection resulting in progression of the disease to its advanced stage and acquired resistance of NSCLC cells during therapy have posed additional challenges for circumventing the discrepancies in treatment strategy. microRNAs (miRNAs) are a class of non-coding RNAs, identified as molecules playing an indispensable role in tumorigenesis & progression and metastasis of several cancers, including NSCLC, either by possessing tumor suppressor or by oncogenic functions. As observed across several studies, miRNA dysregulation has been recognised as a causative mechanism behind NSCLC tumorigenesis. In this review, we discuss the role of miRNAs in NSCLC tumor progression caused by their dysregulation, thereby stating their potential therapeutic application in NSCLC as therapeutic biomarkers. We have also highlighted the recent findings of some of the most widely studied tumor suppressor (miR-486, miR-7 miR-34), and oncogene miRNAs (miR-21, miR-224, miR-135b) that can be further explored for its therapeutic potentialities in the management of NSCLC.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
11
|
Fu D, Si Q, Yu C, Han Z, Zang L. USF1-mediated ALKBH5 stabilizes FLII mRNA in an m6A-YTHDF2-dependent manner to repress glycolytic activity in prostate adenocarcinoma. Mol Carcinog 2023; 62:1700-1716. [PMID: 37493109 DOI: 10.1002/mc.23609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Upstream-stimulating factor 1 (USF1) is a ubiquitously expressed transcription factor implicated in multiple cellular processes, including metabolism and proliferation. This study focused on the function of USF1 in glycolysis and the malignant development of prostate adenocarcinoma (PRAD). Bioinformatics predictions suggested that USF1 is poorly expressed in PRAD. The clinical PRAD samples revealed a low level of USF1, which was correlated with an unfavorable prognosis. Artificial upregulation of USF1 significantly repressed glycolytic activity in PRAD cells and reduced cell growth and metastasis in vitro and in vivo. Potential downstream genes of USF1 were probed by integrated bioinformatics analyses. The chromatin immunoprecipitation and luciferase assays indicated that USF1 bound to the α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) promoter for transcription activation. Flightless I (FLII) was identified as the gene showing the highest degree of correlation with ALKBH5. As an m6A demethylase, ALKBH5 enhanced FLII mRNA stability by inducing m6A demethylation in an m6A-YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2)-dependent manner. Either silencing of ALKBH5 or FLII blocked the role of USF1 in PARD cells and restored glycolysis, cell proliferation, and invasion. This study demonstrates that USF1 activates ALKBH5 to stabilize FLII mRNA in an m6A-YTHDF2-dependent manner, thereby repressing glycolysis processes and the progression of PRAD.
Collapse
Affiliation(s)
- Dewang Fu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Qingyue Si
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Chenxi Yu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Zhifu Han
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Li'e Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
12
|
Entezari M, Taheriazam A, Paskeh MDA, Sabouni E, Zandieh MA, Aboutalebi M, Kakavand A, Rezaei S, Hejazi ES, Saebfar H, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. The pharmacological and biological importance of EZH2 signaling in lung cancer. Biomed Pharmacother 2023; 160:114313. [PMID: 36738498 DOI: 10.1016/j.biopha.2023.114313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, university of milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
13
|
Abstract
MicroRNA-210 (miR-210) is a miRNA with imperative effects in the pathophysiology of human disorders. miR-210 is encoded by MIR210 gene on chromosome 11p15.5. The stem-loop of this miRNA resides in an intron of the AK123483 noncoding RNA. This miRNA is a major hypoxamir whose expression is increased in hypoxic condition in several types of cells. miR-210 has been shown to be up-regulated in almost all types of examined cancer types, except for bladder cancer, angiosarcoma and glioblastoma. Dysregulation of miR-210 in colorectal carcinoma, gastric cancer, head and neck squamous cell carcinoma, pediatric acute lymphoblastic leukemia, glioblastoma and laryngeal carcinoma has been related with poor clinical outcomes. In the current review, we provide a comprehensive summary of participation of miR-210 in human disorders.
Collapse
|
14
|
Zhou Y, Zhao Y, Ma W, Zhang L, Jiang Y, Dong W. USF1-CHCHD4 axis promotes lung adenocarcinoma progression partially via activating the MYC pathway. Discov Oncol 2022; 13:136. [PMID: 36482116 PMCID: PMC9732179 DOI: 10.1007/s12672-022-00600-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to identify genes related to lung adenocarcinoma (LUAD) and investigate the effects and molecular mechanisms of coiled-coil-helix-coiled-coil-helix domain containing 4 (CHCHD4) in the progression of LUAD. METHODS The GEPIA database was used to evaluate the differential expression of CHCHD4 and the survival data of LUAD patients compared to controls. TCGA-LUAD database, JASPAR website, and GSEA were used to analyse the relationship between CHCHD4 and the upstream stimulating factor 1 (USF1) or MYC pathways. The proliferation, apoptosis, migration, and invasion of LUAD cells were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, colony formation, flow cytometry, wound healing, and transwell assays. qRT-PCR, western blotting, and immunohistochemistry were used to detect the mRNA and protein expression, respectively. Furthermore, xenograft tumours from nude mice were used to verify the effect of CHCHD4 on LUAD in vivo. RESULTS CHCHD4 overexpression was found in LUAD tumor tissues and cells, and high CHCHD4 was associated with a poor prognosis. Interestingly, CHCHD4 knockdown suppressed the malignant phenotype of the LUAD cells. Moreover, we found that USF1 upregulated CHCHD4 and promoted LUAD progression. CHCHD4 knockdown also inhibited the progression of LUAD. In addition, CHCHD4 knockdown suppressed xenograft tumour growth. CONCLUSION USF1-CHCHD4 axis can promote LUAD progress, which may be through activating MYC pathway.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yunxia Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Wei Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Lin Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yuanzhu Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China.
| |
Collapse
|
15
|
Yang B, Wang Z, Deng Y, Xiao L, Zhang K. LncRNA LAMTOR5-AS1 sponges miR-210-3p and regulates cervical cancer progression. J Obstet Gynaecol Res 2022; 48:3171-3178. [PMID: 36173004 DOI: 10.1111/jog.15439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/16/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
Abstract
AIM Cervical cancer has attracted increasing attention in recent years, and the incidence has shown a trend of younger age. Therefore, it is an effective method to regulate the progression of cervical cancer through new prognostic biomarkers. The purpose of this study was to evaluate the potential of lncRNA LAMTOR5-AS1 (LAMTOR5-AS1) as a prognostic biomarker and reveal its regulatory role in cervical cancer. METHODS A total of 120 patients with cervical cancer were selected as research subjects to verify the prognostic effect of LAMTOR5-AS1 in a series of experiments. The expression of LAMTOR5-AS1 in cervical cancer tissues and cells was determined by polymerase chain reaction assay. The proliferation, migration, and invasion ability of cervical cancer cells were evaluated by Cell Counting Kit-8 (CCK-8) and Transwell assay. Luciferase reporter gene detection was used to determine the mechanism of LAMTOR5-AS1 targeting miR-210-3p, and to reflect the prognostic value of LAMTOR5-AS1 according to statistical methods. RESULTS LAMTOR5-AS1 decreased in cervical cancer tissues, while miR-210-3p expression increased. In the study of cervical cancer cells, it was found that the LAMTOR5-AS1 sponge miR-210-3p was associated with the malignant progression of cervical cancer. Overexpression of LAMTOR5-AS1 could effectively inhibit the development of cervical cancer cells and might be chosen as a prognostic biomarker of cervical cancer. CONCLUSIONS LAMTOR5-AS1 sponges miR-210-3p and modulates the progression of cervical cancer, which predict the prognosis of cervical cancer patients.
Collapse
Affiliation(s)
- Bo Yang
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziyi Wang
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuping Deng
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lingzhi Xiao
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Keqiang Zhang
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Zhang Q, Wang Y. MiR-210-3p targets CELF2 to facilitate progression of lung squamous carcinoma through PI3K/AKT pathway. Med Oncol 2022; 39:161. [PMID: 35972577 DOI: 10.1007/s12032-022-01752-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
This study examined the internal mechanism of miR-210-3p/CELF2 in LUSC. Expression data of mRNAs and miRNAs in LUSC were acquired from TCGA and subjected to differential expression analysis. qRT-PCR was applied to examine miR-210-3p and CELF2 expression. Besides, western blot was utilized to evaluate protein expression of CELF2 and PI3K/AKT pathway-related proteins. Dual-luciferase reporter analysis was conducted to validate targeting relationship between miR-210-3p and CELF2. Additionally, CCK-8, colony formation, transwell and flow cytometry were employed to respectively test proliferation, migration, invasion abilities and cell cycle distribution. Xenograft tumor models were used to evaluate the influence of miR-210-3p and CELF2 on tumor growth. MiR-210-3p was highly expressed, while CELF2 was less expressed in LUSC cells. Besides, miR-210-3p could downregulate CELF2 expression. Cell functional assay verified that miR-210-3p accelerated aggressive behaviors of LUSC cells. Additionally, rescue assay suggested that miR-210-3p downregulated CELF2 level to stimulate LUSC cell phenotypes and cell cycle progression through PI3K/AKT pathway. Moreover, miR-210-3p/CELF2 stimulated the tumor growth in vivo. To sum up, miR-210-3p modulated CELF2 expression, thus affecting cell phenotypes and cell cycle distribution in LUSC through PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou, 310016, China.
| | - Yunzhen Wang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou, 310016, China
| |
Collapse
|
17
|
SEZ6L2, regulated by USF1, accelerates the growth and metastasis of breast cancer. Exp Cell Res 2022; 417:113194. [PMID: 35523305 DOI: 10.1016/j.yexcr.2022.113194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/05/2022] [Accepted: 05/01/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is the second cause of cancer-related mortality in women. Seizure related 6 homolog like 2 (SEZ6L2), a protein presented on cell surface, is involved in tumor development. It was found to be highly expressed in BC, however, its role in BC remains unclear. Herein, we aimed to explore the role of SEZ6L2 in BC. Firstly, the correlationship between SEZ6L2 expression and the clinic pathological characteristics of patients diagnosed with BC was analyzed. Subsequently, the role of SEZ6L2 was further explored using MTT, transwell invasion, flow cytometry, colony formation and wound healing assays. The result showed that the level of SEZ6L2 was remarkably correlated with the TNM stage, HER-2 status and lymph node metastasis of BC. Knockdown of SEZ6L2 significantly suppressed the proliferation of BC cells and induced cell cycle arrest at G1 phase. In addition, SEZ6L2 knockdown repressed their migration and invasion. On the contrary, SEZ6L2 overexpression performed the opposite effects. Furthermore, SEZ6L2 also accelerated the in vivo tumorigenesis of BC cells. Additionally, according to bioinformatics resources, we identified upstream transcription factor 1 (USF1) as a transcriptional factor which bound to the promoter of SEZ6L2 and positively regulated its transcription. In conclusion, this study demonstrated that SEZ6L2 was transcriptionally regulated by USF1 and was involved in the growth and metastasis of BC cells. Revealing the role of SEZ6L2 in BC provides additional knowledge for the pathogenesis of BC, which may benefit to BC therapy.
Collapse
|
18
|
Wang Y, Zhao YX, Zhang XW, Jiang YZ, Ma W, Zhang L, Dong W. USF1 Transcriptionally Regulates UGT1A3 and Promotes Lung Adenocarcinoma Progression by Regulating Neurotrophin Signaling Pathway. Front Mol Biosci 2022; 9:758968. [PMID: 35155573 PMCID: PMC8829114 DOI: 10.3389/fmolb.2022.758968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lung cancer remains the leading cause of oncological death. There is an urgent need to discover new molecular targets and to develop new treatments. Our previous study showed that one of the UDP-glucuronosyltransferases (UGTs) family, UGT1A3, is an important prognostic factor for lung adenocarcinoma (LUAD), inhibiting UGT1A3 could significantly improve the efficacy of anti-tumor drugs. In this study, we aimed to explore the upstream transcriptional factor (USF1) of UGT1A3 and its way of playing a role in LUAD. Methods: The UGT1A3 promoter region was analyzed and dual-luciferase assay was involved to explore whether USF1 could bind to this region, and the possible regulation effects of USF1 to UGT1A3 was indicated by siRNA and recovery experiment. Then, the Cancer Genome Atlas database was used to analyze USF1 clinical features. The expression level of USF1 was detected by immunohistochemical assay and Western blotting. Cellular viability, proliferation, migration and invasion potential were also investigated. Meanwhile, the effect of USF1 in LUAD progression was detected in a mouse model. The downstream signaling pathway was analyzed by bioinformatic analysis and the expression of all related proteins was detected. Results: UGT1A3 was transcriptionally regulated by USF1, which was highly expressed in all investigated samples including patients’ tissues, studied cells lines, and mouse models. The knockdown of USF1 inhibited cells viability, proliferation, migration and invasion, and reduced the tumor volume. Moreover, USF1 promoted the progress of LUAD by regulating the neurotrophin signaling pathway. Conclusion: As an important transcriptional regulator of UGT1A3, USF1 was highly expressed in LUAD and promoted LUAD progression by regulating the neurotrophin signaling pathway. These findings provide a new theoretical data that could serve as a good foundation for the treatment of LUAD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun-Xia Zhao
- Department of Neurology, Shandong Provinacial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiang-Wei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan-Zhu Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Wei Dong,
| |
Collapse
|
19
|
Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The Role of microRNA in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101322. [PMID: 34680441 PMCID: PMC8533140 DOI: 10.3390/biomedicines9101322] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small ribonucleic acid molecules that play a key role in regulating gene expression. The increasing number of studies undertaken on the functioning of microRNAs in the tumor formation clearly indicates their important potential in oncological therapy. Pancreatic cancer is one of the deadliest cancers. The expression of miRNAs released into the bloodstream appears to be a good indicator of progression and evaluation of the aggressiveness of pancreatic cancer, as indicated by studies. The work reviewed the latest literature on the importance of miRNAs for pancreatic cancer development.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-271-1290
| | - Adam Durczyński
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Piotr Hogendorf
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| |
Collapse
|
20
|
Association of Exosomal miR-210 with Signaling Pathways Implicated in Lung Cancer. Genes (Basel) 2021; 12:genes12081248. [PMID: 34440422 PMCID: PMC8392066 DOI: 10.3390/genes12081248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
MicroRNA is a class of non-coding RNA involved in post-transcriptional gene regulation. Aberrant expression of miRNAs is well-documented in molecular cancer biology. Extensive research has shown that miR-210 is implicated in the progression of multiple cancers including that of the lung, bladder, colon, and renal cell carcinoma. In recent years, exosomes have been evidenced to facilitate cell–cell communication and signaling through packaging and transporting active biomolecules such as miRNAs and thereby modify the cellular microenvironment favorable for lung cancers. MiRNAs encapsulated inside the lipid bilayer of exosomes are stabilized and transmitted to target cells to exert alterations in the epigenetic landscape. The currently available literature indicates that exosomal miR-210 is involved in the regulation of various lung cancer-related signaling molecules and pathways, including STAT3, TIMP-1, KRAS/BACH2/GATA-3/RIP3, and PI3K/AKT. Here, we highlight major findings and progress on the roles of exosomal miR-210 in lung cancer.
Collapse
|
21
|
Ai L, Luo X, Yan X, Jiang S. MicroRNA-506-3p inhibits colorectal cancer cell proliferation through targeting enhancer of zeste homologue 2. Bioengineered 2021; 12:4044-4053. [PMID: 34288823 PMCID: PMC8806550 DOI: 10.1080/21655979.2021.1951930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large number of studies have shown that microRNA (miRNA) has an important relationship with the occurrence and development of colorectal cancer (CRC), but its specific molecular mechanism has not been fully elucidated. This study is to explore the influence of miR-506-3p on the malignant behavior of CRC and its underlying molecular mechanism. Our results show that miR-506-3p was lowly expressed and enhancer of zeste homologue 2 (EZH2) was highly expressed in CRC. Overexpressing miR-506-3p or silencing EZH2 inhibited CRC cell proliferation, migration and invasion and promoted apoptosis. Inhibiting miR-506-3p promoted CRC cell proliferation, migration and invasion but inhibited apoptosis. These impacts were reversed after co-transfecting si-EZH2. Further mechanism studies have shown that miR-506-3p can reduce EZH2 expression in CRC cells by binding to the 3ʹUTR end of EZH2. In summary, the results of this study show that miR-506-3p inhibited CRC progression through targeting EZH2 expression. This provides a new molecular target for the clinical treatment of CRC in the future.
Collapse
Affiliation(s)
- Liang Ai
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine Chongqing City, China
| | - Xiaojun Luo
- Department of Hepatobiliary and Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing City, China
| | - Xiong Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| | - Shan Jiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|