1
|
Kayama K, Ooga A, Hasetsu K, Kokubo R, Sugimoto N, Fujita M. High GRWD1 expression may predict clinically aggressive lower grade glioma, skin cutaneous melanoma, and kidney renal clear cell carcinoma carrying wild-type p53: a systematic study based on TCGA data analysis. J Biochem 2025; 177:351-361. [PMID: 39812614 DOI: 10.1093/jb/mvaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Glutamate-rich WD40 repeat-containing 1 (GRWD1) is a novel oncogene/oncoprotein that downregulates the p53 tumour suppressor protein through several mechanisms. One important mechanism involves binding of GRWD1 to RPL11, which competitively inhibits the RPL11-MDM2 interaction and releases RPL11-mediated suppression of MDM2 ubiquitin ligase activity towards p53. Here, we mined the TCGA (The Cancer Genome Atlas) database to gain in-depth insight into the clinical relevance of GRWD1. We found that high expression of GRWD1 is associated with a poor prognosis for lower grade glioma (LGG) of the brain, skin cutaneous melanoma (SKCM), and kidney renal clear cell carcinoma (KIRC) carrying wild-type p53. Further investigations revealed that copy number alterations in the GRWD1 gene are one determinant of GRWD1 expression level. By contrast, even in patients with a diploid GRWD1 gene, high GRWD1 expression was associated with a poor prognosis for LGG, SKCM, and KIRC carrying wild-type p53. Additional studies suggest that some transcriptional factors may be involved in regulation of GRWD1 in cancers with a diploid GRWD1 gene. Taken together, the data presented herein suggest that high expression of GRWD1 may contribute to malignant behaviour, and predict a clinically unfavourable prognosis for LGG, SKCM, and KIRC carrying wild-type p53.
Collapse
Affiliation(s)
- Kota Kayama
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akihiro Ooga
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouji Hasetsu
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryoma Kokubo
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Salehinia N, Mohammad Al-Mosawi AK, Al-Moussawi DK, Sadeghi ES, Zamani A, Mahdevar M. Identification of genes related to ribosomal proteins in colorectal cancer: exploring their potential as biomarkers, prognostic indicators, and therapeutic targets. Mol Biol Rep 2024; 51:576. [PMID: 38664314 DOI: 10.1007/s11033-024-09522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) ranks as the third most commonly diagnosed cancer in both females and males, underscoring the need for the identification of effective biomarkers. METHODS AND RESULTS We assessed the expression levels of ribosomal proteins (RPs) at both mRNA and protein levels. Subsequently, leveraging the STRING database, we constructed a protein-protein interaction network and identified hub genes. The co-expression network of differentially expressed genes associated with CRC and their target hub RPs was constructed using the weighted gene co-expression network analysis algorithm. Gene ontology and molecular signatures database were conducted to gain insights into the biological roles of genes associated with the identified module. To confirm the results, the expression level of the candidate genes in the CRC samples compared to the adjacent healthy was evaluated by the RT-qPCR method. Our findings indicated that the genes related to RPs were predominantly enriched in biological processes associated with Myc Targets, Oxidative Phosphorylation, and cell proliferation. Also, results demonstrated that elevated levels of GRWD1, MCM5, IMP4, and RABEPK that related to RPs were associated with poor prognostic outcomes for CRC patients. Notably, IMP4 and RABEPK exhibited higher diagnostic value. Moreover, the expression of IMP4 and RABEPK showed a significant association with drug resistance using cancer cell line encyclopedia and genomics of drug sensitivity in cancer databases. Also, the results showed that the expression level of IMP4 and RABEPK in cancerous samples was significantly higher compared to the adjacent healthy ones. CONCLUSION The general results of this study have shown that many genes related to RPs are increased in cancer and could be associated with the death rate of patients. We also highlighted the therapeutic and prognostic potentials of RPs genes in CRC.
Collapse
Affiliation(s)
- Negin Salehinia
- Department of Biology, Islamic Azad University, Qaemshahr, Iran
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Aseel Kamil Mohammad Al-Mosawi
- Department of biology, College of Sciences, University of Thi Qar, Nasiriyah, Iraq
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Duaa Kamel Al-Moussawi
- General Directorate of Education in Thi-Qar, Ministry of Education, Al-Nasiriya City, Iraq
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | | | - Atefeh Zamani
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Mahdevar
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Ding H, Feng Z, Hu K. GRWD1 Over-Expression Promotes Gastric Cancer Progression by Activating Notch Signaling Pathway via Up-Regulation of ADAM17. Dig Dis Sci 2024; 69:821-834. [PMID: 38172445 DOI: 10.1007/s10620-023-08208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Glutamate-rich WD repeat containing 1 (GRWD1) is over-expressed in a variety of malignant tumors and is considered to be a potential oncogene. However, its mechanism of action in gastric cancer (GC) is still unclear. METHODS Data analysis, Immunohistochemistry, and Western Blot (WB) were performed to verify the expression of GRWD1 in GC and para-cancerous tissues. The association between GRWD1 expression and tumor size, tissue differentiation, lymph node metastasis, TNM stage, and prognosis was analyzed according to the high and low expression levels of GRWD1. The relationship between GRWD1 and Notch pathway was verified by data analysis and WB. The effects of GRWD1 on the proliferation, migration, and invasion of GC cells were verified by cell proliferation, migration, and invasion assays. We confirmed that the high expression of GRWD1 promoted the proliferation of GC cells in vivo through the tumor formation assay in nude mice. RESULTS The expression of GRWD1 was higher in GC tissues than in para-cancerous tissues, and its expression was positively correlated with tumor size, lymph node metastasis, and TNM stage, but negatively correlated with differentiation grade and prognosis. GRWD1 over-expression increased ADAM metallopeptidase domain 17 (ADAM17) expression and promoted Notch1 intracellular domain (NICD) release to promote GC cell proliferation, migration, and invasion in vitro. Results from animal studies have shown that high GRWD1 expression could promote GC cell proliferation in vivo by activating the Notch signaling pathway. CONCLUSION GRWD1 promotes GC progression through ADAM17-dependent Notch signaling, and GRWD1 may be a novel tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Zhenyou Feng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Kongwang Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
| |
Collapse
|
4
|
Raisch J, Dubois ML, Groleau M, Lévesque D, Burger T, Jurkovic CM, Brailly R, Marbach G, McKenna A, Barrette C, Jacques PÉ, Boisvert FM. Pulse-SILAC and Interactomics Reveal Distinct DDB1-CUL4-Associated Factors, Cellular Functions, and Protein Substrates. Mol Cell Proteomics 2023; 22:100644. [PMID: 37689310 PMCID: PMC10565876 DOI: 10.1016/j.mcpro.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Cullin-RING finger ligases represent the largest family of ubiquitin ligases. They are responsible for the ubiquitination of ∼20% of cellular proteins degraded through the proteasome, by catalyzing the transfer of E2-loaded ubiquitin to a substrate. Seven cullins are described in vertebrates. Among them, cullin 4 (CUL4) associates with DNA damage-binding protein 1 (DDB1) to form the CUL4-DDB1 ubiquitin ligase complex, which is involved in protein ubiquitination and in the regulation of many cellular processes. Substrate recognition adaptors named DDB1/CUL4-associated factors (DCAFs) mediate the specificity of CUL4-DDB1 and have a short structural motif of approximately forty amino acids terminating in tryptophan (W)-aspartic acid (D) dipeptide, called the WD40 domain. Using different approaches (bioinformatics/structural analyses), independent studies suggested that at least sixty WD40-containing proteins could act as adaptors for the DDB1/CUL4 complex. To better define this association and classification, the interaction of each DCAFs with DDB1 was determined, and new partners and potential substrates were identified. Using BioID and affinity purification-mass spectrometry approaches, we demonstrated that seven WD40 proteins can be considered DCAFs with a high confidence level. Identifying protein interactions does not always lead to identifying protein substrates for E3-ubiquitin ligases, so we measured changes in protein stability or degradation by pulse-stable isotope labeling with amino acids in cell culture to identify changes in protein degradation, following the expression of each DCAF. In conclusion, these results provide new insights into the roles of DCAFs in regulating the activity of the DDB1-CUL4 complex, in protein targeting, and characterized the cellular processes involved.
Collapse
Affiliation(s)
- Jennifer Raisch
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Line Dubois
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marika Groleau
- Département de biologie, faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Lévesque
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas Burger
- CNRS, INSERM, Université Grenoble Alpes, Grenoble, France
| | - Carla-Marie Jurkovic
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Romain Brailly
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gwendoline Marbach
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alyson McKenna
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Barrette
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Étienne Jacques
- Département de biologie, faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François-Michel Boisvert
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
5
|
Liang X, Meng Y, Li C, Liu L, Wang Y, Pu L, Hu L, Li Q, Zhai Z. Super-Enhancer–Associated nine-gene prognostic score model for prediction of survival in chronic lymphocytic leukemia patients. Front Genet 2022; 13:1001364. [PMID: 36186463 PMCID: PMC9521409 DOI: 10.3389/fgene.2022.1001364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a type of highly heterogeneous mature B-cell malignancy with various disease courses. Although a multitude of prognostic markers in CLL have been reported, insights into the role of super-enhancer (SE)–related risk indicators in the occurrence and development of CLL are still lacking. A super-enhancer (SE) is a cluster of enhancers involved in cell differentiation and tumorigenesis, and is one of the promising therapeutic targets for cancer therapy in recent years. In our study, the CLL-related super-enhancers in the training database were processed by LASSO-penalized Cox regression analysis to screen a nine-gene prognostic model including TCF7, VEGFA, MNT, GMIP, SLAMF1, TNFRSF25, GRWD1, SLC6AC, and LAG3. The SE-related risk score was further constructed and it was found that the predictive performance with overall survival and time-to-treatment (TTT) was satisfactory. Moreover, a high correlation was found between the risk score and already known prognostic markers of CLL. In the meantime, we noticed that the expressions of TCF7, GMIP, SLAMF1, TNFRSF25, and LAG3 in CLL were different from those of healthy donors (p < 0.01). Moreover, the risk score and LAG3 level of matched pairs before and after treatment samples varied significantly. Finally, an interactive nomogram consisting of the nine-gene risk group and four clinical traits was established. The inhibitors of mTOR and cyclin-dependent kinases (CDKs) were considered effective in patients in the high-risk group according to the pRRophetic algorithm. Collectively, the SE-associated nine-gene prognostic model developed here may be used to predict the prognosis and assist in the risk stratification and treatment of CLL patients in the future.
Collapse
|
6
|
Yuan K, Li Z, Kuang W, Wang X, Ji M, Chen W, Ding J, Li J, Min W, Sun C, Ye X, Lu M, Wang L, Ge H, Jiang Y, Hao H, Xiao Y, Yang P. Targeting dual-specificity tyrosine phosphorylation-regulated kinase 2 with a highly selective inhibitor for the treatment of prostate cancer. Nat Commun 2022; 13:2903. [PMID: 35614066 PMCID: PMC9133015 DOI: 10.1038/s41467-022-30581-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide, and hormonal therapy plays a key role in the treatment of PCa. However, the drug resistance of hormonal therapy makes it urgent and necessary to identify novel targets for PCa treatment. Herein, dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is found and confirmed to be highly expressed in the PCa tissues and cells, and knock-down of DYRK2 remarkably reduces PCa burden in vitro and in vivo. On the base of DYRK2 acting as a promising target, we further discover a highly selective DYRK2 inhibitor YK-2-69, which specifically interacts with Lys-231 and Lys-234 in the co-crystal structure. Especially, YK-2-69 exhibits more potent anti-PCa efficacy than the first-line drug enzalutamide in vivo. Meanwhile, YK-2-69 displays favorable safety properties with a maximal tolerable dose of more than 10,000 mg/kg and pharmacokinetic profiles with 56% bioavailability. In summary, we identify DYRK2 as a potential drug target and verify its critical roles in PCa. Meanwhile, we discover a highly selective DYRK2 inhibitor with favorable druggability for the treatment of PCa. The kinase DYRK2 is a known oncogene but its role in prostate cancer is unexplored. Here, the authors identify DYRK2 as a target for prostate cancer with a role in invasion and they discover a specific DYRK2 inhibitor that has good pharmacokinetics and efficacy in vivo.
Collapse
Affiliation(s)
- Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiuquan Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Meiling Lu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, 313000, Huzhou, China
| | - Yuzhang Jiang
- Department of Laboratory, Huai'an First People's Hospital, Nanjing Medical University, 223300, Huai'an, Jiangsu, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China. .,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China. .,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China. .,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| |
Collapse
|
7
|
Ichikawa MK, Saitoh M. Direct and indirect roles of GRWD1 in the inactivation of p53 in cancer. J Biochem 2022; 171:601-603. [PMID: 35171268 DOI: 10.1093/jb/mvac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glutamate-rich WD40 repeat containing 1 (GRWD1), also known as WDR28, interacts with various proteins through its WD domain and is involved in transcription, translation, cell cycle progression, ubiquitin-mediated degradation, and DNA replication and repair. Ribosomal protein L11 (RPL11), which directly interacts with MDM2, inhibits MDM2 ubiquitin ligase activity, thus promoting p53 stabilization. Binding of GRWD1 to RPL11 disrupts the interaction between RPL11 and MDM2 and promotes p53 ubiquitination by MDM2. In addition, a recent report by Fujiyama et al. found that GRWD1 also directly interacts with wild-type p53 and suppresses its transcriptional activity. They propose that GRWD1 is a novel tumor-promoting molecule that negatively regulates wild-type p53 via both indirect and direct mechanisms.
Collapse
Affiliation(s)
- Mai Koizumi Ichikawa
- Center for Medical Education and Sciences.,Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi 4098-3898, Japan
| | | |
Collapse
|
8
|
Comprehensive Analysis of Glutamate-Rich WD Repeat-Containing Protein 1 and Its Potential Clinical Significance for Pancancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8201377. [PMID: 34616846 PMCID: PMC8490071 DOI: 10.1155/2021/8201377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/28/2021] [Indexed: 12/05/2022]
Abstract
Methods The expression level of GRWD1 in human cancer tissues was analyzed using the Tumor Immune Evaluation Resource (ver. 2.0, TIMER2), Gene Expression Profiling Interactive Analysis (ver. 2, GEPIA2), and UALCAN databases. The Kaplan-Meier plotter was utilized to analyze the survival data. Spearman's correlation analysis was used to find out the correlation between the expression level of GRWD1 and predictive biomarkers, such as tumor mutation burden (TMB) and microsatellite instability (MSI). Furthermore, the MEXPRESS website was used to study the potential relationship between DNA methylation level of GRWD1 and pathological staging. We utilized the “immune” module provided on the TIMER2 website to explore the relationship between the expression level of GRWD1 and immune infiltration in all types of cancer in TCGA. Pearson's correlation analysis was used to investigate the correlation between the expression level of GRWD1 and the expression levels of immune checkpoint-related genes. For protein expression analysis, we used the CPTAC module provided by the UALCAN portal to compare the total protein and phosphorylated protein level of GRWD1 in adjacent normal and tumor tissues. Results GRWD1 was overexpressed in tissues of most types of cancer, in which the expression levels of GRWD1 in the kidney chromophobe (KICH), kidney renal papillary cell carcinoma (KIRP), and kidney renal clear cell carcinoma (KIRC) tissues showed an opposite trend, and the expression level of GRWD1 was correlated to only the KIRC tumor stage. The results of survival analysis showed that the expression level of GRWD1 was significantly associated with overall survival in six types of cancer and disease-free survival (DFS) in three types of cancer. Importantly, the increased expression level of GRWD1 was strongly correlated with prognosis of KIRC patients. There was a positive relationship between the expression level of GRWD1 and immune cell infiltration in several types of cancer, and the expression level of GRWD1 was also positively correlated with TMB, MSI, and DNA methylation in some types of cancer. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that “ubiquitin mediated proteolysis,” “spliceosome,” and “nucleotide excision repair” were involved in the effect of GRWD1 expression on tumor pathogenesis. Conclusion This pancancer analysis provided a comprehensive overview of the carcinogenic effects of GRWD1 on a variety of human cancers. The results of bioinformatics analysis indicated GRWD1 as a promising biomarker for detection, prognosis, and therapeutic assessment of diverse types of cancer, and GRWD1 could act as a tumor suppressor in KIRC.
Collapse
|