1
|
Lei M, Liang J, Guo K, Tang L, He Y, Wu X. Roles of noncoding RNAs in multiple myeloma. Leuk Res 2024; 146:107593. [PMID: 39307099 DOI: 10.1016/j.leukres.2024.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024]
Abstract
Noncoding RNAs (ncRNAs) constitute a class of nucleic acid molecules within cells that do not encode proteins but play important roles in regulating gene expression, maintaining cellular homeostasis, and mediating cell signaling. This class encompasses microRNAs (miRNAs), long noncoding RNAs (lncRNAs), transfer RNAs (tRNAs), circular RNAs (circRNAs), small interfering RNAs (siRNAs), and others. miRNAs are pivotal in the regulation of gene expression in hematologic malignancies. Aberrant expression of lncRNAs has been confirmed in cancerous tissues, implicating their involvement in carcinogenesis or tumor suppression processes. tRNAs may induce errors or disturbances in protein synthesis, thereby affecting normal cellular function and proliferation. Moreover, circRNAs influence disease progression in tumors by modulating the expression of relevant genes, and siRNAs can inhibit tumor cell proliferation, invasion, and metastasis while inducing apoptosis. This review will elucidate the biological functions of ncRNAs in multiple myeloma (MM) and explore their potential value as therapeutic targets.
Collapse
Affiliation(s)
- Ming Lei
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Juan Liang
- Hengyang Medical College, University of South China, China
| | - Kaiyun Guo
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Langui Tang
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Yuxing He
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Xuefeng Wu
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China.
| |
Collapse
|
2
|
Huang T, Zhao Y, Jiang G, Yang Z. tsRNA: A Promising Biomarker in Breast Cancer. J Cancer 2024; 15:2613-2626. [PMID: 38577588 PMCID: PMC10988313 DOI: 10.7150/jca.93531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of non-coding small RNAs, generated from specific cleavage sites of tRNA or pre-tRNA. tsRNAs can directly participate in RNA silencing, transcription, translation, and other processes. Their dysregulation is closely related to the occurrence and development of various cancers. Breast cancer is one of the most common and fastest-growing malignant tumors in humans. tsRNAs have been found to be dysregulated in breast cancer, serving as a new target for exploring the pathogenesis of breast cancer. They are also considered new tumor markers, providing a basis for diagnosis and treatment. This article reviews the generation, classification, mechanism of action, function of tsRNAs, and their biological effects and related mechanisms in breast cancer, in the hope of providing a new direction for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ting Huang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guoqin Jiang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhixue Yang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|
3
|
Mao M, Chen W, Huang X, Ye D. Role of tRNA-derived small RNAs(tsRNAs) in the diagnosis and treatment of malignant tumours. Cell Commun Signal 2023; 21:178. [PMID: 37480078 PMCID: PMC10362710 DOI: 10.1186/s12964-023-01199-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
Malignant tumours area leading cause of death globally, accounting for approximately 13% of all deaths. A detailed understanding of the mechanism(s) of the occurrence and development of malignant tumours and identification of relevant therapeutic targets are therefore key to tumour treatment. tsRNAs(tRNA-derived small RNAs)-also known as TRFs (tRNA-derived fragments), tiRNAs (tRNA-derived stress-induced RNAs), tRNA halves, etc.-are a recently identified class of small noncoding RNAs that are generated from mature tRNA or tRNA precursors through cleavage by enzymes such as angiogenin, Dicer, RNase Z, and RNase P. Several studies have confirmed that dysregulation of tsRNAs is closely related to the tumorigenesis of breast cancer, nasopharyngeal cancer, lung cancer, and so on. Furthermore, research indicates that tsRNAs can be used as clinical diagnostic markers and therapeutic targets for cancer. In our review, we summarized the recent research progress on the role and clinical application of tsRNAs in tumorigenesis and progression. Video Abstract.
Collapse
Affiliation(s)
- Mingwen Mao
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo No.6 Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Weina Chen
- Department of Clinical Pharmacology, Yinzhou Integrated TCM & Western Medicine Hospital, Ningbo, 315040, Zhejiang, China
| | - Xingbiao Huang
- Department of General Surgery, Ningbo No.6, Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
4
|
Zhao R, Yang Z, Zhao B, Li W, Liu Y, Chen X, Cao J, Zhang J, Guo Y, Xu L, Wang J, Sun Y, Liu M, Tian L. A novel tyrosine tRNA-derived fragment, tRF Tyr, induces oncogenesis and lactate accumulation in LSCC by interacting with LDHA. Cell Mol Biol Lett 2023; 28:49. [PMID: 37365531 DOI: 10.1186/s11658-023-00463-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Transfer (t)RNA-derived small RNA (tsRNA), generated from precursor or mature tRNA, is a new type of small non-coding RNA (sncRNA) that has recently been shown to play a vital role in human cancers. However, its role in laryngeal squamous cell carcinoma (LSCC) remains unclear. METHODS We elucidated the expression profiles of tsRNAs in four paired LSCC and non-neoplastic tissues by sequencing and verified the sequencing data by quantitative real-time PCR (qRT-PCR) of 60 paired samples. The tyrosine-tRNA derivative tRFTyr was identified as a novel oncogene in LSCC for further study. Loss-of-function experiments were performed to evaluate the roles of tRFTyr in tumorigenesis of LSCC. Mechanistic experiments including RNA pull-down, parallel reaction monitoring (PRM) and RNA immunoprecipitation (RIP) were employed to uncover the regulatory mechanism of tRFTyr in LSCC. RESULTS tRFTyr was significantly upregulated in LSCC samples. Functional assays showed that knockdown of tRFTyr significantly suppressed the progression of LSCC. A series of mechanistic studies revealed that tRFTyr could enhance the phosphorylated level of lactate dehydrogenase A (LDHA) by interacting with it. The activity of LDHA was also activated, which induced lactate accumulation in LSCC cells. CONCLUSIONS Our data delineated the landscape of tsRNAs in LSCC and identified the oncogenic role of tRFTyr in LSCC. tRFTyr could promote lactate accumulation and tumour progression in LSCC by binding to LDHA. These findings may aid in the development of new diagnostic biomarkers and provide new insights into therapeutic strategies for LSCC.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Zhao
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaohui Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoxue Chen
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Cao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiarui Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Licheng Xu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinpeng Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Sun
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Linli Tian
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Zhao M, Tian C, Di X, Cong S, Cao Y, Zhou X, Wang K. Systematic and Comprehensive Analysis of tRNA-Derived Small RNAs Reveals Their Potential Regulatory Roles and Clinical Relevance in Sarcoidosis. J Inflamm Res 2023; 16:2357-2374. [PMID: 37284703 PMCID: PMC10241215 DOI: 10.2147/jir.s406484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction The pathogenesis of sarcoidosis, which involves several systems, is unclear, and its pathological type is non-caseating epithelioid granulomas. tRNA-derived small RNA (tsRNA) is a novel class of short non-coding RNAs with potential regulatory functions. However, whether tsRNA contributes to sarcoidosis pathogenesis remains unclear. Methods Deep sequencing technology was used to identify alterations in tsRNA relative abundance profiles between patients with sarcoidosis and healthy controls and quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate. The clinical parameters were analysis to evaluate the clinical feature correlations initially. Target prediction and bioinformatics analysis of validated tsRNA were conducted to explore the mechanisms of tsRNAs in sarcoidosis pathogenesis. Results A total of 360 tsRNAs were identified for exact matches. Among them, the relative abundance of three tRNAs (tiRNA-Glu-TTC-001, tiRNA-Lys-CTT-003, and tRF-Ser-TGA-007) was markedly regulated in sarcoidosis. The levels of various tsRNAs were significantly correlated with age, the number of affected systems, and calcium levels in the blood. Additionally, target prediction and bioinformatics analyses revealed that these tsRNAs may play roles in chemokine, cAMP, cGMP-PKG, retrograde endorphin, and FoxO signalling pathways. The related genes, APP, PRKACB, ARRB2, and NR5A1 finding may participate in the occurrence and development of sarcoidosis through immune inflammation. Conclusion This study provides novel insights to explore tsRNA as a novel and efficacious pathogenic target of sarcoidosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Chang Tian
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yingshu Cao
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xijia Zhou
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
6
|
Gong M, Deng Y, Xiang Y, Ye D. The role and mechanism of action of tRNA-derived fragments in the diagnosis and treatment of malignant tumors. Cell Commun Signal 2023; 21:62. [PMID: 36964534 PMCID: PMC10036988 DOI: 10.1186/s12964-023-01079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/13/2023] [Indexed: 03/26/2023] Open
Abstract
Cancer is a leading cause of morbidity and death worldwide. While various factors are established as causing malignant tumors, the mechanisms underlying cancer development remain poorly understood. Early diagnosis and the development of effective treatments for cancer are important research topics. Transfer RNA (tRNA), the most abundant class of RNA molecules in the human transcriptome, participates in both protein synthesis and cellular metabolic processes. tRNA-derived fragments (tRFs) are produced by specific cleavage of pre-tRNA and mature tRNA molecules, which are highly conserved and occur widely in various organisms. tRFs were initially thought to be random products with no physiological function, but have been redefined as novel functional small non-coding RNA molecules that help to regulate RNA stability, modulate translation, and influence target gene expression, as well as other biological processes. There is increasing evidence supporting roles for tRFs in tumorigenesis and cancer development, including the regulation of tumor cell proliferation, invasion, migration, and drug resistance. Understanding the regulatory mechanisms by which tRFs impact these processes has potential to inform malignant tumor diagnosis and treatment. Further, tRFs are expected to become new biological markers for early diagnosis and prognosis prediction in patients with tumors, as well as a targets for precision cancer therapies. Video abstract.
Collapse
Affiliation(s)
- Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
7
|
Lu E, Wu L, Chen B, Xu S, Fu Z, Wu Y, Wu Y, Gu H. Maternal Serum tRNA-Derived Fragments (tRFs) as Potential Candidates for Diagnosis of Fetal Congenital Heart Disease. J Cardiovasc Dev Dis 2023; 10:jcdd10020078. [PMID: 36826574 PMCID: PMC9968204 DOI: 10.3390/jcdd10020078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most predominant birth defects that causes infant death worldwide. The timely and successful surgical treatment of CHD on newborns after delivery requires accurate detection and reliable diagnosis during pregnancy. However, there are no biomarkers that can serve as an early diagnostic factor for CHD patients. tRNA-derived fragments (tRFs) have been reported to play an important role in the occurrence and progression of numerous diseases, but their roles in CHD remains unknown. METHODS High-throughput sequencing was performed on the peripheral blood of pregnant women with an abnormal fetal heart and a normal fetal heart, and 728 differentially expressed tRFs/tiRNAs were identified, among which the top 18 tRFs/tiRNAs were selected as predictive biomarkers of CHD. Then, a quantitative reverse transcriptase polymerase chain reaction verified the expression of tRFs/tiRNAs in more clinical samples, and the correlation between tRFs/tiRNAs abnormalities and CHD was analyzed. RESULTS tRF-58:74-Gly-GCC-1 and tiRNA-1:35-Leu-CAG-1-M2 may be promising biomarkers. Through further bioinformatics analysis, we predicted that TRF-58:744-GLy-GCC-1 could induce CHD by influencing biological metabolic processes. CONCLUSIONS Our results provide a theoretical basis for the abnormally expressed tRF-58:74-Gly-GCC-1 in maternal peripheral blood as a new potential biomarker for the accurate diagnosis of CHD during pregnancy.
Collapse
Affiliation(s)
- Enkang Lu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Central Laboratory of Jiangsu Provincial Maternal and Child Health Care Hospital, Maternal and Child Branch of the First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, China
| | - Lijun Wu
- Department of Ultrasound, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Bin Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Ziyi Fu
- Central Laboratory of Jiangsu Provincial Maternal and Child Health Care Hospital, Maternal and Child Branch of the First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, China
| | - Yun Wu
- Department of Ultrasound, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing 210004, China
- Correspondence: (Y.W.); (Y.W.); (H.G.); Tel.: +86-189-0518-0170 (Y.W.); +86-139-5194-5999 (Y.W.); +86-139-0159-2427 (H.G.)
| | - Yanhu Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (Y.W.); (Y.W.); (H.G.); Tel.: +86-189-0518-0170 (Y.W.); +86-139-5194-5999 (Y.W.); +86-139-0159-2427 (H.G.)
| | - Haitao Gu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (Y.W.); (Y.W.); (H.G.); Tel.: +86-189-0518-0170 (Y.W.); +86-139-5194-5999 (Y.W.); +86-139-0159-2427 (H.G.)
| |
Collapse
|
8
|
Fu M, Gu J, Wang M, Zhang J, Chen Y, Jiang P, Zhu T, Zhang X. Emerging roles of tRNA-derived fragments in cancer. Mol Cancer 2023; 22:30. [PMID: 36782290 PMCID: PMC9926655 DOI: 10.1186/s12943-023-01739-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
tRNA-derived fragments (tRFs) are an emerging category of small non-coding RNAs that are generated from cleavage of mature tRNAs or tRNA precursors. The advance in high-throughput sequencing has contributed to the identification of increasing number of tRFs with critical functions in distinct physiological and pathophysiological processes. tRFs can regulate cell viability, differentiation, and homeostasis through multiple mechanisms and are thus considered as critical regulators of human diseases including cancer. In addition, increasing evidence suggest the extracellular tRFs may be utilized as promising diagnostic and prognostic biomarkers for cancer liquid biopsy. In this review, we focus on the biogenesis, classification and modification of tRFs, and summarize the multifaceted functions of tRFs with an emphasis on the current research status and perspectives of tRFs in cancer.
Collapse
Affiliation(s)
- Min Fu
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China ,grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jianmei Gu
- grid.260483.b0000 0000 9530 8833Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226361 Jiangsu China
| | - Maoye Wang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jiahui Zhang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yanke Chen
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Pengcheng Jiang
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Xu Zhang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Al Nuaimi M, Amiri KMA. tRNA derived small RNAs—Small players with big roles. Front Genet 2022; 13:997780. [PMID: 36199575 PMCID: PMC9527309 DOI: 10.3389/fgene.2022.997780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled M. A. Amiri,
| |
Collapse
|
10
|
tRNA Derivatives in Multiple Myeloma: Investigation of the Potential Value of a tRNA-Derived Molecular Signature. Biomedicines 2021; 9:biomedicines9121811. [PMID: 34944627 PMCID: PMC8698603 DOI: 10.3390/biomedicines9121811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy arising from the clonal proliferation of malignant plasma cells. tRNA-derived RNA fragments (tRFs) constitute a class of small non-coding RNAs, deriving from specific enzymatic cleavage of tRNAs. To the best of our knowledge, this is one of few studies to uncover the potential clinical significance of tRFs in MM. Total RNA was extracted from CD138+ plasma cells of MM and smoldering MM patients, and in vitro polyadenylated. First-strand cDNA synthesis was performed, priming from an oligo-dT-adaptor sequence. Next, real-time quantitative PCR (qPCR) assays were developed for the quantification of six tRFs. Biostatistical analysis was performed to assess the results and in silico analysis was conducted to predict the function of one of the tRFs. Our results showed that elevated levels of five out of six tRFs are indicators of favorable prognosis in MM, predicting prolonged overall survival (OS), while two of them constitute potential molecular biomarkers of favorable prognosis in terms of disease progression. Moreover, three tRFs could be used as surrogate prognostic biomarkers along with the R-ISS staging system to predict OS. In conclusion, tRFs show molecular biomarker utility in MM, while their mechanisms of function merit further investigation.
Collapse
|
11
|
Li X, Liu X, Zhao D, Cui W, Wu Y, Zhang C, Duan C. tRNA-derived small RNAs: novel regulators of cancer hallmarks and targets of clinical application. Cell Death Discov 2021; 7:249. [PMID: 34537813 PMCID: PMC8449783 DOI: 10.1038/s41420-021-00647-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
tRNAs are a group of conventional noncoding RNAs (ncRNAs) with critical roles in the biological synthesis of proteins. Recently, tRNA-derived small RNAs (tsRNAs) were found to have important biological functions in the development of human diseases including carcinomas, rather than just being considered pure degradation material. tsRNAs not only are abnormally expressed in the cancer tissues and serum of cancer patients, but also have been suggested to regulate various vital cancer hallmarks. On the other hand, the application of tsRNAs as biomarkers and therapeutic targets is promising. In this review, we focused on the basic characteristics of tsRNAs, and their biological functions known thus far, and explored the regulatory roles of tsRNAs in cancer hallmarks including proliferation, apoptosis, metastasis, tumor microenvironment, drug resistance, cancer stem cell phenotype, and cancer cell metabolism. In addition, we also discussed the research progress on the application of tsRNAs as tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China
| | - Xianyu Liu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China
| | - Yingfang Wu
- Centre of Stomatology, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China. .,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China. .,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, P. R. China.
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China. .,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China. .,Institute of Medical Sciences, Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.
| |
Collapse
|