1
|
Yu XX, Liu Y, Luo RJ, Song ZX, Chen WK, Mo ZM, Wang FJ. Bioinformatics analysis combined with experimental validation reveals the biological role of the ILK gene in prostate cancer. Discov Oncol 2025; 16:106. [PMID: 39890647 PMCID: PMC11785868 DOI: 10.1007/s12672-025-01852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent urological malignancy. The integrin-linked kinase (ILK) gene has been identified as an oncogenic driver in hormonal cancers, including PCa. METHODS To identify key genes in PCa, we utilized differential gene expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA). The ILK gene was silenced using short interfering RNA (siRNA), and subsequent experiments focusing on cellular functionality were conducted to evaluate its impact on cell proliferation, apoptosis, and cell cycle. We examined the expression of autophagy-related and cell cycle-related proteins, including MAP1LC3A, BECN1, C-MYC, TP53, and MDM2. Moreover, we conducted Mfuzz expression pattern clustering analysis, gene set enrichment analysis (GSEA), immune function analysis, transcription factor (TF) analysis, and drug prediction. RESULTS 544 significant genes were identified by WGCNA. The protein-protein interaction (PPI) network analysis revealed that MYC was the central regulatory gene, with the intersected genes mainly involved in regulating cell adhesion and drug metabolism in prostate cancer (PCa). Experimental results showed LNCaP cell proliferation was significantly inhibited in the knockdown groups (P < 0.001). Moreover, ILK silencing increased apoptosis in LNCaP cells compared to normal cells and empty vectors, and transfected LNCaP cells were arrested in the S phase of the cell cycle. Notably, C-MYC expression decreased following ILK silencing. Subsequently, we further identified ILK-related regulatory biomarkers. CONCLUSIONS The ILK is an oncogene mainly through influencing the C-MYC in PCa. Inhibition of ILK expression would be a promising method for treating the development and progression of PCa.
Collapse
Affiliation(s)
- Xiao-Xiang Yu
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China.
| | - Yi Liu
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Rong-Jiang Luo
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Zi-Xuan Song
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Wen-Kai Chen
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Zeng-Mi Mo
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Feng-Jing Wang
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| |
Collapse
|
2
|
Zhang X, Li B, Lan T, Chiari C, Ye X, Wang K, Chen J. The role of interleukin-17 in inflammation-related cancers. Front Immunol 2025; 15:1479505. [PMID: 39906741 PMCID: PMC11790576 DOI: 10.3389/fimmu.2024.1479505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Emerging evidence indicates a correlation between inflammation and the development and progression of cancer. Among the various inflammatory signals, interleukin-17 (IL-17) family cytokines serve as a critical link between inflammation and cancer. IL-17 is a highly versatile pro-inflammatory cytokine that plays a pivotal role in host defense, tissue repair, the pathogenesis of inflammatory diseases, and cancer progression. During the early stages of tumorigenesis, IL-17 signaling directly promotes the proliferation of tumor cells. Conversely, IL-17 has been shown to exhibit antitumor immunity in several models of grafted subcutaneous tumors. Additionally, dynamic changes in the microbiome can influence the secretion of IL-17, thereby affecting tumor development. The specific role of IL-17 is contingent upon its functional classification, spatiotemporal characteristics, and the stage of tumor development. In this review, we introduce the fundamental biology of IL-17 and the expression profile of its receptors in cancer, while also reviewing and discussing recent advancements regarding the pleiotropic effects and mechanisms of IL-17 in inflammation-related cancers. Furthermore, we supplement our discussion with insights into the mechanisms by which IL-17 impacts cancer progression through interactions with the microbiota, and we explore the implications of IL-17 in cancer therapy. This comprehensive analysis aims to enhance our understanding of IL-17 and its potential role in cancer treatment.
Collapse
Affiliation(s)
- Xingru Zhang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Bangjie Li
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Tian Lan
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Conner Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- College of Engineering, Northeastern University, Seattle, WA, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
3
|
Tuineau MN, Herbert LM, Garcia SM, Resta TC, Jernigan NL. Enhanced glycolysis causes extracellular acidification and activates acid-sensing ion channel 1a in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L439-L451. [PMID: 39104320 PMCID: PMC11482464 DOI: 10.1152/ajplung.00083.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
In pulmonary hypertension (PHTN), a metabolic shift to aerobic glycolysis promotes a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs). Enhanced glycolysis induces extracellular acidosis, which can activate proton-sensing membrane receptors and ion channels. We previously reported that activation of the proton-gated cation channel acid-sensing ion channel 1a (ASIC1a) contributes to the development of hypoxic PHTN. Therefore, we hypothesize that enhanced glycolysis and subsequent acidification of the PASMC extracellular microenvironment activate ASIC1a in hypoxic PHTN. We observed decreased oxygen consumption rate and increased extracellular acidification rate in PASMCs from chronic hypoxia (CH)-induced PHTN rats, indicating a shift to aerobic glycolysis. In addition, we found that intracellular alkalization and extracellular acidification occur in PASMCs following CH and in vitro hypoxia, which were prevented by the inhibition of glycolysis with 2-deoxy-d-glucose (2-DG). Inhibiting H+ transport/secretion through carbonic anhydrases, Na+/H+ exchanger 1, or vacuolar-type H+-ATPase did not prevent this pH shift following hypoxia. Although the putative monocarboxylate transporter 1 (MCT1) and -4 (MCT4) inhibitor syrosingopine prevented the pH shift, the specific MCT1 inhibitor AZD3965 and/or the MCT4 inhibitor VB124 were without effect, suggesting that syrosingopine targets the glycolytic pathway independent of H+ export. Furthermore, 2-DG and syrosingopine prevented enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMCs from CH rats. These data suggest that multiple H+ transport mechanisms contribute to extracellular acidosis and that inhibiting glycolysis-rather than specific H+ transporters-more effectively prevents extracellular acidification and ASIC1a activation. Together, these data reveal a novel pathological relationship between glycolysis and ASIC1a activation in hypoxic PHTN.NEW & NOTEWORTHY In pulmonary hypertension, a metabolic shift to aerobic glycolysis drives a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells. We demonstrate that this enhanced glycolysis induces extracellular acidosis and activates the proton-gated ion channel, acid-sensing ion channel 1a (ASIC1a). Although multiple H+ transport/secretion mechanisms are upregulated in PHTN and likely contribute to extracellular acidosis, inhibiting glycolysis with 2-deoxy-d-glucose or syrosingopine effectively prevents extracellular acidification and ASIC1a activation, revealing a promising therapeutic avenue.
Collapse
Affiliation(s)
- Megan N Tuineau
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| | - Lindsay M Herbert
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| | - Selina M Garcia
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| | - Thomas C Resta
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| | - Nikki L Jernigan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| |
Collapse
|
4
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Assessing the Mechanism of Action of “Fructus Ligustri Lucidi-Cuscutae Semen” in Prostate Cancer Treatment Using Network Pharmacology and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7543619. [PMID: 36330452 PMCID: PMC9626213 DOI: 10.1155/2022/7543619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022]
Abstract
Objective To explore the mechanism of action of “Fructus Ligustri Lucidi-Cuscutae Semen” in the treatment of prostate cancer using network pharmacology and molecular docking. Methods The active ingredients and targets of “Fructus Ligustri Lucidi-Cuscutae Semen” were obtained by searching the TCMSP and DrugBank databases. These were matched and corrected using the UniProt platform. A drug “active ingredient-target” network map was constructed using Cytoscape 3.8.0. Prostate cancer-related targets were acquired from GeneCards, Disgenet, DrugBank, and other databases. The protein-protein interaction (PPI) network between the drug and prostate cancer was constructed with BioGenet; the crossover network of the two targets was extracted derive the key targets of “Fructus Ligustri Lucidi-Cuscutae Semen” for prostate cancer treatment. We used the Metascape platform for GO and KEGG enrichment analysis of the key targets. AutoDockTools1.5.6 and PyMOL software were used to perform molecular docking. Results We obtained 13 active ingredients, 221 drug targets, 1511 prostate cancer targets (including 221 key targets), and 305 KEGG pathways from “Fructus Ligustri Lucidi-Cuscutae Semen.” Paclitaxel, quercetin, kaempferol, TP53, β-sitosterol, EGFR, and ESR1 in “Fructus Ligustri Lucidi-Cuscutae Semen” showed good docking activity. Conclusion “Fructus Ligustri Lucidi-Cuscutae Semen” is a valuable clinical guide for the treatment of prostate cancer with multicomponent, multitarget, and multipathway characteristics.
Collapse
|
6
|
Hu X, Zhao S, Cai Y, Swain SS, Yao L, Liu W, Yan T. Network Pharmacology-Integrated Molecular Docking Reveals the Expected Anticancer Mechanism of Picrorhizae Rhizoma Extract. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3268773. [PMID: 36158891 PMCID: PMC9507705 DOI: 10.1155/2022/3268773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
This study sought to explore the anticancer mechanism of Picrorhizae Rhizoma (PR) extract based on network pharmacology and molecular docking. The potential chemicals of PR were screened through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and relevant literatures. Corresponding targets of active ingredients were found with the help of the UniProtKB database, and therapeutic targets for cancer action were screened with the help of the GeneCards database. We used Cytoscape software to construct the compound-target-pathway network of PR extract. We utilized the STRING database to obtain the protein-protein interaction (PPI) network. We used DAVID database combining Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, molecular docking was employed for initial efficacy checking. We have identified 16 potential active components of PR through screening, involving 112 disease action targets. Utilizing the GeneCards database, 112 intersecting targets between PR extract and cancer were found, which mainly exerts anticancer effects by regulating tumor necrosis factor (TNF), recombinant caspase 3 (CASP3), c-Jun NH2-terminal kinase (JNK)/JUN, epidermal growth factor receptor (EGFR), and estrogen receptor-1 (ESR1) with some other target genes and pathways associated with cancer. The major anticancer species are prostate cancer, colorectal cancer, small cell lung cancer, etc. In the molecular docking study, herbactin had a strong affinity for TNF. Based on network pharmacology and molecular docking studies, PR and their compounds have demonstrated potential anticancer activities against several key targets. Our preliminary findings provide a strong foundation for further experiments with PR constituents.
Collapse
Affiliation(s)
- Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Shengchao Zhao
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023 Odisha, India
| | - Liangliang Yao
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
7
|
Zhang Y, Zhang X, Meng Y, Xu X, Zuo D. The role of glycolysis and lactate in the induction of tumor-associated macrophages immunosuppressive phenotype. Int Immunopharmacol 2022; 110:108994. [PMID: 35777265 DOI: 10.1016/j.intimp.2022.108994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Growing evidence highlights that glycolysis and tumor-derived lactate could skew tumor-associated macrophages (TAMs) toward an immunosuppressive phenotype. However, the updated research has not been systematically summarized yet. TAMs are educated by the tumor microenvironment (TME) and exert immunosuppressive functions and tumorigenic effects via multiple biological processes. It is well known that lactate generated by aerobic glycolysis is significantly accumulated in TME and promotes tumor progression in solid tumors. Moreover, some recent research demonstrated that glycolysis is activated in TAMs to support M2-like polarization, which is absolutely in contrast with the metabolic profile of M2 macrophages in inflammation. Notably, lactate produced by high levels of glycolysis is not only a metabolic by-product but also an oncometabolite. TAMs could access the biological information delivered by lactate and further enhance protumor functions such as immunosuppression and angiogenesis. Here, we outline the connection between glycolysis and TAM phenotype to elucidate the metabolic characteristics of TAMs. Further, insights into the specific molecular mechanisms of lactate-induced TAM polarization and potential therapeutic targets are summarized. We sought to discuss the reciprocal interaction between tumor cells and TAMs mediated by lactate, which will lay a foundation for the research aiming to elucidate the complex functions of TAMs.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xue Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuting Meng
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaobo Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
8
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
9
|
Guo T, Wang J, Yan S, Meng X, Zhang X, Xu S, Ren S, Huang Y. A combined signature of glycolysis and immune landscape predicts prognosis and therapeutic response in prostate cancer. Front Endocrinol (Lausanne) 2022; 13:1037099. [PMID: 36339430 PMCID: PMC9634133 DOI: 10.3389/fendo.2022.1037099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is a common malignancy that poses a major threat to the health of men. Prostate-specific antigen (PSA) and its derivatives, as FDA-approved detection assays, are insufficient to serve as optimal markers for patient prognosis and clinical decision-making. It is widely acknowledged that aberrant glycolytic metabolism in PCa is related to tumor progression and acidifies the tumor microenvironment (TME). Considering the non-negligible impacts of glycolysis and immune functions on PCa, we developed a combined classifier in prostate cancer. The Glycolysis Score containing 19 genes and TME Score including three immune cells were created, using the univariate and multivariate Cox proportional hazards model, log-rank test, least absolute shrinkage and selection operator (LASSO) regression analysis and the bootstrap approach. Combining the glycolysis and immunological landscape, the Glycolysis-TME Classifier was then constructed. It was observed that the classifier was more accurate in predicting the prognosis of patients than the current biomarkers. Notably, there were significant differences in metabolic activity, signaling pathways, mutational landscape, immunotherapeutic response, and drug sensitivity among the Glycolysishigh/TMElow, Mixed group and Glycolysislow/TMEhigh identified by this classifier. Overall, due to the significant prognostic value and potential therapeutic guidance of the Glycolysis-TME Classifier, we anticipate that this classifier will be clinically beneficial in the management of patients with PCa.
Collapse
Affiliation(s)
- Tao Guo
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shi Yan
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Xiangyu Meng
- Department of Urology , The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaomin Zhang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Shuang Xu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
- *Correspondence: Yuhua Huang, ; Shancheng Ren,
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- *Correspondence: Yuhua Huang, ; Shancheng Ren,
| |
Collapse
|
10
|
Ganini C, Amelio I, Bertolo R, Candi E, Cappello A, Cipriani C, Mauriello A, Marani C, Melino G, Montanaro M, Natale ME, Tisone G, Shi Y, Wang Y, Bove P. Serine and one-carbon metabolisms bring new therapeutic venues in prostate cancer. Discov Oncol 2021; 12:45. [PMID: 35201488 PMCID: PMC8777499 DOI: 10.1007/s12672-021-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Serine and one-carbon unit metabolisms are essential biochemical pathways implicated in fundamental cellular functions such as proliferation, biosynthesis of important anabolic precursors and in general for the availability of methyl groups. These two distinct but interacting pathways are now becoming crucial in cancer, the de novo cytosolic serine pathway and the mitochondrial one-carbon metabolism. Apart from their role in physiological conditions, such as epithelial proliferation, the serine metabolism alterations are associated to several highly neoplastic proliferative pathologies. Accordingly, prostate cancer shows a deep rearrangement of its metabolism, driven by the dependency from the androgenic stimulus. Several new experimental evidence describes the role of a few of the enzymes involved in the serine metabolism in prostate cancer pathogenesis. The aim of this study is to analyze gene and protein expression data publicly available from large cancer specimens dataset, in order to further dissect the potential role of the abovementioned metabolism in the complex reshaping of the anabolic environment in this kind of neoplasm. The data suggest a potential role as biomarkers as well as in cancer therapy for the genes (and enzymes) belonging to the one-carbon metabolism in the context of prostatic cancer.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Riccardo Bertolo
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Angela Cappello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Carla Marani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Maria Emanuela Natale
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Yufang Shi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Pierluigi Bove
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| |
Collapse
|