1
|
Lim CL, Or YZ, Ong Z, Chung HH, Hayashi H, Shrestha S, Chiba S, Lin F, Lin VCL. Estrogen exacerbates mammary involution through neutrophil-dependent and -independent mechanism. eLife 2020; 9:57274. [PMID: 32706336 PMCID: PMC7417171 DOI: 10.7554/elife.57274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
There is strong evidence that the pro-inflammatory microenvironment during post-partum mammary involution promotes parity-associated breast cancer. Estrogen exposure during mammary involution drives tumor growth through neutrophils’ activity. However, how estrogen and neutrophils influence mammary involution are unknown. Combined analysis of transcriptomic, protein, and immunohistochemical data in BALB/c mice showed that estrogen promotes involution by exacerbating inflammation, cell death and adipocytes repopulation. Remarkably, 88% of estrogen-regulated genes in mammary tissue were mediated through neutrophils, which were recruited through estrogen-induced CXCR2 signalling in an autocrine fashion. While neutrophils mediate estrogen-induced inflammation and adipocytes repopulation, estrogen-induced mammary cell death was via lysosome-mediated programmed cell death through upregulation of cathepsin B, Tnf and Bid in a neutrophil-independent manner. Notably, these multifaceted effects of estrogen are mostly mediated by ERα and unique to the phase of mammary involution. These findings are important for the development of intervention strategies for parity-associated breast cancer.
Collapse
Affiliation(s)
- Chew Leng Lim
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yu Zuan Or
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zoe Ong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hwa Hwa Chung
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hirohito Hayashi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Smeeta Shrestha
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Feng Lin
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Valerie Chun Ling Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Orzechowska EJ, Girstun A, Staron K, Trzcinska-Danielewicz J. Synergy of BID with doxorubicin in the killing of cancer cells. Oncol Rep 2015; 33:2143-50. [PMID: 25760094 PMCID: PMC4391587 DOI: 10.3892/or.2015.3841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/10/2015] [Indexed: 12/19/2022] Open
Abstract
Overexpression of the BH3-interacting domain death agonist (BID) protein sensitizes certain cancer cell lines to apoptosis induced by anticancer agents, particularly by those acting through death receptors (e.g. TRAIL). Previously, we showed that recombinant BID fused with TAT cell penetrating peptide (TAT-BID) allowed for controlled delivery of BID to different cancer cell lines and moderately sensitized some of them to TRAIL or slightly to camptothecin. In the present study, we showed that TAT-BID delivered to HeLa cells strongly sensitized them to doxorubicin, as identified by cell viability and apoptosis assays. Another cell line sensitized to doxorubicin was PC3, whereas A549 and LNCaP cells were sensitized moderately or not at all, respectively. Sensitization was more pronounced at 1 μM doxorubicin administered for 48 h than for lower doses and shorter treatments. TAT-BID and doxorubicin may thus be considered as a potential therapeutic combination for cervical carcinoma and advanced prostate cancer treatment.
Collapse
Affiliation(s)
- Emilia Joanna Orzechowska
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Krzysztof Staron
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Joanna Trzcinska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
3
|
Orzechowska EJ, Kozlowska E, Czubaty A, Kozlowski P, Staron K, Trzcinska-Danielewicz J. Controlled delivery of BID protein fused with TAT peptide sensitizes cancer cells to apoptosis. BMC Cancer 2014; 14:771. [PMID: 25326334 PMCID: PMC4210496 DOI: 10.1186/1471-2407-14-771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Low cellular level of BID is critical for viability of numerous cancer cells. Sensitization of cells to anticancer agents by BID overexpression from adenovirus or pcDNA vectors is a proposed strategy for cancer therapy; however it does not provide any stringent control of cellular level of BID. The aim of this work was to examine whether a fusion of BID with TAT cell penetrating peptide (TAT-BID) may be used for controlled sensitization of cancer cells to anticancer agents acting through death receptors (TRAIL) or DNA damage (camptothecin). Prostate cancer PC3 and LNCaP, non-small human lung cancer A549, and cervix carcinoma HeLa cells were used in the study. METHODS Uptake of TAT-BID protein by cells was studied by quantitative Western blot analysis of cells extracts. Cells viability was monitored by MTT test. Apoptosis was detected by flow cytometry and cytochrome c release assay. RESULTS TAT-BID was delivered to all cancer cells in amounts depending on time, dose and the cell line. Recombinant BID sensitized PC3 cells to TRAIL or, to lesser extent, to camptothecin. Out of remaining cells, TAT-BID sensitized A549, and only slightly HeLa cells to TRAIL. None of the latter cell lines were sensitized to camptothecin. In all cases the mutant not phosphorylable by CK2 (TAT-BIDT59AS76A) was similarly efficient in sensitization as the wild type TAT-BID. CONCLUSIONS TAT-BID may be delivered to cancer cells in controlled manner and efficiently sensitizes PC3 and A549 cells to TRAIL. Therefore, it may be considered as a potential therapeutic agent that enhances the efficacy of TRAIL for the treatment of prostate and non-small human lung cancer.
Collapse
Affiliation(s)
- Emilia Joanna Orzechowska
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ewa Kozlowska
- />Department of Immunology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Alicja Czubaty
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Piotr Kozlowski
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krzysztof Staron
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Trzcinska-Danielewicz
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
4
|
Wang N, Zhu M, Tsao SW, Man K, Zhang Z, Feng Y. MiR-23a-mediated inhibition of topoisomerase 1 expression potentiates cell response to etoposide in human hepatocellular carcinoma. Mol Cancer 2013; 12:119. [PMID: 24103454 PMCID: PMC3856574 DOI: 10.1186/1476-4598-12-119] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND microRNAs have been shown to regulate the chemosensitivity of cancer cells. The aim of this study is to investigate the role and mechanism of mir-23a in enhancing the anti-tumor effect of topoisomerase 2A (TOP2A) poison etoposide in human hepatocellular carcinoma (HCC). METHODS The anti-tumor effect of chemotherapeutic agents in HCC cells were examined in vitro and in vivo xenograft model. Expression of mRNA and miRNAs were determined by quantitative real-time PCR. Protein expression was analyzed by immunoblotting. RESULTS Overexpression of mir-23a could significantly potentiate the in vitro and in vivo anti-tumor effect of etoposide; however, ectopic expression of miR-23a fails to sensitize HCC cells to 5-fluorouracil treatment, indicating the miR-23a-induced cancer cell hypersensitivity in chemotherapy is TOP2A-specific though miR-23a overexpression could not directly up-regulate TOP2A expression. Topoisomerase 1(TOP1) is down-regulated in miR-23a-overexpressed HCC cells. MiR-23a could directly bind to 3'untranslated region of TOP1 mRNA, and suppress the corresponding protein expression and inhibition of miR-23a further arguments the expression of TOP1. MiR-23a was up-regulated during DNA damage in cancer cells in line with the p53 expression. Up-regulation of p53 induces mir-23a expression, while suppression of p53 inhibits miR-23a in HCC cells. CONCLUSION Our study sheds light on the role of miR-23a as a potential target in regulating chemosensitivity of HCC cells.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Base Sequence
- Binding Sites
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Poly-ADP-Ribose Binding Proteins
- RNA Interference
- Tumor Burden
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, PR China
| | - Meifen Zhu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, PR China
| | - Sai-Wah Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Zhangjin Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, PR China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, PR China
| |
Collapse
|
5
|
Wang G, Zhang ZM. Molecular mechanisms underlying the development of hepatocellular carcinoma and molecular targeted therapy. Shijie Huaren Xiaohua Zazhi 2013; 21:1791-1796. [DOI: 10.11569/wcjd.v21.i19.1791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma is one of the most common malignant tumors worldwide and remains one of leading causes of death from cancer in China. Hepatocarcinogenesis is a complex process associated with many environmental risk factors, including cellular and molecular signaling pathways, oncogenes and tumor suppressor genes, and the differentiation of cancer stem cells. Molecular targeted therapy is a new approach to the treatment of liver cancer. The main mechanism of therapy is a type of medication that blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth, which can enhance the specificity and selectivity of the treatment. In this review, we discuss recent advances in the understanding of molecular mechanisms underlying the development of HCC and in the development of novel cancer therapeutics.
Collapse
|