1
|
Cao Y, Peng Y, Tang Y. ATF1 regulates MAL2 expression through inhibition of miR-630 to mediate the EMT process that promotes cervical cancer cell development and metastasis. J Gynecol Oncol 2025; 36:e11. [PMID: 38991944 PMCID: PMC11790996 DOI: 10.3802/jgo.2025.36.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVE The existence of activating transcription factor 1 (ATF1) could be employed as a clinical marker in the context of cervical cancer development, although its specific mechanism has not been fully clarified. METHODS To evaluate the presence of ATF1, miR-630, and myelin and lymphocyte protein 2 (MAL2) in cervical malignancies, we conducted quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot assays; further studied the expansion, migration, invasion and epithelial-mesenchymal transition (EMT) of cervical carcinoma cells using colony formation assay, transwell, loss cytometry, Western blot. Chromatin immunoprecipitation (ChIP) and RNA immunoprecipitation (RIP) were used to verify that ATF1 could directly transcriptionally repress miR-630; dual luciferase reporter assay and RIP assay were employed to confirm that miR-630 targeted to repress MAL2. RESULTS In cervical cancer cases, elevated ATF1 expression and reduced miR-630 expression were detected, displaying a negative relationship between them. Inhibition of ATF1 hindered the growth, migration, infiltration, and EMT in cervical carcinoma cells, while upregulation of miR-630 mitigated the aggressive characteristics of these cells. ATF1 was found to transcriptionally repress miR-630 by TransmiR and ALGGEN prediction and ChIP validation. MicroRNA modulates gene expression and affects cancer progression, and we discovered that miR-630 regulates cancer progression by targeting and inhibiting MAL2. CONCLUSION ATF1, which modulates the miR-630/MAL2 pathway, affects the EMT process and cervical carcinoma cell growth and spread. Therefore, ATF1 may serve as a promising marker and treatment target for cervical malignancies intervention.
Collapse
Affiliation(s)
- Yanming Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuping Peng
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Youqun Tang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Li M, Du Y, Zhang X, Zhou W. Research advances of MAL family members in tumorigenesis and tumor progression (Review). Mol Med Rep 2024; 29:57. [PMID: 38362940 PMCID: PMC10884788 DOI: 10.3892/mmr.2024.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
The myelin and lymphocyte protein (MAL) family is a novel gene family first identified and characterized in 2002. This family is comprised of seven members, including MAL, MAL2, plasmolipin, MALL, myeloid differentiation‑associated marker (MYADM), MYADML2 and CMTM8, which are located on different chromosomes. In addition to exhibiting extensive activity during transcytosis, the MAL family plays a vital role in the neurological, digestive, respiratory, genitourinary and other physiological systems. Furthermore, the intimate association between MAL and the pathogenesis, progression and metastasis of malignancies, attributable to several mechanisms such as DNA methylation has also been elucidated. In the present review, an overview of the structural and functional properties of the MAL family and the latest research findings regarding the relationship between several MAL members and various cancers is provided. Furthermore, the potential clinical and scientific significance of MAL is discussed and directions for future research are summarized.
Collapse
Affiliation(s)
- Mengyao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xianzhuo Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
3
|
Saldaña-Villa AK, Lara-Lemus R. The Structural Proteins of Membrane Rafts, Caveolins and Flotillins, in Lung Cancer: More Than Just Scaffold Elements. Int J Med Sci 2023; 20:1662-1670. [PMID: 37928877 PMCID: PMC10620868 DOI: 10.7150/ijms.87836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
Lung cancer is one of the most frequently diagnosed cancers worldwide. Due to its late diagnosis, it remains the leading cause of cancer-related deaths. Despite it is mostly associated to tobacco smoking, recent data suggested that genetic factors are of the highest importance. In this context, different processes meaningful for the development and progression of lung cancer such endocytosis, protein secretion and signal transduction, are controlled by membrane rafts. These highly ordered membrane domains contain proteins such as caveolins and flotillins, which were traditionally considered scaffold proteins but have currently been given a preponderant role in lung cancer. Here, we summarize current knowledge regarding the involvement of caveolins and flotillins in lung cancer from a molecular point of view.
Collapse
Affiliation(s)
| | - Roberto Lara-Lemus
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”. Mexico City, Mexico
| |
Collapse
|
4
|
An L, Gong H, Yu X, Zhang W, Liu X, Yang X, Shu L, Liu J, Yang L. Downregulation of MAL2 inhibits breast cancer progression through regulating β-catenin/c-Myc axis. Cancer Cell Int 2023; 23:144. [PMID: 37480012 PMCID: PMC10362617 DOI: 10.1186/s12935-023-02993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
PURPOSE Myelin and lymphocyte protein 2 (MAL2) is mainly involved in endocytosis under physiological conditions and mediates the transport of materials across the membranes of cell and organelle. It has been reported that MAL2 is significantly upregulated in diverse cancers. This study aimed to investigate the role of MAL2 in breast cancer (BC). METHODS Bioinformatics analysis and Immunohistochemical assay were applied to detect the correlation between MAL2 expression in breast cancer tissues and the prognosis of breast cancer patients. Functional experiments were carried out to investigate the role of MAL2 in vitro and in vivo. The molecular mechanisms involved in MAL2-induced β-catenin and c-Myc expression and β-catenin/c-Myc-mediated enhancement of BC progression were confirmed by western blot, β-catenin inhibitor and agonist, Co-IP and immunofluorescence colocalization assays. RESULTS Results from the cancer genome atlas (TCGA) and clinical samples confirmed a significant upregulation of MAL2 in BC tissues than in adjacent non-tumor tissues. High expression of MAL2 was associated with worse prognosis. Functional experiments demonstrated that MAL2 knockdown reduced the migration and invasion associating with EMT, increased the apoptosis of BC cells in vitro and reduced the metastatic capacity in vivo. Mechanistically, MAL2 interacts with β-catenin in BC cells. MAL2 silencing reduced the expression of β-catenin and c-Myc, while the β-catenin agonist SKL2001 partially rescued the downregulation of c-Myc and inhibition of migration and invasion caused by MAL2 knockdown in BC cells. CONCLUSION These observations provided evidence that MAL2 acted as a potential tumor promoter by regulating EMT and β-catenin/c-Myc axis, suggesting potential implications for anti-metastatic therapy for BC.
Collapse
Affiliation(s)
- Lijun An
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Huiyuan Gong
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Xiaojing Yu
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Wangming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Xiaohua Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Xiaomin Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Liping Shu
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Jielin Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Liuqi Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
5
|
Labat-de-Hoz L, Rubio-Ramos A, Correas I, Alonso MA. The MAL Family of Proteins: Normal Function, Expression in Cancer, and Potential Use as Cancer Biomarkers. Cancers (Basel) 2023; 15:2801. [PMID: 37345137 DOI: 10.3390/cancers15102801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
The MAL family of integral membrane proteins consists of MAL, MAL2, MALL, PLLP, CMTM8, MYADM, and MYADML2. The best characterized members are elements of the machinery that controls specialized pathways of membrane traffic and cell signaling. This review aims to help answer the following questions about the MAL-family genes: (i) is their expression regulated in cancer and, if so, how? (ii) What role do they play in cancer? (iii) Might they have biomedical applications? Analysis of large-scale gene expression datasets indicated altered levels of MAL-family transcripts in specific cancer types. A comprehensive literature search provides evidence of MAL-family gene dysregulation and protein function repurposing in cancer. For MAL, and probably for other genes of the family, dysregulation is primarily a consequence of gene methylation, although copy number alterations also contribute to varying degrees. The scrutiny of the two sources of information, datasets and published studies, reveals potential prognostic applications of MAL-family members as cancer biomarkers-for instance, MAL2 in breast cancer, MAL2 and MALL in pancreatic cancer, and MAL and MYADM in lung cancer-and other biomedical uses. The availability of validated antibodies to some MAL-family proteins sanctions their use as cancer biomarkers in routine clinical practice.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|