1
|
Vargas P, Scheffel TB, Diz FM, Rockenbach L, Grave N, Cappellari AR, Kist LW, Bogo MR, Thomé MP, Leal GF, de Fraga Dias A, Figueiró F, Filippi-Chiela EC, Lenz G, Morrone FB. P2Y 12 receptor antagonism inhibits proliferation, migration and leads to autophagy of glioblastoma cells. Purinergic Signal 2022; 18:481-494. [PMID: 35939198 PMCID: PMC9832208 DOI: 10.1007/s11302-022-09888-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal among the primary brain tumors, with a low survival rate and resistance to radio and chemotherapy. The P2Y12 is an adenosine diphosphate (ADP) purinergic chemoreceptor, found mainly in platelets. In cancer cells, its activation has been described to induce proliferation and metastasis. Bearing in mind the need to find new treatments for GBM, this study aimed to investigate the role of the P2Y12R in the proliferation and migration of GBM cells, as well as to evaluate the expression of this receptor in patients' data obtained from the TCGA data bank. Here, we used the P2Y12R antagonist, ticagrelor, which belongs to the antiplatelet agent's class. The different GBM cells (cell line and patient-derived cells) were treated with ticagrelor, with the agonist, ADP, or both, and the effects on cell proliferation, colony formation, ADP hydrolysis, cell cycle and death, migration, and cell adhesion were analyzed. The results showed that ticagrelor decreased the viability and the proliferation of GBM cells. P2Y12R antagonism also reduced colony formation and migration potentials, with alterations on the expression of metalloproteinases, and induced autophagy in GBM cells. Changes were observed at the cell cycle level, and only the U251 cell line showed a significant reduction in the ADP hydrolysis profile. TCGA data analysis showed a higher expression of P2Y12R in gliomas samples when compared to the other tumors. These data demonstrate the importance of the P2Y12 receptor in gliomas development and reinforce its potential as a pharmacological target for glioma treatment.
Collapse
Affiliation(s)
- Pedro Vargas
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Thamiris Becker Scheffel
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Fernando Mendonça Diz
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Liliana Rockenbach
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Nathália Grave
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Angélica Regina Cappellari
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Luiza Wilges Kist
- grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Maurício Reis Bogo
- grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Marcos Paulo Thomé
- grid.8532.c0000 0001 2200 7498Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Gabriel Fernandes Leal
- grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Ciência da Computação, Escola Politécnica, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Amanda de Fraga Dias
- grid.8532.c0000 0001 2200 7498Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS Brazil
| | - Fabrício Figueiró
- grid.8532.c0000 0001 2200 7498Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS Brazil
| | - Eduardo Cremonese Filippi-Chiela
- grid.8532.c0000 0001 2200 7498Departmento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS Brazil
| | - Guido Lenz
- grid.8532.c0000 0001 2200 7498Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Mo Z, Xin J, Chai R, Woo PY, Chan DT, Wang J. Epidemiological characteristics and genetic alterations in adult diffuse glioma in East Asian populations. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0418. [PMID: 36350002 PMCID: PMC9630523 DOI: 10.20892/j.issn.2095-3941.2022.0418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2022] [Indexed: 05/06/2024] Open
Abstract
Understanding the racial specificities of diseases-such as adult diffuse glioma, the most common primary malignant tumor of the central nervous system-is a critical step toward precision medicine. Here, we comprehensively review studies of gliomas in East Asian populations and other ancestry groups to clarify the racial differences in terms of epidemiology and genomic characteristics. Overall, we observed a lower glioma incidence in East Asians than in Whites; notably, patients with glioblastoma had significantly younger ages of onset and longer overall survival than the Whites. Multiple genome-wide association studies of various cohorts have revealed single nucleotide polymorphisms associated with overall and subtype-specific glioma susceptibility. Notably, only 3 risk loci-5p15.33, 11q23.3, and 20q13.33-were shared between patients with East Asian and White ancestry, whereas other loci predominated only in particular populations. For instance, risk loci 12p11.23, 15q15-21.1, and 19p13.12 were reported in East Asians, whereas risk loci 8q24.21, 1p31.3, and 1q32.1 were reported in studies in White patients. Although the somatic mutational profiles of gliomas between East Asians and non-East Asians were broadly consistent, a lower incidence of EGFR amplification in glioblastoma and a higher incidence of 1p19q-IDH-TERT triple-negative low-grade glioma were observed in East Asian cohorts. By summarizing large-scale disease surveillance, germline, and somatic genomic studies, this review reveals the unique characteristics of adult diffuse glioma among East Asians, to guide clinical management and policy design focused on patients with East Asian ancestry.
Collapse
Affiliation(s)
- Zongchao Mo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518000, China
| | - Junyi Xin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ruichao Chai
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Peter Y.M. Woo
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong SAR, China
- Hong Kong Neuro-Oncology Society, Hong Kong SAR, China
| | - Danny T.M. Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jiguang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518000, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
3
|
Xie Q, Huang X, Huang W, Liu F. PD-L2 Serves as a Potential Prognostic Biomarker That Correlates With Immune Infiltration and May Predict Therapeutic Sensitivity in Lower-Grade Gliomas. Front Oncol 2022; 12:860640. [PMID: 35756621 PMCID: PMC9213741 DOI: 10.3389/fonc.2022.860640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Although patients with lower-grade gliomas (LGGs; grades II and III) have a relatively favorable prognosis, patients frequently relapse and tend to progress to higher-grade gliomas, leading to treatment resistance, poor survival, and ultimately treatment failure. However, until now, thorough research has not yet been reported on the relationship between PD-L2 and immune infiltration and therapeutic sensitivity to immunotherapy and TMZ-based chemotherapy of LGGs. In this study, we found that the expression of PD-L2 is upregulated in glioma, with high PD-L2 expression predicting a worse prognosis. Univariate and multivariate Cox regression analysis both indicated that PD-L2 represented an independent prognostic factor with high accuracy in survival prediction for LGGs. A nomogram comprising of age, grade, IDH mutation, and PD-L2 was established for predicting OS. Additionally, PD-L2 was found to be remarkably correlated with immune infiltration and some anti-tumor immune functions. The degree of PD-L2 expression was also found to be strongly related to the prediction of therapeutic sensitivity to immunotherapy and TMZ-based chemotherapy. Furthermore, immunohistochemistry demonstrated that PD-L2 and the macrophage biomarker CD68 were both increased in glioma, with PD-L2 expression having a strong positive connection with CD68 expression. Taken together, PD-L2 is a prognostic biomarker for LGGs patients that may provide novel insights into glioma individualized therapeutic strategies and guide effective immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Qijun Xie
- Department of Neurosurgery, The affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xianlong Huang
- Department of Neurosurgery, The affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wu Huang
- Department of Neurosurgery, The affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fang Liu
- Department of Neurosurgery, The affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
4
|
Shang J, Wang Y, Li Z, Jiang L, Bai Q, Zhang X, Xiao G, Zhang J. ATRX-dependent SVCT2 mediates macrophage infiltration in the glioblastoma xenograft model. J Neurophysiol 2022; 127:1309-1316. [PMID: 35417255 DOI: 10.1152/jn.00486.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alpha thalassemia/mental retardation syndrome X-linked (ATRX) mutation impairs DNA damage repair in glioblastoma (GBM), making these cells more susceptible to treatment, which may contribute to the survival advantage in GBM patients containing ATRX mutations. To better understand the role of ATRX in GBM, genes correlated with ATRX expression were screened in the Cancer Genome Atlas (702 cases) and Chinese Glioma Genome Atlas (325 cases) databases. Sodium-vitamin C cotransporter 2 (SVCT2) was the most positively correlated gene with ATRX expression. ATRX (about 1.99-fold) and SVCT2 (about 2.25-fold) were upregulated in GBM tissues from 40 patients compared to normal brain tissues from 23 subjects. ShSVCT2 transfection did not alter the in vitro viability of GL261 cells. At the same time, it could inhibit the proliferation of GL261 cells in the orthotopic transplantation model with diminished infiltrating macrophages (CD45highCD11b+), down-regulated chemokine (C-C motif) ligand 2 (Ccl2), Ccl4, C-X-C motif chemokine ligand 1 (Cxcl1), and Cxcl15 expression, and decreased p-IκBα and p-c-Jun expression. Effect of ShSVCT2 transfection could be reversed by overexpression of SVCT2. siRNA interference of ATRX-dependent SVCT2 signal with shSVCT2 could inhibit tumor cell proliferation in Glu261-LuNeo xenograft tumor model with more survival advantage, probably by the inhibited macrophage chemotaxis. These results indicate that ATRX-dependent SVCT2-mediated chemokine-induced macrophage infiltration is regulated by the NF-κB pathway, which could be considered as treatment targets.
Collapse
Affiliation(s)
- Jinxing Shang
- Department of Neurosurgery, grid.452270.6Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yana Wang
- Cangzhou Medical College, Cangzhou Higher Education District, Hebei Province, Cangzhou, Hebei, China
| | - Zhuangzhuang Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lijun Jiang
- Department of Neurosurgery, grid.452270.6Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qingling Bai
- Department of Neurosurgery, grid.452270.6Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoling Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guoxin Xiao
- Department of Neurosurgery, Cangxian Hospital, Cangzhou, Hebei, China
| | - Jinguo Zhang
- Department of Neurology, Mengcun County Hospital, Mengcun County, Cangzhou, Hebei, China
| |
Collapse
|
5
|
Abstract
Gliomas are common brain mass with a high mortality rate. Patients with gliomas have a severely bad outcome, with an average survive duration less 15 months because of high recurrent rate and being resistant to radio-therapy and chemistry drugs therapy. Hyperbaric oxygen is extensively taken as an adjuvant treatment for various disease conditions. To know the characteristics of hyperbaric oxygen as a remedy for gliomas, we find that, in general, hyperbaric oxygen shows an obviously positive effect on the treatment of gliomas, and it can also relieve the complications caused by postoperative radiotherapy and chemotherapy of gliomas. Whereas, several researches have shown that hyperbaric oxygen promotes glioma progression.
Collapse
Affiliation(s)
- Wen-Jie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Sheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
6
|
Chen D, Zhu J, Xu Q, Wang F, Ji C, Di H, Yuan P, Bai X, Chen L. The role of informal caregivers for patients with glioma: a systematic review and meta-synthesis of qualitative studies. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1020. [PMID: 34277820 PMCID: PMC8267327 DOI: 10.21037/atm-21-2761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
Background This study aimed to systematically review, appraise, and synthesize the current evidence on the experiences and needs encountered by informal caregiver of patients with glioma throughout the disease trajectory and to provide a set of practical implications for health professionals. Methods Seven English databases and four Chinese databases were searched in this systematic review and meta-analysis. Additional manual searches were completed to identify primary studies, with the language limited by English and Chinese. The Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Qualitative Research was used to appraise the methodological quality of each study. Results The systematic review included 16 papers that yielded 71 findings and 6 categories. Finally, 2 synthesized findings were extracted: (I) role transition of caregivers for glioma patients throughout the disease trajectory; (II) support and information need by caregivers of glioma patients. Accordingly, there is a need to recognize the importance of permanent and tailored support for caregivers by providing accurate, practical, and evidence-based information. Discussion This is the first attempt to systematically evaluate the breadth and quality of the literature concerning the experiences of caregivers with glioma patients. The results generated from the review may shed some light on problems encountered by glioma patients and their families. A limitation of this review is that in most selected studies, the reflexivity of interviewees is not addressed, which may influence the interpretation of the findings. Moreover, the selected studies were reported in English or Chinese, therefore, caution is needed in interpreting the results.
Collapse
Affiliation(s)
- Dan Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jinfeng Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| | - Qiuning Xu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fang Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cuiling Ji
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hengdan Di
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ping Yuan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoyan Bai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
7
|
Hu Y, Jiao B, Wang C, Wu J. Regulation of temozolomide resistance in glioma cells via the RIP2/NF-κB/MGMT pathway. CNS Neurosci Ther 2021; 27:552-563. [PMID: 33460245 PMCID: PMC8025621 DOI: 10.1111/cns.13591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Temozolomide (TMZ) is a first-line chemotherapy drug for the treatment of malignant glioma and resistance to it poses a major challenge. Receptor-interacting protein 2 (RIP2) is associated with the malignant character of cancer cells. However, it remains unclear whether RIP2 is involved in TMZ resistance in glioma. METHODS RIP2 expression was inhibited in TMZ-resistant glioma cells and normal glioma cells by using small interfering RNA (siRNA) against RIP2. Plasmid transfection method was used to overexpress RIP2. Cell counting kit-8 assays were performed to evaluate cell viability. Western blotting or immunofluorescence was performed to determine RIP2, NF-κB, and MGMT expression in cells. Flow cytometry was used to investigate cell apoptosis. TMZ-resistant glioma xenograft models were established to evaluate the role of the RIP2/NF-κB/MGMT signaling pathway in drug resistance. RESULTS We observed that RIP2 expression was upregulated in TMZ-resistant glioma cells, whereas silencing of RIP2 expression enhanced cellular sensitivity to TMZ. Similarly, upon the induction of RIP2 overexpression, glioma cells developed resistance to TMZ. The molecular mechanism underlying the process indicated that RIP2 can activate the NF-κB signaling pathway and upregulate the expression of O6-methylguanine-DNA methyltransferase (MGMT), following which the glioma cells develop drug resistance. In the TMZ-resistant glioma xenograft model, treatment with JSH-23 (an NF-κB inhibitor) and lomeguatrib (an MGMT inhibitor) could enhance the sensitivity of the transplanted tumor to TMZ. CONCLUSION We report that the RIP2/NF-κB/MGMT signaling pathway is involved in the regulation of TMZ resistance. Interference with NF-κB or MGMT activity could constitute a novel strategy for the treatment of RIP2-positive TMZ-resistant glioma.
Collapse
Affiliation(s)
- Yu‐Hua Hu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Bao‐Hua Jiao
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Cheng‐Ye Wang
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jian‐Liang Wu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
8
|
Liu W, Zou J, Ren R, Liu J, Zhang G, Wang M. A Novel 10-Gene Signature Predicts Poor Prognosis in Low Grade Glioma. Technol Cancer Res Treat 2021; 20:1533033821992084. [PMID: 33550903 PMCID: PMC7876581 DOI: 10.1177/1533033821992084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Low grade glioma (LGG) is a lethal brain cancer with relatively poor prognosis in young adults. Thus, this study was performed to develop novel molecular biomarkers to effectively predict the prognosis of LGG patients and finally guide treatment decisions. METHODS survival-related genes were determined by Kaplan-Meier survival analysis and multivariate Cox regression analysis using the expression and clinical data of 506 LGG patients from The Cancer Genome Atlas (TCGA) database and independently validated in a Chinese Glioma Genome Atlas (CGGA) dataset. A prognostic risk score was established based on a linear combination of 10 gene expression levels using the regression coefficients of the multivariate Cox regression models. GSEA was performed to analyze the altered signaling pathways between the high and low risk groups stratified by median risk score. RESULTS We identified a total of 1489 genes significantly correlated with patients' prognosis in LGG. The top 5 protective genes were DISP2, CKMT1B, AQP7, GPR162 and CHGB, the top 5 risk genes were SP1, EYA3, ZSCAN20, ITPRIPL1 and ZNF217 in LGG. The risk score was predictive of poor overall survival and relapse-free survival in LGG patients. Pathways of small cell lung cancer, pathways in cancer, chronic myeloid leukemia, colorectal cancer were the top 4 most enriched pathways in the high risk group. SP1, EYA3, ZSCAN20, ITPRIPL1, ZNF217 and GPR162 were significantly up-regulated, while DISP2, CKMT1B, AQP7 were down-regulated in 523 LGG tissues as compared to 1141 normal brain controls. CONCLUSIONS The 10-gene signature may become novel prognostic and diagnostic biomarkers to considerably improve the prognostic prediction in LGG.
Collapse
Affiliation(s)
- Wentao Liu
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Jiaxuan Zou
- Fuzhou Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Rijun Ren
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Jingping Liu
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Gentang Zhang
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Maokai Wang
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| |
Collapse
|
9
|
Feng D, Liu M, Liu Y, Zhao X, Sun H, Zheng X, Zhu J, Shang F. Micheliolide suppresses the viability, migration and invasion of U251MG cells via the NF-κB signaling pathway. Oncol Lett 2020; 20:67. [PMID: 32863900 PMCID: PMC7436293 DOI: 10.3892/ol.2020.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 11/06/2022] Open
Abstract
Micheliolide (MCL), a sesquiterpene lactone isolated from Michelia compressa and Michelia champaca, has been used previously to inhibit the NF-κB signaling pathway. MCL has exerted various therapeutic effects in numerous types of disease, such as inflammatory and cancer. However, to the best of our knowledge, its underlying anticancer mechanism remains to be understood. The present study aimed to investigate the effects of MCL on human glioma U251MG cells and to determine the potential anticancer mechanism of action of MCL. From Cell Counting Kit-8, colony formation assay, apoptosis assay and Confocal immunofluorescence imaging analysis, the results revealed that MCL significantly inhibited cell viability in vitro and induced cell apoptosis via activation of the cytochrome c/caspase-dependent apoptotic pathway. In addition, MCL also suppressed cell invasion and metastasis via the wound healing and Transwell invasion assays. Furthermore, western blot and reverse transcription PCR analyses demonstrated that MCL significantly downregulated cyclooxygenase-2 (COX-2) expression levels, which may have partially occurred through the inactivation of the NF-κB signaling pathway. In conclusion, the results of the present study indicated that MCL may inhibit glioma carcinoma growth by downregulating the NF-κB/COX-2 signaling pathway, which suggested that MCL may be a novel and alternative antitumor agent for the treatment of human glioma carcinoma.
Collapse
Affiliation(s)
- Dingkun Feng
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Min Liu
- Department of Neurology, Xinhua Hospital affiliated to Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Yanting Liu
- Department of Neurosurgery, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China.,Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Xiaojin Zhao
- Department of Gastroenterology, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Huan Sun
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xu Zheng
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiabin Zhu
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Fajun Shang
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
10
|
Song K, Chen J, Ding J, Xu H, Xu H, Qin Z. Hyperbaric oxygen suppresses stemness-associated properties and Nanog and oncostatin M expression, but upregulates β-catenin in orthotopic glioma models. J Int Med Res 2019; 48:300060519872898. [PMID: 31813325 PMCID: PMC7607208 DOI: 10.1177/0300060519872898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective This study aimed to explore whether initial hyperbaric oxygen treatment
affects the stemness of glioma stem cells using an in vivo
basal ganglia glioma model. Methods A basal ganglia glioma rat model was established. Rats were exposed to normal
oxygen or hyperbaric oxygen on days 2, 4, 6, 8, 10, and 12. After 16 days of
glioma cell inoculation, western blot, ELISA, and flow cytometry were
performed to examine stemness-associated properties by examining the
expression of CD133, A2B5, Nanog, oncostatin M, β-catenin, Oct-3/4, Sox2,
and Nestin. Results Initial hyperbaric oxygen treatment began to affect glioma
stemness-associated properties. The proportion of
CD133+A2B5+ cells was significantly reduced after
initial hyperbaric oxygen treatment. Additionally, the expression of
stemness-related genes such as Nanog and oncostatin M was reduced, while
TGF-β and β-catenin were increased. Conclusions Initial hyperbaric oxygen treatment not only alters the hypoxic
microenvironment but also affects the stemness-associated properties of
cancer stem cells.
Collapse
Affiliation(s)
- Kun Song
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junrui Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianbo Ding
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Opening the Blood-Brain Barrier and Improving the Efficacy of Temozolomide Treatments of Glioblastoma Using Pulsed, Focused Ultrasound with a Microbubble Contrast Agent. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6501508. [PMID: 30534564 PMCID: PMC6252217 DOI: 10.1155/2018/6501508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022]
Abstract
Objective To explore the effects of pulsed, focused, and microbubble contrast agent-enhanced ultrasonography (mCEUS) on blood-brain barrier (BBB) permeability and the efficacy temozolomide for glioblastoma. Methods Wistar rats (n = 30) were divided into three groups (n = 10 per group) to determine optimal CUES conditions for achieving BBB permeability, as assessed by ultrastructure transmission electron microscopy (TEM) and western blot assays for the tight junction protein claudin-5. Optimized mCEUS effects on BBB permeability were subsequently confirmed with Evans blue staining (2 groups of 10 rats). The glioma cell line 9L was injected into the brain striatum of Wistar rats. After temozolomide chemotherapy, we detected glial fibrillary acidic protein (GFAP) levels in serum by enzyme-linked immunosorbent assay (ELISA) and in brain tissue by western blot, immunocytochemistry, and real-time quantitative polymerase chain reaction (qPCR). Results BBB permeability was maximized with 1 ml/kg contrast agent mCEUS delivered via 10-min intermittent launches with a 400-ms interval. Evans blue staining confirmed BBB permeability following ultrasonic cavitation in the control group (P < 0.05). Following temozolomide chemotherapy, levels of the tumor marker GFAP were increased in the group with ultrasonic cavitation compared with the control group (P < 0.05). Conclusions When rats were treated by mCEUS with intermittent launches (interval, 400 ms) and injected with 1 mg/kg contrast agent, BBB permeability was increased and temozolomide BBB penetration was enhanced, therapeutic enhancement for glioblastoma.
Collapse
|
12
|
Wang X, Gao J, Ouyang X, Wang J, Sun X, Lv Y. Mesenchymal stem cells loaded with paclitaxel-poly(lactic- co-glycolic acid) nanoparticles for glioma-targeting therapy. Int J Nanomedicine 2018; 13:5231-5248. [PMID: 30237710 PMCID: PMC6136913 DOI: 10.2147/ijn.s167142] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) possess inherent tropism towards tumor cells, and so have attracted increased attention as targeted-therapy vehicles for glioma treatment. Purpose The objective of this study was to demonstrate the injection of MSCs loaded with paclitaxel (Ptx)-encapsulated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for orthotopic glioma therapy in rats. Methods Ptx-PLGA NP-loaded MSC was obtained by incubating MSCs with Ptx-PLGA NPs. The drug transfer and cytotoxicity of Ptx-PLGA NP-loaded MSC against tumor cells were investigated in the transwell system. Biodistribution and antitumor activity was evaluated in the orthotopic glioma rats after contralateral injection. Results The optimal dose of MSC-loaded Ptx-PLGA NPs (1 pg/cell Ptx) had little effect on MSC-migration capacity, cell cycle, or multilineage-differentiation potential. Compared with Ptx-primed MSCs, Ptx-PLGA NP-primed MSCs had enhanced sustained Ptx release in the form of free Ptx and Ptx NPs. Ptx transfer from MSCs to glioma cells could induce tumor cell death in vitro. As for distribution in vivo, NP-loaded fluorescent MSCs were tracked throughout the tumor mass for 2 days after therapeutic injection. Survival was significantly longer after contralateral implantation of Ptx-PLGA NP-loaded MSCs than those injected with Ptx-primed MSCs or Ptx-PLGA NPs alone. Conclusion Based on timing and sufficient Ptx transfer from the MSCs to the tumor cells, Ptx-PLGA NP-loaded MSC is effective for glioma treatment. Incorporation of chemotherapeutic drug-loaded NPs into MSCs is a promising strategy for tumor-targeted therapy.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Pharmacy, Zhejiang University City College, ;.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xumei Ouyang
- Department of Pharmacy, Zhejiang University City College, ;.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Junbo Wang
- Department of Pharmacy, Zhejiang University City College,
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College,
| | - Yuanyuan Lv
- Department of Pharmacy, Zhejiang University City College,
| |
Collapse
|
13
|
Zhang P, Gao J, Wang X, Wen W, Yang H, Tian Y, Liu N, Wang Z, Liu H, Zhang Y, Tu Y. A novel indication of thioredoxin-interacting protein as a tumor suppressor gene in malignant glioma. Oncol Lett 2017; 14:2053-2058. [PMID: 28781647 PMCID: PMC5530178 DOI: 10.3892/ol.2017.6397] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
Malignant glioma, the most common form of primary brain tumor, is associated with substantial morbidity and mortality, owing to the lack of response shown by patients to conventional therapies. Additional therapeutic targets and effective treatment options for these patients are therefore required. In the present study, a possible association of thioredoxin-interacting protein (TXNIP) with malignant glioma was evaluated. Initially, semi-quantitative and quantitative analysis of the expression levels of TXNIP in clinical specimens of primary glioma was performed via immunohistochemistry (IHC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively, and expression levels were further correlated to the overall survival time of the patients. The proliferative, migratory and invasive properties of the glioblastoma U251 cell line, engineered to downregulate TXNIP by lentiviral transfection of a specific short hairpin RNA, were evaluated by means of in vitro assays. Consequently, IHC and RT-qPCR analysis revealed a negative association between the expression level of TXNIP and the histopathological grade of the tumor. Higher TXNIP expression level was associated with extended patient survival time. In vitro analysis revealed increased growth, migration and invasion in U251 cells with downregulated TXNIP expression compared with their non-transfected counterparts. These findings strongly indicate that TXNIP functions as a tumor suppressor in malignant glioma cells and underscore its potential as a novel therapeutic target and prognostic indicator of the condition.
Collapse
Affiliation(s)
- Pengxing Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jinxi Gao
- Department of Neurosurgery, Fuzhou General Hospital of The People's Liberation Army, Fuzhou, Fujian 350025, P.R. China.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weihong Wen
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongwei Yang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yongji Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Nan Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhen Wang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hui Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yongsheng Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Maile EJ, Barnes I, Finlayson AE, Sayeed S, Ali R. Nervous System and Intracranial Tumour Incidence by Ethnicity in England, 2001-2007: A Descriptive Epidemiological Study. PLoS One 2016; 11:e0154347. [PMID: 27135830 PMCID: PMC4852951 DOI: 10.1371/journal.pone.0154347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 04/12/2016] [Indexed: 01/08/2023] Open
Abstract
Background There is substantial variation in nervous system and intracranial tumour incidence worldwide. UK incidence data have limited utility because they group these diverse tumours together and do not provide data for individual ethnic groups within Blacks and South Asians. Our objective was to determine the incidence of individual tumour types for seven individual ethnic groups. Methods We used data from the National Cancer Intelligence Network on tumour site, age, sex and deprivation to identify 42,207 tumour cases. Self-reported ethnicity was obtained from the Hospital Episode Statistics database. We used mid-year population estimates from the Office for National Statistics. We analysed tumours by site using Poisson regression to estimate incidence rate ratios comparing non-White ethnicities to Whites after adjustment for sex, age and deprivation. Results Our study showed differences in tumour incidence by ethnicity for gliomas, meningiomas, pituitary tumours and cranial and paraspinal nerve tumours. Relative to Whites; South Asians, Blacks and Chinese have a lower incidence of gliomas (p<0.01), with respective incidence rate ratios of 0.68 (confidence interval: 0.60–0.77), 0.62 (0.52–0.73) and 0.58 (0.41–0.83). Blacks have a higher incidence of meningioma (p<0.01) with an incidence rate ratio of 1.29 (1.05–1.59) and there is heterogeneity in meningioma incidence between individual South Asian ethnicities. Blacks have a higher incidence of pituitary tumours relative to Whites (p<0.01) with an incidence rate ratio of 2.95 (2.37–3.67). There is heterogeneity in pituitary tumour incidence between individual South Asian ethnicities. Conclusions We present incidence data of individual tumour types for seven ethnic groups. Current understanding of the aetiology of these tumours cannot explain our results. These findings suggest avenues for further work.
Collapse
Affiliation(s)
- Edward J. Maile
- Cancer Epidemiology Unit, Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Isobel Barnes
- Cancer Epidemiology Unit, Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Alexander E. Finlayson
- Cancer Epidemiology Unit, Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Shameq Sayeed
- Cancer Epidemiology Unit, Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Raghib Ali
- Cancer Epidemiology Unit, Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, United Kingdom
- Faculty of Medicine and Health Sciences, Institute of Public Health, United Arab Emirates University, Abu Dhabi, UAE
- * E-mail:
| |
Collapse
|
15
|
Hong JF, Song YF, Liu Z, Zheng ZC, Chen HJ, Wang SS. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration. Mol Med Rep 2016; 13:4541-8. [PMID: 27081915 PMCID: PMC4878554 DOI: 10.3892/mmr.2016.5105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/22/2016] [Indexed: 01/23/2023] Open
Abstract
The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle-associated proteins and autophagy-linked LC3B-II proteins. The results demonstrated that taraxerol acetate induced dose- and time-dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate-treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub-G1 cell cycle arrest with a corresponding decrease in the number of S-phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate-buffered saline (PBS)-treated group (control) to 0.81 and 0.42 g, respectively. Similarly, 0.25 and 0.75 µg/g taraxerol acetate injection reduced the tumor volume from 1.3 cm3 in the PBS-treated group (control) to 0.67 and 0.25 cm3, respectively.
Collapse
Affiliation(s)
- Jing-Fang Hong
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Ying-Fang Song
- Department of Pulmonary and Critical Care Medicine, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Zheng Liu
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Zhao-Cong Zheng
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Hong-Jie Chen
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
16
|
The hedgehog antagonist HHIP as a favorable prognosticator in glioblastoma. Tumour Biol 2015; 37:3979-86. [PMID: 26482617 DOI: 10.1007/s13277-015-3442-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 04/08/2015] [Indexed: 01/19/2023] Open
Abstract
Inactivation of hedgehog-interacting protein (HHIP) and overexpression of Gli1 play vital roles in the development of diverse human cancers. The aim of this study is to examine the association of HHIP and Gli1 with the clinicopathologic features and prognosis of patients with glioblastoma (GBM). The expression of HHIP and Gli1 in 103 patients with GBM and 32 control patients was investigated by immunohistochemistry. Statistical analysis was utilized to evaluate the association of HHIP as well as Gli1 with clinicopathological characteristics and prognosis of patients. HHIP and Gli1 were dysregulated in GBM. Spearman's rank analysis showed that HHIP and Gli1 had an inverse correlation (r = -0.386, P = 0.000). Expression of HHIP was significantly correlated with age (P = 0.000), gender (P = 0.003), seizure (P = 0.013), resection degree (P = 0.033), adjuvant treatment (P = 0.030), and O(6)-methylguanine-DNA methyltransferase (MGMT) methylation (P = 0.021), while Gli1 expression was significantly correlated with age (P = 0.002), gender (P = 0.033), Karnofsky performance status (KPS) score (P = 0.028), resection degree (P = 0.000), adjuvant treatment (P = 0.014), and MGMT methylation (P = 0.030). Kaplan-Meier method showed that patients with low Gli1 expression had longer overall survival (OS) than those with high Gli1 expression (P = 0.000) and the OS of the patients with HHIP-positive GBM was significantly longer than that of the patients with HHIP-negative GBM (P = 0.000). Univariate and multivariate analyses confirmed that HHIP expression and Gli1 expression were independent prognostic factors. Our data suggested that expression of HHIP could be considered as significant prognostic marker for patients with GBM.
Collapse
|
17
|
Tang SL, Gao YL, Chen XB. MicroRNA-214 targets PCBP2 to suppress the proliferation and growth of glioma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12571-12576. [PMID: 26722446 PMCID: PMC4680391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/20/2015] [Indexed: 06/05/2023]
Abstract
PCBP2, a member of the poly(C)-binding protein (PCBP) family, is involved in posttranscriptional and translational regulation by interacting with single-stranded poly(C) motifs in target mRNAs. Recent studies have shown that PCBP2 is overexpressed and plays an important role in human cancers, including glioma. However, the molecular basis for its up-regulation remains poorly understood. Here, we show that microRNA-214 (miR-214) interacts with the 3'-untranslated region of PCBP2 mRNA and induces its degradation, leading to reductions in its protein expression. As a result, overexpression of miR-214 mimics significantly inhibited, while its antisense oligos proliferation and growth of glioma cells. Restoration of PCBP2 remarkably reversed the tumor-suppressive effects of miR-214 on cell proliferation and growth. In summary, our data indicate that miR-214 may function as tumor suppressor in glioma by targeting PCBP2.
Collapse
Affiliation(s)
- Shi-Lei Tang
- Department of Neurosurgery, Huaihe Hospital, Henan UniversityKaifeng 475000, China
| | - Yuan-Lin Gao
- Department of Neurology, Kaifeng Central HospitalKaifeng 475000, China
| | - Xiao-Bing Chen
- Department of Neurosurgery, Huaihe Hospital, Henan UniversityKaifeng 475000, China
| |
Collapse
|
18
|
Kast RE, Karpel-Massler G, Halatsch ME. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget 2015; 5:8052-82. [PMID: 25211298 PMCID: PMC4226667 DOI: 10.18632/oncotarget.2408] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.
Collapse
Affiliation(s)
| | - Georg Karpel-Massler
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| | - Marc-Eric Halatsch
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| |
Collapse
|
19
|
Gong A, Ge N, Yao W, Lu L, Liang H. Aplysin enhances temozolomide sensitivity in glioma cells by increasing miR-181 level. Cancer Chemother Pharmacol 2014; 74:531-8. [PMID: 25047724 DOI: 10.1007/s00280-014-2534-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Aplysin, a natural brominate compound from marine organisms, has been demonstrated to exhibit anti-tumor activity, mainly by inducing apoptosis and cell cycle arrest. However, its effect on glioma is still unknown. In this study, we evaluated the effects of aplysin on the malignant properties of glioma cells and its enhancing effect on temozolomide (TMZ) action against drug-resistant glioma cell lines. METHODS We employed several human glioma cell lines and primary glioma cells to address this issue with multidisciplinary approaches. RESULTS The combined application of aplysin and TMZ significantly sensitizes glioma cells to TMZ action, compared with TMZ alone. miRNA profile analysis revealed that the abundance of miR-181, an important glioma tumor suppressors believed to enhance TMZ effect, was greatly elevated in aplysin-treated glioma cell lines. The aplysin-induced TMZ sensitivity is dependent on MEK1 in glioma cells. Overexpression of MEK1 was able to abolish the effect of aplysin on glioma cells. CONCLUSIONS We found that aplysin can enhance the effect of TMZ on glioma cells by increasing miR-181 expression.
Collapse
Affiliation(s)
- Anjing Gong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | | | | | | | | |
Collapse
|
20
|
Liver toxicity during temozolomide chemotherapy caused by Chinese herbs. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:115. [PMID: 24679099 PMCID: PMC3994275 DOI: 10.1186/1472-6882-14-115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/27/2014] [Indexed: 11/29/2022]
Abstract
Background Complementary and alternative medicine is often used by patients with malignant glioma. Although several interactions of various alternative agents with chemotherapy are known, none has been described for temozolomide so far. Case presentation We report the case of severe liver toxicity with jaundice during radiochemotherapy with temozolomide likely due to interaction with a popular Chinese herbal formula after surgery for glioblastoma. After cessation of the herbal formula as well as the chemotherapy liver enzymes slowly normalized. Due to tumor progression the patient was retreated with temozolomide for 5 cycles without toxicity. Because of further progression combination treatment of bevacizumab and irinotecan was started and again no liver toxicity was observed. Conclusions We conclude that the observed toxicity with jaundice was probably caused by an interaction of this popular Chinese formula and temozolomide. This is the first report about a relevant interaction of temozolomide and any herbal formula.
Collapse
|