1
|
Uprety B, Abrahamse H. Targeting Breast Cancer and Their Stem Cell Population through AMPK Activation: Novel Insights. Cells 2022; 11:576. [PMID: 35159385 PMCID: PMC8834477 DOI: 10.3390/cells11030576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Despite some significant advancements, breast cancer has become the most prevalent cancer in the world. One of the main reasons for failure in treatment and metastasis has been attributed to the presence of cancer initiating cells-cancer stem cells. Consequently, research is now being focussed on targeting cancer cells along with their stem cell population. Non-oncology drugs are gaining increasing attention for their potent anticancer activities. Metformin, a drug commonly used to treat type 2 diabetes, is the best example in this regard. It exerts its therapeutic action by activating 5' adenosine monophosphate-activated protein kinase (AMPK). Activated AMPK subsequently phosphorylates and targets several cellular pathways involved in cell growth and proliferation and the maintenance of stem-like properties of cancer stem cells. Therefore, AMPK is emerging as a target of choice for developing effective anticancer drugs. Vanadium compounds are well-known PTP inhibitors and AMPK activators. They find extensive applications in treatment of diabetes and obesity via PTP1B inhibition and AMPK-mediated inhibition of adipogenesis. However, their role in targeting cancer stem cells has not been explored yet. This review is an attempt to establish the applications of insulin mimetic vanadium compounds for the treatment of breast cancer by AMPK activation and PTP1B inhibition pathways.
Collapse
Affiliation(s)
- Bhawna Uprety
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| | | |
Collapse
|
2
|
Circular RNA circZCCHC6 contributes to tumorigenesis by regulating LPCAT1 via miR-433-3p in non-small cell lung cancer. Clin Exp Med 2022; 22:647-659. [PMID: 35089454 DOI: 10.1007/s10238-021-00780-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 11/30/2021] [Indexed: 11/03/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-associated mortality worldwide. Circular RNA (circRNA) circZCCHC6 has been reported to be upregulated in the plasma from NSCLC patients. This study is designed to explore the role and mechanism of circZCCHC6 in NSCLC. CircZCCHC6, microRNA-433-3p (miR-433-3p), and lysophosphatidylcholine acyltransferase 1 (LPCAT1) level were determined by real-time quantitative polymerase chain reaction. Cell viability, cell cycle progression, migration, and invasion were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, wound healing, and transwell assays, severally. The binding relationship between miR-433-3p and circZCCHC6 or LPCAT1 was predicted by Circinteractome or Starbase, and then verified by a dual-luciferase reporter, RNA pull-down, or RNA Immunoprecipitation (RIP) assays. Protein levels of LPCAT1, Cyclin D1, E-cadherin, and Vimentin were examined by western blot assay. The biological role of circZCCHC6 on NSCLC tumor growth and epithelial-mesenchymal transition (EMT) was examined by the xenograft tumor model in vivo. CircZCCHC6 was highly expressed in NSCLC serum, tissues, and cells. Moreover, circZCCHC6 knockdown could repress cell viability, cell cycle progression, migration, invasion, and EMT in NSCLC cells in vitro. The mechanical analysis suggested that circZCCHC6 acted as a sponge of miR-433-3p to regulate LPCAT1 expression. CircZCCHC6 silencing hindered cell growth and EMT of NSCLC in vivo. CircZCCHC6 inhibited the progression of NSCLC cells partly by regulating the miR-433-3p/LPCAT1 axis, implying a promising therapeutic target for the NSCLC treatment.
Collapse
|
3
|
Arend RC, Scalise CB, Dholakia J, Kamal MZ, Thigpen HB, Crossman D, Huh WK, Leath CA. Identifying a molecular profile to predict the risk of recurrence in high-intermediate risk endometrial cancer. Cancer Med 2021; 10:8238-8250. [PMID: 34729947 PMCID: PMC8607249 DOI: 10.1002/cam4.4247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Patients with high-intermediate risk endometrial cancer (H-IR EMCA) have an elevated risk of recurrence compared to low-risk counterparts. Many H-IR EMCA patients are treated with radiation or chemotherapy, but their overall survival is not significantly impacted by treatment. The objective of this study was to compare molecular profiles of H-IR EMCA patients with disease recurrence to those without to identify characteristics that could better predict patient outcomes. METHODS Tissue was acquired from H-IR EMCA patients with disease recurrence (n=15) and without disease recurrence (n=15) who had not received adjuvant therapy and performed DNA and RNA analyses. RESULTS In recurrent population, 5 patients had matchingrecurrent and initial tumor tissues. Of note, 5/7 (71%) African Americanpatients had disease recurrence compared to 10/23 (43%) White patients. Inaddition, several new mutations were found in individual patient's recurrentcompared to initial tumors. CONCLUSIONS Currently the treatment ofendometrial cancer is rapidly changing with molecular profiling becoming partof the standard of care. Additionally, it and is being incorporated intoclinical trials in this group of patients. The specific gene mutations and RNAexpression signatures that were observed in our small cohort need to bevalidated in larger cohorts to determine their impact.
Collapse
Affiliation(s)
- Rebecca C. Arend
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Carly B. Scalise
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jhalak Dholakia
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Maahum Z. Kamal
- University of Alabama at Birmingham School of MedicineBirminghamAlabamaUSA
| | - Haley B. Thigpen
- University of Alabama at Birmingham School of MedicineBirminghamAlabamaUSA
| | - David Crossman
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Warner K. Huh
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Charles A. Leath
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
4
|
Li H, Liu W, Zhang X, Wang Y. Cancer-associated fibroblast-secreted collagen triple helix repeat containing-1 promotes breast cancer cell migration, invasiveness and epithelial-mesenchymal transition by activating the Wnt/β-catenin pathway. Oncol Lett 2021; 22:814. [PMID: 34671428 PMCID: PMC8503808 DOI: 10.3892/ol.2021.13075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are continuously activated and are one of the most important cellular components of the tumor matrix. The role of CAFs in the tumor microenvironment has been widely recognized. However, the underlying molecular mechanism by which CAFs promote tumor characteristics in breast cancer (BC) remains poorly understood. The aim of the present study was to investigate the potential mechanisms and the possible pathways of collagen triple helix repeat containing-1 (CTHRC1) in the epithelial-mesenchymal transition (EMT) of BC cells. The level of CTHRC1 in BC tissues was found to be higher than that in adjacent-normal tissues. CAFs isolated from BC tissues secreted significantly greater amounts of CTHRC1 than normal fibroblasts. Furthermore, CAFs promoted the migration, invasiveness and EMT of BC cells by secreting CTHRC1, which activates the Wnt/β-catenin signaling pathway. However, the use of neutralizing antibodies towards CTHRC1, or the specific inhibitor Dickkopf-1, to inhibit the Wnt/β catenin pathway significantly alleviated the CAF-induced malignant phenotypes of BC cells. Collectively, the data indicate that CAFs in the tumor microenvironment promote BC cell malignant behaviors via the CTHRC1/Wnt/β-catenin signaling pathway. Furthermore, weakening CAF-BC cell communication by suppressing CTHRC1 expression may be a novel strategy for treating BC.
Collapse
Affiliation(s)
- Huixin Li
- Department III of Thyroid and Breast, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Wei Liu
- Department III of Thyroid and Breast, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Xiaoyu Zhang
- Department III of Thyroid and Breast, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yongfeng Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056002, P.R. China
| |
Collapse
|
5
|
Selective Antitumor Activity of Datelliptium toward Medullary Thyroid Carcinoma by Downregulating RET Transcriptional Activity. Cancers (Basel) 2021; 13:cancers13133288. [PMID: 34209165 PMCID: PMC8267783 DOI: 10.3390/cancers13133288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Medullary thyroid carcinoma (MTC) is a rare aggressive type of thyroid cancer with a propensity for metastasizing to the lymph nodes, liver, bones, and lungs. Previous studies have demonstrated that activated REarranged during Transfection (RET) mutants are key regulators of invasive and metastatic behaviors in MTC. The present study aimed to evaluate the antiinvasive and antimetastatic potential of a novel RET transcription inhibitor, datelliptium, which stabilizes the RET G-quadruplex structures and suppresses RET oncogene transcription by examining its effects on epithelial-to-mesenchymal transition (EMT), cancer stem cells (CSCs), and MTC cell migration. Interestingly, the ablation of RET with datelliptium resulted in decreased EMT, spheroid formation, and MTC cell migration. In this study, we also demonstrated the in vivo antitumor activity in TT tumor-bearing mice with about 75% tumor growth inhibition. Abstract Medullary thyroid carcinoma (MTC) is a rare aggressive form of thyroid cancer with high rates of metastasis. Sporadic and hereditary MTC are strongly driven by somatic and germline mutations, respectively, in the transmembrane REarranged during Transfection (RET) proto-oncogene, which encodes a receptor tyrosine kinase. Our previous study identified datelliptium as a novel RET transcription inhibitor, which stabilizes the RET G-quadruplex structures and suppresses RET oncogene transcription. The present study aimed to elucidate the effect of datelliptium on the suppression of epithelial-to-mesenchymal transition (EMT) and metastasis-related behaviors of MTC cells, including cell migration and formation of cancer stem cells (CSCs). Our results demonstrated that datelliptium downregulated the expression of the mesenchymal markers, including N-cadherin, vimentin, slug, snail, and claudin-1. Compared to untreated cells, datelliptium significantly decreased the migration of TT cells in a dose-dependent manner in a wound healing assay. Additionally, datelliptium significantly reduced the size of preformed spheroids from TT cells over the time course. Finally, datelliptium inhibited approximately 75% of MTC xenograft growth with minimal systemic toxicity. In conclusion, datelliptium exerts its antitumor activity against MTC cells by reducing the EMT program, migratory ability, and self-renewal capacity of TT cells, thus preventing invasive and metastatic behavior of MTC.
Collapse
|
6
|
Aligned Collagen-CNT Nanofibrils and the Modulation Effect on Ovarian Cancer Cells. JOURNAL OF COMPOSITES SCIENCE 2021; 5. [PMID: 35664989 PMCID: PMC9164112 DOI: 10.3390/jcs5060148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fibrillar collagen is a one-dimensional biopolymer and is the most abundant structural protein in the extracellular matrix (ECM) of connective tissues. Due to the unique properties of carbon nanotubes (CNTs), considerable attention has been given to the application of CNTs in developing biocomposite materials for tissue engineering and drug delivery. When introduced to tissues, CNTs inevitably interact and integrate with collagen and impose a discernible effect on cells in the vicinity. The positive effect of the collagen-CNT (COL-CNT) matrix in tissue regeneration and the cytotoxicity of free CNTs have been investigated extensively. In this study, we aimed to examine the effect of COL-CNT on mediating the interaction between the matrix and SKOV3 ovarian cancer cells. We generated unidirectionally aligned collagen and COL-CNT nanofibrils, mimicking the structure and dimension of collagen fibrils in native tissues. AFM analysis revealed that the one-dimensional structure, high stiffness, and low adhesion of COL-CNT greatly facilitated the polarization of SKOV3 cells by regulating the β−1 integrin-mediated cell–matrix interaction, cytoskeleton rearrangement, and cell migration. Protein and gene level analyses implied that both collagen and COL-CNT matrices induced the epithelial–mesenchymal transition (EMT), and the COL-CNT matrix prompted a higher level of cell transformation. However, the induced cells expressed CD44 at a reduced level and MMP2 at an increased level, and they were responsive to the chemotherapy drug gemcitabine. The results suggested that the COL-CNT matrix induced the transdifferentiation of the epithelial cancer cells to mature, less aggressive, and less potent cells, which are inapt for tumor metastasis and chemoresistance. Thus, the presence of CNT in a collagen matrix is unlikely to cause an adverse effect on cancer patients if a controlled dose of CNT is used for drug delivery or tissue regeneration.
Collapse
|
7
|
Xu S, Yue Y, Zhang S, Zhou C, Cheng X, Xie X, Wang X, Lu W. STON2 negatively modulates stem-like properties in ovarian cancer cells via DNMT1/MUC1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:305. [PMID: 30518424 PMCID: PMC6282299 DOI: 10.1186/s13046-018-0977-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022]
Abstract
Background Cancer stem cells (CSCs) possess abilities of self-renewal and differentiation, have oncogenic potential and are regarded to be the source of cancer recurrence. However, the mechanism by which CSCs maintain their stemness remains largely unclear. Methods In this study, the cell line-derived ovarian CSCs (OCSCs), 3AO and Caov3, were enriched in serum-free medium (SFM). Differentially expressed proteins were compared between the OCSC subpopulation and parental cells using liquid chromatography (LC)-mass spectrometry (MS)/MS label-free quantitative proteomics. Sphere-forming ability assays, flow cytometry, quantitative real-time polymerase chain reaction (qPCR), western blotting, and in vivo xenograft experiments were performed to evaluate stemness. RNA-sequencing (RNA-seq) and pyrosequencing were used to reveal the mechanism by which STON2 negatively modulates the stem-like properties of ovarian cancer cells. Results Among the 74 most differentially expressed proteins, stonin 2 (STON2) was confirmed to be down-regulated in the OCSC subpopulation. We show that STON2 negatively modulates the stem-like properties of ovarian cancer cells, which are characterized by sphere formation, a CD44+CD24− ratio, and by CSC- and epithelial mesenchymal transition (EMT)-related markers. STON2 knockdown also accelerated tumorigenesis in NOD/SCID mice. Further investigation revealed a downstream target, mucin 1 (MUC1), as up-regulated upon the down regulation of STON2. A decrease in both DNA methyltransferase 1 (DNMT1) expression and methylation in the promoter region of MUC1 was associated with subsequently elevated MUC1 expression, as detected in STON2 knockdown in 3AO and Caov3 cells. Direct DNMT1 knockdown simultaneously elevated MUC1 expression. The functional significance of this STON2-DNMT1/MUC1 pathway is supported by the observation that STON2 overexpression suppresses MUC1-induced sphere formation of OCSCs. The paired expression of STON2 and MUC1 in ovarian cancer specimens was also detected revealing the prognostic value of STON2 expression to be highly dependent on MUC1 expression. Conclusions Our results imply that STON2 may negatively regulate stemness in ovarian cancer cells via DNMT1-MUC1 mediated epigenetic modification. STON2 is therefore involved in OCSC biology and may represent a therapeutic target for innovative treatments aimed at ovarian cancer eradication. Electronic supplementary material The online version of this article (10.1186/s13046-018-0977-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yongfang Yue
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Songfa Zhang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xing Xie
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Weiguo Lu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
8
|
CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget 2017; 8:55319-55331. [PMID: 28903422 PMCID: PMC5589661 DOI: 10.18632/oncotarget.19429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor. Gene expression profiling has classified GBM into distinct subtypes, including proneural, mesenchymal, and classical, and identifying therapeutic vulnerabilities of these subtypes is an extremely high priority. We leveraged The Cancer Genome Atlas (TCGA) data, in particular for microRNA expression, to seek druggable core pathways in GBM. The E2F1-regulated miR-17˜92 cluster and its analogs are shown to be highly expressed in proneural GBM and in GSC lines, suggesting the E2F cell cycle pathway might be a key driver in proneural GBM. Consistently, CDK4/6 inhibition with palbociclib preferentially inhibited cell proliferation in vitro in a majority of proneural GSCs versus those of other subtypes. Palbociclib treatment significantly prolonged survival of mice with established intracranial xenografts of a proneural GSC line. We show that most of these sensitive PN GSCs expressed higher levels of CDK6 and had intact Rb1, while two GSC lines with CDK4 overexpression and null Rb1 were highly resistant to palbociclib. Importantly, palbociclib treatment of proneural GSCs upregulated mesenchymal-associated markers and downregulated proneural-associated markers, suggesting that CDK4/6 inhibition induced proneural-mesenchymal transition and underscoring the enhanced role of the E2F cell cycle pathway in the proneural subtype. Lastly, the combination of palbociclib and N,N-diethylaminobenzaldehyde, an inhibitor of the mesenchymal driver ALDH1A3, showed strong synergistic inhibitory effects against proneural GSC proliferation. Taken together, our results reveal that proneural GBM has increased vulnerability to CDK4/6 inhibition, and the proneural subtype undergoes dynamic reprogramming upon palbociclib treatment-suggesting the need for a combination therapeutic strategy.
Collapse
|
9
|
Chiabotto G, Bruno S, Collino F, Camussi G. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles. PLoS One 2016; 11:e0159163. [PMID: 27409796 PMCID: PMC4943710 DOI: 10.1371/journal.pone.0159163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Stefania Bruno
- Department of Molecular Biotechnology and Healthy Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Collino
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
- * E-mail:
| |
Collapse
|
10
|
Virant-Klun I, Kenda-Suster N, Smrkolj S. Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res 2016; 9:12. [PMID: 26940129 PMCID: PMC4778328 DOI: 10.1186/s13048-016-0221-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/22/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In previous studies it has been found that in cell cultures of human adult ovaries there is a population of small stem cells with diameters of 2-4 μm, which are present mainly in the ovarian surface epithelium and are comparable to very small embryonic-like stem cells (VSELs) from bone marrow. These cells are not observed by histopathologists in the ovarian tissue due to their small size and unknown clinical significance. Because these cells express a degree of pluripotency, they might be involved in the manifestation of ovarian cancer. Therefore we studied the ovarian tissue sections in women with borderline ovarian cancer and serous ovarian carcinoma to perhaps identify the small putative stem cells in situ. METHODS In 27 women with borderline ovarian cancer and 20 women with high-grade serous ovarian carcinoma the ovarian tissue sections were stained, per standard practice, with eosin and hematoxylin staining and on NANOG, SSEA-4 and SOX2 markers, related to pluripotency, using immunohistochemistry. We focused on the presence and localization of small putative stem cells with diameters of up to 5 μm and with the nuclei spread over nearly the full cell volume. RESULTS In ovarian sections of both borderline ovarian cancer and serous ovarian carcinoma patients we were able to identify the presence of small round cells complying with the above criteria. Some of these small cells were NANOG-positive, were located among epithelial cells in the ovarian surface epithelium and as a single cell or groups of cells/clusters in typical "chambers", were found only in the presence of ovarian cancer and not in healthy ovaries and are comparable to those in fetal ovaries. We envision that these small cells could be related to NANOG-positive tumor-like structures and oocyte-like cells in similar "chambers" found in sections of cancerous ovaries, which could support their stemness and pluripotency. Further immunohistochemistry revealed a similar population of SSEA-4 and SOX2-positive cells. CONCLUSIONS We may conclude that putative small stem cells expressing markers, related to pluripotency, are present in the ovarian tissue sections of women with borderline ovarian cancer and high-grade serous ovarian carcinoma thus indicating their potential involvement in ovarian cancer.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Natasa Kenda-Suster
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Spela Smrkolj
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44(+)CD117(+) ovarian cancer stem cells. Stem Cell Res Ther 2015; 6:262. [PMID: 26718286 PMCID: PMC4697317 DOI: 10.1186/s13287-015-0249-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/21/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023] Open
Abstract
Background Although metformin, a first-line drug for treating diabetes, may play an important role in inhibition of epithelial ovarian cancer cell growth and cancer stem cells (CSCs), metformin at low dose showed less effect on the proliferation of ovarian cancer cells. In this study, we evaluated the effect of metformin at low dose on ovarian CSCs in order to understand the molecular mechanisms underlying. Methods The inhibitory effects of metformin at los dose on proliferation and population of ovarian cancer cells including SKOV3 and A2780 were assessed by cell proliferation assay and flow cytometry. Quantitative real-time PCR assay on expression of Bcl-2, Survivin and Bax was performed to determine the effect of metformin at low dose on epithelial-mesenchymal transition (EMT) of cancer cells and CSCs. Tumor sphere formation assay was also performed to evaluate the effect of metformin on spheres forming ability of CSCs. The therapeutic efficacy and the anti-CSC effects of metformin at low dose were investigated by using both SKOV3 cells and primary tumor xenografts. In addition, the CSC frequency and EMT in tumor xenograft models were also assessed by flow cytometry and quantitative real-time PCR. Results Metformin at low dose did not affect the proliferation of ovarian cancer cells. However, it inhibited population of CD44+CD117+ selectively, neither CD133+ nor ALDH+ cells. It suppressed expression of snail2, twist and vimentin significantly in cancer cells and CD44+CD117+ CSCs in vitro. Low dose of metformin reduced survivin expression in CSCs. Low concentrations of metformin inhibited the secondary and the tertiary tumor sphere formation, decreased SKOV3 and primary ovarian tumor xenograft growth, enhanced the anticancer effect of cisplatin, and lowered the proportion of CD44+CD117+ CSCs in the xenograft tissue. Metformin was also associated with a reduction of snail2, twist, and vimentin in CD44+CD117+ ovarian CSCs in vivo. Conclusions Our results implicate that metformin at low dose inhibits selectively CD44+CD117+ ovarian CSCs through inhibition of EMT and potentiates the effect of cisplatin.
Collapse
|
12
|
Su H, Jin X, Shen L, Fang Y, Fei Z, Zhang X, Xie C, Chen X. Inhibition of cyclin D1 enhances sensitivity to radiotherapy and reverses epithelial to mesenchymal transition for esophageal cancer cells. Tumour Biol 2015; 37:5355-63. [PMID: 26561473 DOI: 10.1007/s13277-015-4393-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022] Open
Abstract
Acquired radioresistance during radiotherapy has significantly affected the treatment efficacy in esophageal cancer. Many of radioresistant cancer cells demonstrated epithelial-mesenchymal transition (EMT).We found in previous study that a radioresistant cell line (KYSE-150R) possessed EMT characteristic with cyclin D1 overexpression. Cyclin D1 has been demonstrated to affect the radiation sensitivity in cancer cells. To elucidate the molecular functions of cyclin D1 on EMT phenotypes and esophageal cancer radiosensitivity, we treated the radioresistant esophageal cancer cells (KYSE-150R) and parental cells (KYSE-150) with cyclin D1 small interfering RNA (siRNA). The cell proliferation rate of KYSE-150R and the radiation survival fraction were significantly decreased in cyclin D1 siRNA treatment group. Knocking down cyclin D1 resulted in G0/G1 arrest in KYSE-150R cells. The average number of irradiation-induced γ-H2AX foci increased in the cells treated with cyclin D1 siRNA, indicating impaired DNA double-strand break (DSB) repair in KYSE-150R cells. Cyclin D1 also reversed EMT phenotypes with significantly increased expression of E-cadherin in KYSE-150R cells. However, cyclin D1 siRNA have no radiosensitizing effects on KYSE-150 cells, with no obvious change in EMT marker expression .Our work showed that EMT phenotypes can be reduced and the radiosensitivity of esophageal cancer cells can be enhanced by inhibiting cyclin D1.
Collapse
Affiliation(s)
- Huafang Su
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Xiance Jin
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Lanxiao Shen
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Ya Fang
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Zhenghua Fei
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Xuebang Zhang
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Congying Xie
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China.
| | - Xiaolei Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
13
|
Lee YC, Lee CH, Tsai HP, An HW, Lee CM, Wu JC, Chen CS, Huang SH, Hwang J, Cheng KT, Leiw PL, Chen CL, Lin CM. Targeting of Topoisomerase I for Prognoses and Therapeutics of Camptothecin-Resistant Ovarian Cancer. PLoS One 2015. [PMID: 26207989 PMCID: PMC4514822 DOI: 10.1371/journal.pone.0132579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA topoisomerase I (TOP1) levels of several human neoplasms are higher than those of normal tissues. TOP1 inhibitors are widely used in treating conventional therapy-resistant ovarian cancers. However, patients may develop resistance to TOP1 inhibitors, hampering chemotherapy success. In this study, we examined the mechanisms associated with the development of camptothecin (CPT) resistance in ovarian cancers and identified evodiamine (EVO), a natural product with TOP1 inhibiting activity that overcomes the resistance. The correlations among TOP1 levels, cancer staging, and overall survival (OS) were analyzed. The effect of EVO on CPT-resistant ovarian cancer was evaluated in vitro and in vivo. TOP1 was associated with poor prognosis in ovarian cancers (p = 0.024). EVO induced apoptosis that was detected using flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The tumor size decreased significantly in the EVO treatment group compared with the control group (p < 0.01) in a xenograft mouse model. Effects of drugs targeting TOP1 for prognosis and therapy in CPT-resistant ovarian cancer are anticipated. EVO with TOP1 can be developed as an antiproliferative agent for overcoming CPT resistance in ovarian cancers.
Collapse
Affiliation(s)
- Yu-Chieh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chii-Hong Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Hsiang-Ping Tsai
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Herng-Wei An
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ming Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Chine Wu
- Center for Stem Cells and Translational Cancer Research, Chang Gung Memorial Hospital, Gueishan, Taoyuan County, Taiwan
| | - Chien-Shu Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shih-Hao Huang
- Department of Food and Beverage Management, Taipei College of Maritime Technology, Taipei, Taiwan
| | - Jaulang Hwang
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kur-Ta Cheng
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Phui-Ly Leiw
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chi-Long Chen
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Mao Lin
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Huang L, Xu S, Hu D, Lu W, Xie X, Cheng X. IQGAP1 Is Involved in Enhanced Aggressive Behavior of Epithelial Ovarian Cancer Stem Cell-Like Cells During Differentiation. Int J Gynecol Cancer 2015; 25:559-65. [PMID: 25675045 PMCID: PMC4406980 DOI: 10.1097/igc.0000000000000394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/27/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Wide metastasis is one of characteristics of ovarian cancer. Cancer stem cells, as a source in cancer invasion and metastasis, possess powerful potential of differentiation. Scaffolding IQ domain GTPase-activating protein 1 (IQGAP1) plays a key role in the invasion and metastasis of cancer cells, but IQGAP1's role in cancer stem cells including ovarian cancer was unclear. METHODS Spheroid culture with serum-free medium was used for enriching ovarian cancer stem cell-like cells (CSC-LCs) from 3AO cell line, and a medium with 10% fetal bovine serum was used to induce the differentiation of CSC-LCs. Immunofluorescence was for detecting the stem markers OCT4 and SOX2. The quantitative real-time-polymerase chain reaction and Western blotting were performed to determine the messenger RNA and protein expression of IQGAP1, respectively. The capacity of cell invasion was evaluated by transwell chamber assay. RESULTS Ovarian CSC-LCs obtained through spheroid culture showed irregularly elongated appearance, CD24 negative, and OCT4 and SOX2 positive. IQGAP1 expression was decreased in ovarian CSC-LCs compared with parental 3AO cells, but increased de novo during the differentiation of CSC-LCs. Knockdown of IQGAP1 by specific small interfering RNA remarkably weakened invasion capacity of 2-day differentiated ovarian CSC-LCs. CONCLUSIONS Increased IQGAP1 expression during the differentiation of CSC-LCs is involved in an aggressive cell behavior, which may contribute to metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Lu Huang
- *Women’s Reproductive Health Laboratory of Zhejiang Province, and †Department of Gynecologic Oncology, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Shanshan Xu
- *Women’s Reproductive Health Laboratory of Zhejiang Province, and †Department of Gynecologic Oncology, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Dongxiao Hu
- *Women’s Reproductive Health Laboratory of Zhejiang Province, and †Department of Gynecologic Oncology, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiguo Lu
- *Women’s Reproductive Health Laboratory of Zhejiang Province, and †Department of Gynecologic Oncology, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Xie
- *Women’s Reproductive Health Laboratory of Zhejiang Province, and †Department of Gynecologic Oncology, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodong Cheng
- *Women’s Reproductive Health Laboratory of Zhejiang Province, and †Department of Gynecologic Oncology, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Yuan X, Wu H, Han N, Xu H, Chu Q, Yu S, Chen Y, Wu K. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J Hematol Oncol 2014; 7:87. [PMID: 25477004 PMCID: PMC4267749 DOI: 10.1186/s13045-014-0087-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung cancer (NSCLC). Correspondingly, blocking of Notch signaling inhibits NSCLC migration and tumor growth by reversing EMT. Clinical trials have showed promising effect in some cancer patients received treatment with Notch1 inhibitor. This review attempts to provide an overview of the Notch signal in NSCLC: its biological significance and therapeutic application.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Hua Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Na Han
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Shiying Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Yuan Chen
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| |
Collapse
|