1
|
Nahm WJ, Falanga V. The Adverse Impact of Tyrosine Kinase Inhibitors on Wound Healing and Repair. Int Wound J 2025; 22:e70513. [PMID: 40251464 PMCID: PMC12008022 DOI: 10.1111/iwj.70513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) can treat various cancers, primarily through their antiangiogenic effects. However, as angiogenesis is crucial for successful wound healing, TKIs may adversely impact wound repair. This review analysed all 63 FDA-approved TKIs and identified evidence for wound healing and repair implications in 24 agents. The primary mechanism contributing to impaired wound healing appears to be the inhibition of vascular endothelial growth factor receptors, with secondary targets, such as epidermal growth factor receptors and platelet-derived growth factor receptors, potentially playing a role. Information from safety package inserts, preclinical studies, case reports and clinical trials suggests that these TKIs can cause delayed or impaired wound healing. The safety information generally recommends discontinuing treatment for at least one to 2 weeks before elective surgery and resuming treatment only after adequate wound healing has occurred. Neoadjuvant therapy with TKIs may be feasible if sufficient time is allowed between the cessation of the TKI and the onset of surgery. As the use of TKIs continues to increase, healthcare professionals should be aware of their potential impact on wound healing and take appropriate precautions to minimise the risk of wound-related complications.
Collapse
Affiliation(s)
- William J. Nahm
- New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Vincent Falanga
- Department of DermatologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Department of Biochemistry & Cell BiologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
2
|
Rausch M, Rutz A, Allard PM, Delucinge-Vivier C, Docquier M, Dormond O, Wolfender JL, Nowak-Sliwinska P. Molecular and Functional Analysis of Sunitinib-Resistance Induction in Human Renal Cell Carcinoma Cells. Int J Mol Sci 2021; 22:6467. [PMID: 34208775 PMCID: PMC8235637 DOI: 10.3390/ijms22126467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Resistance in clear cell renal cell carcinoma (ccRCC) against sunitinib is a multifaceted process encompassing numerous molecular aberrations. This induces clinical complications, reducing the treatment success. Understanding these aberrations helps us to select an adapted treatment strategy that surpasses resistance mechanisms, reverting the treatment insensitivity. In this regard, we investigated the dominant mechanisms of resistance to sunitinib and validated an optimized multidrug combination to overcome this resistance. Human ccRCC cells were exposed to single or chronic treatment with sunitinib to obtain three resistant clones. Upon manifestation of sunitinib resistance, morphometric changes in the cells were observed. At the molecular level, the production of cell membrane and extracellular matrix components, chemotaxis, and cell cycle progression were dysregulated. Molecules enforcing the cell cycle progression, i.e., cyclin A, B1, and E, were upregulated. Mass spectrometry analysis revealed the intra- and extracellular presence of N-desethyl sunitinib, the active metabolite. Lysosomal sequestration of sunitinib was confirmed. After treatment with a synergistic optimized drug combination, the cell metabolic activity in Caki-1-sunitinib-resistant cells and 3D heterotypic co-cultures was reduced by >80%, remaining inactive in non-cancerous cells. These results demonstrate geno- and phenotypic changes in response to sunitinib treatment upon resistance induction. Mimicking resistance in the laboratory served as a platform to study drug responses.
Collapse
Affiliation(s)
- Magdalena Rausch
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1205 Geneva, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | | | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva, 1206 Geneva, Switzerland; (C.D.-V.); (M.D.)
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland
| | - Olivier Dormond
- Department of Visceral Surgery, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Wu Q, Bai B, Tian C, Li D, Yu H, Song B, Li B, Chu X. The Molecular Mechanisms of Cardiotoxicity Induced by HER2, VEGF, and Tyrosine Kinase Inhibitors: an Updated Review. Cardiovasc Drugs Ther 2021; 36:511-524. [PMID: 33847848 DOI: 10.1007/s10557-021-07181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
AIM In recent decades, there has been a revolutionary decrease in cancer-related mortality and an increase in survival due to the introduction of novel targeted drugs. Nevertheless, drugs targeting human epidermal growth factor receptor 2 (HER-2), angiogenesis, and other tyrosine kinases also come with unexpected cardiac side effects, including heart failure, hypertension, arterial thrombosis, and arrhythmias, and have mechanisms that are unlike those of classic chemotherapeutic agents. In addition, it is challenging to address some problems, as the existing guidelines need to be more specific, and further large-scale clinical trials and experimental studies are required to confirm the benefit of administering cardioprotective agents to patients treated with targeted therapies. Therefore, an improved understanding of cardiotoxicity becomes increasingly important to minimize the pernicious effects and maximize the beneficial effects of targeted agents. METHODS "Cardiotoxicity", "targeted drugs", "HER2", "trastuzumab", "angiogenesis inhibitor", "VEGF inhibitor" and "tyrosine kinase inhibitors" are used as keywords for article searches. RESULTS In this article, we report several targeted therapies that induce cardiotoxicity and update knowledge of the clinical evidence, molecular mechanisms, and management measures.
Collapse
Affiliation(s)
- Qinchao Wu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Bingxue Song
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Bing Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong, China.
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, Shandong, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Hamid AB, Petreaca RC. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040927. [PMID: 32283832 PMCID: PMC7226513 DOI: 10.3390/cancers12040927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Secondary resistant mutations in cancer cells arise in response to certain small molecule inhibitors. These mutations inevitably cause recurrence and often progression to a more aggressive form. Resistant mutations may manifest in various forms. For example, some mutations decrease or abrogate the affinity of the drug for the protein. Others restore the function of the enzyme even in the presence of the inhibitor. In some cases, resistance is acquired through activation of a parallel pathway which bypasses the function of the drug targeted pathway. The Catalogue of Somatic Mutations in Cancer (COSMIC) produced a compendium of resistant mutations to small molecule inhibitors reported in the literature. Here, we build on these data and provide a comprehensive review of resistant mutations in cancers. We also discuss mechanistic parallels of resistance.
Collapse
|
5
|
Deng Y, Zhong Z, Tan X, Wang S, Qian K. Satisfactory short-term outcome after anlotinib and docetaxel chemotherapy in tongue cancer with N3 cervical lymph node metastasis: A case report. Clin Case Rep 2019; 7:1923-1927. [PMID: 31624610 PMCID: PMC6787789 DOI: 10.1002/ccr3.2390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023] Open
Abstract
Patients with tongue squamous cell carcinoma (TSCC) and cervical lymph node metastasis are particularly difficult to treat. This is the first report of about anlotinib combined with docetaxel chemotherapy for chemotherapy-refractory TSCC with cervical lymph node metastasis, may provide a new, suitable therapeutic option for these patients.
Collapse
Affiliation(s)
- Yi Deng
- Department of OncologyInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| | - Zhao‐Yang Zhong
- Department of OncologyInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| | - Xiao‐Rong Tan
- Department of OncologyInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| | - Shuai Wang
- Department of OncologyInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| | - Kai Qian
- Department of Thoracic SurgeryInstitute of Surgery Research, Daping Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
6
|
Uribesalgo I, Hoffmann D, Zhang Y, Kavirayani A, Lazovic J, Berta J, Novatchkova M, Pai TP, Wimmer RA, László V, Schramek D, Karim R, Tortola L, Deswal S, Haas L, Zuber J, Szűcs M, Kuba K, Dome B, Cao Y, Haubner BJ, Penninger JM. Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy. EMBO Mol Med 2019; 11:e9266. [PMID: 31267692 PMCID: PMC6685079 DOI: 10.15252/emmm.201809266] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/03/2023] Open
Abstract
Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti-angiogenic treatment has limited efficacy due to therapy-induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy-induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid-derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti-angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitor-induced metastases, and high Apelin levels correlate with poor prognosis of anti-angiogenic therapy patients. These data identify a druggable anti-angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases.
Collapse
Affiliation(s)
- Iris Uribesalgo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - David Hoffmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.,Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, China
| | | | - Jelena Lazovic
- VBCF Preclinical Imaging, Vienna BioCenter, Vienna, Austria
| | - Judit Berta
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Tsung-Pin Pai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Reiner A Wimmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Viktória László
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniel Schramek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.,Department of Molecular Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Rezaul Karim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Luigi Tortola
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Sumit Deswal
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Lisa Haas
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Johannes Zuber
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Miklós Szűcs
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Keiji Kuba
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.,Department Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Balazs Dome
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary.,Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Bernhard J Haubner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.,Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
van Hooren L, Georganaki M, Huang H, Mangsbo SM, Dimberg A. Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment. Oncotarget 2017; 7:50277-50289. [PMID: 27385210 PMCID: PMC5226582 DOI: 10.18632/oncotarget.10364] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/12/2016] [Indexed: 12/14/2022] Open
Abstract
CD40-activating immunotherapy has potent antitumor effects due to its ability to activate dendritic cells and induce cytotoxic T-cell responses. However, its efficacy is limited by immunosuppressive cells in the tumor and by endothelial anergy inhibiting recruitment of T-cells. Here, we show that combining agonistic CD40 monoclonal antibody (mAb) therapy with vascular targeting using the tyrosine kinase inhibitor sunitinib decreased tumor growth and improved survival in B16.F10 melanoma and T241 fibrosarcoma. Treatment of tumor-bearing mice with anti-CD40 mAb led to increased activation of CD11c+ dendritic cells in the tumor draining lymph node, while sunitinib treatment reduced vessel density and decreased accumulation of CD11b+Gr1+ myeloid derived suppressor cells. The expression of ICAM-1 and VCAM-1 adhesion molecules was up-regulated on tumor endothelial cells only when anti-CD40 mAb treatment was combined with sunitinib. This was associated with enhanced intratumoral infiltration of CD8+ cytotoxic T-cells. Our results show that combining CD40-stimulating immunotherapy with sunitinib treatment exerts potent complementary antitumor effects mediated by dendritic cell activation, a reduction in myeloid derived suppressor cells and increased endothelial activation, resulting in enhanced recruitment of cytotoxic T-cells.
Collapse
Affiliation(s)
- Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Sweden
| | - Sara M Mangsbo
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Sweden
| |
Collapse
|
8
|
Moeckel J, Staiger N, Mackensen A, Meidenbauer N, Ullrich E. Sunitinib does not impair natural killer cell function in patients with renal cell carcinoma. Oncol Lett 2017; 14:1089-1096. [PMID: 28693278 PMCID: PMC5494766 DOI: 10.3892/ol.2017.6187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/10/2016] [Indexed: 01/17/2023] Open
Abstract
Although the available treatment options have expanded, the survival of patients with metastatic renal cell carcinoma (RCC) remains poor. As patients with RCC lack responsiveness to chemotherapy or radiation, therapeutic options predominantly include surgical interventions and immunomodulatory approaches, including the administration of tyrosine kinase inhibitors (TKIs) such as sunitinib. Natural killer (NK) cells have been reported to be key players in TKI-mediated off-target effects on the immune system. However, only limited information is available regarding the possible impact of sunitinib on the function of NK cells of individual patients. The present study reports on the immunomonitoring results of three patients with metastatic RCC who underwent sunitinib treatment. These results were compared with age-matched, healthy controls in terms of the immune status of T, B and NK cells, focusing on functional in vitro analyses of NK cells. In all three patients, NK cell number, subset distribution and function, as measured by cluster of differentiation 107a degranulation, did not exhibit any significant alterations as a result of sunitinib treatment. These results indicate that sunitinib does not negatively affect NK cell function, which supports the pursuit of therapeutic modalities that combine immunomodulation and NK cell-stimulating approaches.
Collapse
Affiliation(s)
- Jennifer Moeckel
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany
- LOEWE Center for Cell and Gene Therapy, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| | - Nina Staiger
- LOEWE Center for Cell and Gene Therapy, Goethe University Frankfurt, D-60590 Frankfurt, Germany
- Laboratory of Cellular Immunology, Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Norbert Meidenbauer
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Evelyn Ullrich
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany
- LOEWE Center for Cell and Gene Therapy, Goethe University Frankfurt, D-60590 Frankfurt, Germany
- Laboratory of Cellular Immunology, Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| |
Collapse
|
9
|
Archibald M, Pritchard T, Nehoff H, Rosengren RJ, Greish K, Taurin S. A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer. Int J Nanomedicine 2016; 11:179-200. [PMID: 26811677 PMCID: PMC4712974 DOI: 10.2147/ijn.s97286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) remains incurable due to the lack of effective therapies. Several tyrosine kinases have been implicated in the development and growth of CRPC, as such targeting these kinases may offer an alternative therapeutic strategy. We established the combination of two tyrosine kinase inhibitors (TKIs), sorafenib and nilotinib, as the most cytotoxic. In addtion, to improve their bioavailability and reduce their metabolism, we encapsulated sorafenib and nilotinib into styrene-co-maleic acid micelles. The micelles' charge, size, and release rate were characterized. We assessed the effect of the combination on the cytotoxicity, cell cycle, apoptosis, protein expression, tumor spheroid integrity, migration, and invasion. The micelles exhibited a mean diameter of 100 nm, a neutral charge, and appeared highly stable. The micellar TKIs promoted greater cytotoxicity, decreased cell proliferation, and increased apoptosis relative to the free TKIs. In addition, the combination reduced the expression and activity of several tyrosine kinases and reduced tumor spheroid integrity and metastatic potential of CRPC cell lines more efficiently than the single treatments. The combination increased the therapeutic potential and demonstrated the relevance of a targeted combination therapy for the treatment of CRPC. In addition, the efficacy of the encapsulated drugs provides the basis for an in vivo preclinical testing.
Collapse
Affiliation(s)
- Monica Archibald
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Tara Pritchard
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Hayley Nehoff
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Aljawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Sebastien Taurin
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| |
Collapse
|