1
|
Fang Y, Reinl EL, Liu A, Prochaska TD, Malik M, Frolova AI, England SK, Imoukhuede PI. Quantification of surface-localized and total oxytocin receptor in myometrial smooth muscle cells. Heliyon 2024; 10:e25761. [PMID: 38384573 PMCID: PMC10878913 DOI: 10.1016/j.heliyon.2024.e25761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Oxytocin acts through the oxytocin receptor (OXTR) to modulate uterine contractility. We previously identified OXTR genetic variants and showed that, in HEK293T cells, two of the OXTR protein variants localized to the cell surface less than wild-type OXTR. Here, we sought to measure OXTR in the more native human myometrial smooth muscle cell (HMSMC) line on both the cell-surface and across the whole cell, and used CRISPR editing to add an HA tag to the endogenous OXTR gene for anti-HA measurement. Quantitative flow cytometry revealed that these cells possessed 55,000 ± 3200 total OXTRs and 4900 ± 390 cell-surface OXTRs per cell. To identify any differential wild-type versus variant localization, we transiently transfected HMSMCs to exogenously express wild-type or variant OXTR with HA and green fluorescent protein tags. Total protein expression of wild-type OXTR and all tested variants were similar. However, the two variants with lower surface localization in HEK293T cells also presented lower surface localization in HMSMCs. Overall, we confirm the differential surface localization of variant OXTR in a more native cell type, and further demonstrate that the quantitative flow cytometry technique is adaptable to whole-cell measurements.
Collapse
Affiliation(s)
- Yingye Fang
- Department of Bioengineering, University of Washington, Seattle, WA, 98109, USA
| | - Erin L. Reinl
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Audrey Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Trinidi D. Prochaska
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Manasi Malik
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Antonina I. Frolova
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | |
Collapse
|
2
|
Zhang Y, Popel AS, Bazzazi H. Combining Multikinase Tyrosine Kinase Inhibitors Targeting the Vascular Endothelial Growth Factor and Cluster of Differentiation 47 Signaling Pathways Is Predicted to Increase the Efficacy of Antiangiogenic Combination Therapies. ACS Pharmacol Transl Sci 2023; 6:710-726. [PMID: 37200806 PMCID: PMC10186363 DOI: 10.1021/acsptsci.3c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 05/20/2023]
Abstract
Angiogenesis is a critical step in tumor growth, development, and invasion. Nascent tumor cells secrete vascular endothelial growth factor (VEGF) that significantly remodels the tumor microenvironment through interaction with multiple receptors on vascular endothelial cells, including type 2 VEGF receptor (VEGFR2). The complex pathways initiated by VEGF binding to VEGFR2 lead to enhanced proliferation, survival, and motility of vascular endothelial cells and formation of a new vascular network, enabling tumor growth. Antiangiogenic therapies that inhibit VEGF signaling pathways were among the first drugs that targeted stroma rather than tumor cells. Despite improvements in progression-free survival and higher response rates relative to chemotherapy in some types of solid tumors, the impact on overall survival (OS) has been limited, with the majority of tumors eventually relapsing due to resistance or activation of alternate angiogenic pathways. Here, we developed a molecularly detailed computational model of endothelial cell signaling and angiogenesis-driven tumor growth to investigate combination therapies targeting different nodes of the endothelial VEGF/VEGFR2 signaling pathway. Simulations predicted a strong threshold-like behavior in extracellular signal-regulated kinases 1/2 (ERK1/2) activation relative to phosphorylated VEGFR2 levels, as continuous inhibition of at least 95% of receptors was necessary to abrogate phosphorylated ERK1/2 (pERK1/2). Combinations with mitogen-activated protein kinase/ERK kinase (MEK) and spingosine-1-phosphate inhibitors were found to be effective in overcoming the ERK1/2 activation threshold and abolishing activation of the pathway. Modeling results also identified a mechanism of resistance whereby tumor cells could reduce pERK1/2 sensitivity to inhibitors of VEGFR2 by upregulation of Raf, MEK, and sphingosine kinase 1 (SphK1), thus highlighting the need for deeper investigation of the dynamics of the crosstalk between VEGFR2 and SphK1 pathways. Inhibition of VEGFR2 phosphorylation was found to be more effective at blocking protein kinase B, also known as AKT, activation; however, to effectively abolish AKT activation, simulations identified Axl autophosphorylation or the Src kinase domain as potent targets. Simulations also supported activating cluster of differentiation 47 (CD47) on endothelial cells as an effective combination partner with tyrosine kinase inhibitors to inhibit angiogenesis signaling and tumor growth. Virtual patient simulations supported the effectiveness of CD47 agonism in combination with inhibitors of VEGFR2 and SphK1 pathways. Overall, the rule-based system model developed here provides new insights, generates novel hypothesis, and makes predictions regarding combinations that may enhance the OS with currently approved antiangiogenic therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hojjat Bazzazi
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
4
|
Khbouz B, Lallemand F, Cirillo A, Rowart P, Legouis D, Sounni NE, Noël A, De Tullio P, de Seigneux S, Jouret F. Kidney-targeted irradiation triggers renal ischaemic preconditioning in mice. Am J Physiol Renal Physiol 2022; 323:F198-F211. [PMID: 35796462 DOI: 10.1152/ajprenal.00005.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) causes acute kidney injury (AKI). Ischemic preconditioning (IPC) attenuates I/R-associated AKI. Whole-body irradiation induces renal IPC in mice. Still, the mechanisms remain largely unknown. Furthermore, the impact of kidney-centered irradiation on renal resistance against I/R has not been studied. Renal irradiation (8.5Gy) was done in male 8-12-week-old C57bl/6 mice using Small Animal Radiation Therapy (SmART) device. Left renal I/R was performed by clamping the renal pedicles for 30 minutes, with simultaneous right nephrectomy, at 7, 14, and 28 days post-irradiation. The renal reperfusion lasted 48 hours. Following I/R, blood urea nitrogen (BUN) and creatinine (SCr) levels were lower in pre-irradiated mice compared to controls, so was the histological Jablonski score of AKI. The metabolomics signature of renal I/R was attenuated in pre-irradiated mice. The numbers of PCNA-, CD11b-, and F4-80-positive cells in the renal parenchyma post-I/R were reduced in pre-irradiated versus control groups. Such an IPC was significantly observed as early as D14 post-irradiation. RNA-Seq showed an up-regulation of angiogenesis- and stress response-related signaling pathways in irradiated non-ischemic kidneys at D28. RT-qPCR confirmed the increased expression of VEGF, ALK5, HO1, PECAM1, NOX2, HSP70, and HSP27 in irradiated kidneys compared to controls. In addition, irradiated kidneys showed an increased CD31-positive vascular area compared to controls. A 14-day gavage of irradiated mice with the anti-angiogenic drug Sunitinib before I/R abrogated the irradiation-induced IPC at both functional and structural levels. Our observations suggest that kidney-centered irradiation activates pro-angiogenic pathways and induces IPC, with preserved renal function and attenuated inflammation post-I/R.
Collapse
Affiliation(s)
- Badr Khbouz
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Division of Nephrology, CHU of Liège, University of Liège, Liège, Belgium
| | - François Lallemand
- Cyclotron Research Center, University of Liège, Liège, Belgium.,Division of Radiotherapy, CHU of Liège, University of Liège, Liège, Belgium
| | - Arianna Cirillo
- Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics group, University of Liège, Liège, Belgium
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Legouis
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland.,Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
| | - Nor Eddine Sounni
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cancer Sciences, University of Liège, Liège, Belgium
| | - Agnès Noël
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cancer Sciences, University of Liège, Liège, Belgium
| | - Pascal De Tullio
- Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics group, University of Liège, Liège, Belgium
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
| | - Francois Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Division of Nephrology, CHU of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Hofmann E, Eggers B, Heim N, Kramer FJ, Nokhbehsaim M, Götz W. Bevacizumab and sunitinib mediate osteogenic and pro-inflammatory molecular changes in primary human alveolar osteoblasts in vitro. Odontology 2022; 110:634-647. [PMID: 35171372 PMCID: PMC9463285 DOI: 10.1007/s10266-022-00691-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/04/2022] [Indexed: 12/03/2022]
Abstract
Antiangiogenic medications target the de novo blood vessel formation in tumorigenesis. However, these novel drugs have been linked to the onset of medication-related osteonecrosis of the jaw (MRONJ). The aim of this in vitro study was to examine the effects of the vascular endothelial growth factor A (VEGFA) antibody bevacizumab (BEV) and the receptor tyrosine kinase inhibitor (RTKI) sunitinib (SUN) on primary human osteoblasts derived from the alveolar bone. Primary human alveolar osteoblasts (HAOBs) were treated with BEV or SUN for 48 h. Cellular metabolic activity was examined by XTT assay. Differentially regulated genes were identified by screening of 22 selected osteogenic and angiogenic markers by quantitative real-time reverse transcriptase polymerase chain reaction (qRT2-PCR). Protein levels of alkaline phosphatase (ALP), collagen type 1, α1 (COL1A1) and secreted protein acidic and cysteine rich (SPARC) were examined by enzyme-linked immunoassay (ELISA). Treatment with BEV and SUN did not exhibit direct cytotoxic effects in HAOBs as confirmed by XTT assay. Of the 22 genes examined by qRT2-PCR, four genes were significantly regulated after BEV treatment and eight genes in the SUN group as compared to the control group. Gene expression levels of ALPL, COL1A1 and SPARC were significantly downregulated by both drugs. Further analysis by ELISA indicated the downregulation of protein levels of ALP, COL1A1 and SPARC in the BEV and SUN groups. The effects of BEV and SUN in HAOBs may be mediated by alterations to osteogenic and catabolic markers. Therapeutic or preventive strategies in MRONJ may address drug-induced depression of osteoblast differentiation.
Collapse
Affiliation(s)
- Elena Hofmann
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany.
- Department of Oral and Maxillofacial Surgery, Charité- Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany
| | - Nils Heim
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111, Bonn, Germany
| | - Werner Götz
- Department of Orthodontics, University Hospital Bonn, 53111, Bonn, Germany
| |
Collapse
|
6
|
Peptide Inhibitors of Vascular Endothelial Growth Factor A: Current Situation and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13091337. [PMID: 34575413 PMCID: PMC8467741 DOI: 10.3390/pharmaceutics13091337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the family of extracellular signaling proteins involved in the processes of angiogenesis. VEGFA overexpression and altered regulation of VEGFA signaling pathways lead to pathological angiogenesis, which contributes to the progression of various diseases, such as age-related macular degeneration and cancer. Monoclonal antibodies and decoy receptors have been extensively used in the anti-angiogenic therapies for the neutralization of VEGFA. However, multiple side effects, solubility and aggregation issues, and the involvement of compensatory VEGFA-independent pro-angiogenic mechanisms limit the use of the existing VEGFA inhibitors. Short chemically synthesized VEGFA binding peptides are a promising alternative to these full-length proteins. In this review, we summarize anti-VEGFA peptides identified so far and discuss the molecular basis of their inhibitory activity to highlight their pharmacological potential as anti-angiogenic drugs.
Collapse
|
7
|
Alsaab HO, Al-Hibs AS, Alzhrani R, Alrabighi KK, Alqathama A, Alwithenani A, Almalki AH, Althobaiti YS. Nanomaterials for Antiangiogenic Therapies for Cancer: A Promising Tool for Personalized Medicine. Int J Mol Sci 2021; 22:1631. [PMID: 33562829 PMCID: PMC7915670 DOI: 10.3390/ijms22041631] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the hallmarks of cancer. Several studies have shown that vascular endothelium growth factor (VEGF) plays a leading role in angiogenesis progression. Antiangiogenic medication has gained substantial recognition and is commonly administered in many forms of human cancer, leading to a rising interest in cancer therapy. However, this treatment method can lead to a deteriorating outcome of resistance, invasion, distant metastasis, and overall survival relative to its cytotoxicity. Furthermore, there are significant obstacles in tracking the efficacy of antiangiogenic treatments by incorporating positive biomarkers into clinical settings. These shortcomings underline the essential need to identify additional angiogenic inhibitors that target numerous angiogenic factors or to develop a new method for drug delivery of current inhibitors. The great benefits of nanoparticles are their potential, based on their specific properties, to be effective mechanisms that concentrate on the biological system and control various important functions. Among various therapeutic approaches, nanotechnology has emerged as a new strategy for treating different cancer types. This article attempts to demonstrate the huge potential for targeted nanoparticles and their molecular imaging applications. Notably, several nanoparticles have been developed and engineered to demonstrate antiangiogenic features. This nanomedicine could effectively treat a number of cancers using antiangiogenic therapies as an alternative approach. We also discuss the latest antiangiogenic and nanotherapeutic strategies and highlight tumor vessels and their microenvironments.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
| | - Alanoud S. Al-Hibs
- Department of Pharmacy, King Fahad Medical City, Riyadh 11564, Saudi Arabia;
| | - Rami Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khawlah K. Alrabighi
- Batterjee Medical College for Sciences and Technology, Jeddah 21577, Saudi Arabia;
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Akram Alwithenani
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Atiah H. Almalki
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
- Department of Pharmaceutical Chemistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yusuf S. Althobaiti
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Shih CY, Chang TT, Chen CL, Li WS. Antiangiogenic Effect of Isomalyngamide A Riboside CY01 in Breast Cancer Cells via Inhibition of Migration, Tube Formation and pVEGFR2/pAKT Signals. Anticancer Agents Med Chem 2021; 20:386-399. [PMID: 31629398 DOI: 10.2174/1871520619666191019123244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 07/05/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND To block the metastatic and angiogenic pathways during the tumor progression arouses considerable pharmacological interests in the development of anticancer drugs. OBJECTIVE To develop alternative antiangiogenic and antimetastic agents, we designed and prepared a series of nature inspired isomalyngamide A analogs containing ribose conjugate with 1,2-diaminoethane or 1,3- diaminopropane linkers (1-8). METHODS The target glycosylated isomalyngamide A analogs 1-8 were constructed through condensation of the malonic acids 16-19 and the corresponding aminoethoxyl ribosides 20 and 21, using HBTU/DIPEA as the coupling agent. The cell growth inhibition assay, cell migration assay, transwell invasion assay, adhesion assay, tube formation assay and western blot analysis were used to validate the biological actions of compounds. RESULTS The most effective compound, isomalyngamide A riboside 1 (CY01), possessing a D-ribose core structure and a 1,3-diaminopropane linker, showed significant suppression of MDA-MB-231 cell migration and inhibited tube formation of Human Umbilical Vascular Endothelial Cells (HUVECs) in a dose-dependent manner. Effect of the latter is comparable to that of sorafenib, an orally active multikinase inhibitor and an inhibitor of angiogenesis. CY01 also showed slight inhibition on collagen type IV- and laminin-mediated cell adhesion. These actions may be regulated through the blockade of the VEGF/VEGFR2 signaling pathway by inhibiting the VEGF induced phosphorylation of p-VEGFR2 and p-AKT. CONCLUSION In this effort, we have discovered synthetic and glycosylated marine metabolites which may serve as an alternative antiangiogenic and antimetastic agent during multitherapy.
Collapse
Affiliation(s)
- Ching-Ying Shih
- Department of Chemistry, National Central University, Taoyuan City 32001, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ting Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Ling Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.,Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.,Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
9
|
Yue Y, Huang S, Li H, Li W, Hou J, Luo L, Liu Q, Wang C, Yang S, Lv L, Shao J, Wu Z. M2b macrophages protect against myocardial remodeling after ischemia/reperfusion injury by regulating kinase activation of platelet-derived growth factor receptor of cardiac fibroblast. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1409. [PMID: 33313154 PMCID: PMC7723613 DOI: 10.21037/atm-20-2788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Myocardial injury is a major cause of myocardial remodeling. Macrophages are important in cardiac repair as a result of their interactions with fibroblasts. As regulatory macrophages, M2b macrophages modulate inflammatory immune responses without participating in wound healing and could have enhanced protective effects on myocardial remodeling. Therefore, we tested the hypothesis that M2b macrophages could improve cardiac function and ameliorate myocardial fibrosis after the myocardial ischemia/reperfusion injury (MI/RI). Methods In vivo, MI/RI models were established with Sprague-Dawley (SD) rats and either M2b macrophages (MT group) or the same volume of vehicle (CK group) was injected into the ischemic zone. Two weeks after the operation, cardiac function and diameters were determined by echocardiography examination. Level of myocardial fibrosis was measured by Sirius red staining and the expression of fibrosis-related factors. In vitro, cardiac fibroblasts (CFs) were co-cultured with M2b macrophages or cultured with M2b macrophage supernatant. Expression of α-smooth muscle actin (α-SMA) and connective tissue growth factor (CCN2/CTGF) in the CFs were measured by western blotting and immunofluorescence staining. In addition, the expression of platelet-derived growth factors (PDGFs), the expression of platelet-derived growth factor receptors (PDGFRs) and the phosphorylation of PDGFRs was detected by western blotting. Results A significantly higher rat survival rate, improved left ventricular (LV) systolic function, decreased diameter of the LV and alleviated myocardial fibrosis were observed in the MT group than in the CK group. In vitro, the activation of CFs was significantly reduced by the M2b macrophages treatments, relative to the blank control. In addition, the kinase activation of PDGFRs was decreased by M2b macrophage treatments both in vivo and in vitro. Conclusions Our study demonstrated that the administration of M2b macrophages could attenuate myocardial remodeling after MI/RI. The regulation of the activation of PDGFRs in CFs is an important part of the protective mechanism.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Suiqing Huang
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huayang Li
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- Department of Medical Ultrasound, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Hou
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Luo
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan Liu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuiping Wang
- Department of Cardiothoracic Surgery ICU, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Yang
- Department of Cardiothoracic Surgery ICU, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linhua Lv
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinghua Shao
- Out-Patient Department, Shenxian Second People's Hospital, Shenxian, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Hu J, Wang W, Liu C, Li M, Nice E, Xu H. Receptor tyrosine kinase inhibitor Sunitinib and integrin antagonist peptide HM-3 show similar lipid raft dependent biphasic regulation of tumor angiogenesis and metastasis. J Exp Clin Cancer Res 2019; 38:381. [PMID: 31462260 PMCID: PMC6714448 DOI: 10.1186/s13046-019-1324-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anti-angiogenesis remains an attractive strategy for cancer therapy. Some anti-angiogenic reagents have bell-shape dose-response curves with higher than the effective doses yielding lower anti-angiogenic effects. In this study, two different types of anti-angiogenic reagents, a receptor tyrosine kinase inhibitor Sunitinib and an integrin antagonist peptide HM-3, were selected and their effects on tumor angiogenesis and metastasis were compared. The involved molecular mechanisms were investigated. METHODS The effect of high dose Sunitinib and HM-3 on tumor angiogenesis and metastasis was investigated with two animal models: metastasis of B16F10 cells in syngeneic mice and metastasis of human MDA-MB-231 cells in nude mice. Furthermore, mechanistic studies were performed with cell migration and invasion assays and with biochemical pull-down assays of intracellular RhoGTPases. Distribution of integrin αvβ3, α5β1, VEGFR2 and the complex of integrin αvβ3 and VEGFR2 inside or outside of lipid rafts was detected with lipid raft isolation and Western-blot analysis. RESULTS Both Sunitinib and HM-3 showed a bell-shape dose-response curve on tumor angiogenesis and metastasis in both animal models. The effects of Sunitinib and HM-3 on endothelial cell and tumor cell proliferation and migration were characterized. Activation of intracellular RhoGTPases and actin stress fiber formation in endothelial and cancer cells following Sunitinib and HM-3 treatment correlated with cell migration analysis. Mechanistic studies confirmed that HM-3 and Sunitinib regulated distribution of integrin αvβ3, α5β1, VEGFR2 and αvβ3-VEGFR2 complexes, both inside and outside of the lipid raft regions to regulate endothelial cell migration and intracellular RhoGTPase activities. CONCLUSIONS These data confirmed that a general non-linear dose-effect relationship for these anti-angiogenic drugs exists and their mechanisms are correlative. It also suggests that the effective dose of an anti-angiogenic drug may have to be strictly defined to achieve its optimal clinical effects.
Collapse
Affiliation(s)
- Jialiang Hu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| | - Wenjing Wang
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Chen Liu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| | - Mengwei Li
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Hanmei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| |
Collapse
|
11
|
The role of netrin-1 in metastatic renal cell carcinoma treated with sunitinib. Oncotarget 2018; 9:22631-22641. [PMID: 29854303 PMCID: PMC5978253 DOI: 10.18632/oncotarget.25201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 03/17/2018] [Indexed: 01/20/2023] Open
Abstract
Introduction Clear-cell renal cell carcinoma (ccRCC) is the sixth most common malignancy in men in North America. Since ccRCC is a malignancy dependent on neovascularization, current first line systemic therapies like sunitinib, target the formation of new vessels allowing nutrient deprivation and cell death. However, recent studies have shown that patients develop resistance after approximately 1 year of treatment and show disease progression while on therapy. Therefore, we propose to identify the protein(s) responsible for increased migration with the aim of developing a new therapy that will target the identified protein and potentially slow down the progression of the disease. Material and Methods Human renal cancer cell lines (Caki-1, Caki-2, ACHN) were treated with increasing doses of sunitinib to develop a sunitinib-conditioned renal cell carcinoma cell line. mRNA microarray and qPCR were performed to compare the differences in gene expression between Caki-1 sunitinib-conditioned and non-conditioned cells. NTN1 was assessed in our in vivo sunitinib-conditioned mouse model using immunostaining. xCELLigence and scratch assays were used to evaluate migration and MTS was used to evaluate cell viability. Results Human renal cell carcinoma sunitinib-conditioned cell lines showed upregulation of netrin-1 in microarray and q-PCR. Increased migration was demonstrated in Caki-1 sunitinib-conditioned cells when compared to the non-treated ones as well as, increased endothelial cell migration. Silencing of netrin-1 in sunitinib-conditioned Caki-1 cells did not demonstrate a significant reduction in cell migration. Conclusion Netrin-1 is highly upregulated in renal cell carcinoma treated with sunitinib, but has no influence on cell viability or cell migration in metastatic RCC.
Collapse
|
12
|
Ma YC, Wang ZX, Jin SJ, Zhang YX, Hu GQ, Cui DT, Wang JS, Wang M, Wang FQ, Zhao ZJ. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells. PLoS One 2016; 11:e0162821. [PMID: 27760157 PMCID: PMC5070812 DOI: 10.1371/journal.pone.0162821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023] Open
Abstract
Both tyrosine kinase and topoisomerase II (TopII) are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK) detection kit using a horseradish peroxidase (HRP)-conjugated phosphotyrosine (pY20) antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 μmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 μM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (P<0.05), and this effect was accompanied by a decrease in tyrosine kinase activity. HMNE3 potentially inhibited tyrosine kinase activity in vitro with an IC50 value of 0.64±0.34 μmol/L in Capan-1 cells and 3.1±0.86 μmol/L in Panc-1 cells. The activity of c-Src was significantly inhibited by HMNE3 in a dose- and time-dependent manner in different cellular contexts. Compared with the control group, HMNE3 induced increased expression of cellular apoptosis-related proteins. Consistent with cellular apoptosis data, a significant decrease in topoisomerase IIβ activity was noted following treatment with HMNE3 for 24 h. Our data suggest that HMNE3 induced apoptosis in Capan-1 and Panc-1 cells by inhibiting the activity of both tyrosine kinases and topoisomerase II.
Collapse
Affiliation(s)
- Yong-Chao Ma
- Clinical Medical Institute of Luohe Medical College, Luohe, Henan, P.R. China
- The First Affiliated Hospital of Luohe Medical College, Luohe, Henan, P.R. China
- Tumor Occurrence and Prevention Research Innovation team of Luohe, Luohe, Henan, P.R. China
| | - Zhi-Xin Wang
- Basic Medical Institute of ZhengZhou University, ZhengZhou, Henan, P.R. China
| | - Shao-Ju Jin
- Institute of pharmacology of Luohe Medical College, Luohe, Henan, P.R. China
| | - Yan-Xin Zhang
- Basic Medical Institute of Luohe Medical College, Luohe, Henan, P.R. China
| | - Guo-Qiang Hu
- Institute of Chemistry and Biology of Henan University, Kaifeng, Henan, P.R. China
| | - Dong-Tao Cui
- Clinical Medical Institute of Luohe Medical College, Luohe, Henan, P.R. China
| | - Jiang-Shuan Wang
- Basic Medical Institute of Luohe Medical College, Luohe, Henan, P.R. China
| | - Min Wang
- Clinical Medical Institute of Luohe Medical College, Luohe, Henan, P.R. China
| | - Fu-Qing Wang
- Basic Medical Institute of Luohe Medical College, Luohe, Henan, P.R. China
| | - Zhi-Jun Zhao
- Clinical Medical Institute of Luohe Medical College, Luohe, Henan, P.R. China
| |
Collapse
|
13
|
Moehler M, Gepfner-Tuma I, Maderer A, Thuss-Patience PC, Ruessel J, Hegewisch-Becker S, Wilke H, Al-Batran SE, Rafiyan MR, Weißinger F, Schmoll HJ, Kullmann F, von Weikersthal LF, Siveke JT, Weusmann J, Kanzler S, Schimanski CC, Otte M, Schollenberger L, Koenig J, Galle PR. Sunitinib added to FOLFIRI versus FOLFIRI in patients with chemorefractory advanced adenocarcinoma of the stomach or lower esophagus: a randomized, placebo-controlled phase II AIO trial with serum biomarker program. BMC Cancer 2016; 16:699. [PMID: 27582078 PMCID: PMC5006426 DOI: 10.1186/s12885-016-2736-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/20/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As a multi-targeted anti-angiogenic receptor tyrosine kinase (RTK) inhibitor sunitinib (SUN) has been established for renal cancer and gastrointestinal stromal tumors. In advanced refractory esophagogastric cancer patients, monotherapy with SUN was associated with good tolerability but limited tumor response. METHODS This double-blind, placebo-controlled, multicenter, phase II clinical trial was conducted to evaluate the efficacy, safety and tolerability of SUN as an adjunct to second and third-line FOLFIRI (NCT01020630). Patients were randomized to receive 6-week cycles including FOLFIRI plus sodium folinate (Na-FOLFIRI) once every two weeks and SUN or placebo (PL) continuously for four weeks followed by a 2-week rest period. The primary study endpoint was progression-free survival (PFS). Preplanned serum analyses of VEGF-A, VEGF-D, VEGFR2 and SDF-1α were performed retrospectively. RESULTS Overall, 91 patients were randomized, 45 in each group (one patient withdrew). The main grade ≥3 AEs were neutropenia and leucopenia, observed in 56 %/20 % and 27 %/16 % for FOLFIRI + SUN/FOLFIRI + PL, respectively. Median PFS was similar, 3.5 vs. 3.3 months (hazard ratio (HR) 1.11, 95 % CI 0.70-1.74, P = 0.66) for FOLFIRI + SUN vs. FOLFIRI + PL, respectively. For FOLFIRI + SUN, a trend towards longer median overall survival (OS) compared with placebo was observed (10.4 vs. 8.9 months, HR 0.82, 95 % CI 0.50-1.34, one-sided P = 0.21). In subgroup serum analyses, significant changes in VEGF-A (P = 0.017), VEGFR2 (P = 0.012) and VEGF-D (P < 0.001) serum levels were observed. CONCLUSIONS Although sunitinib combined with FOLFIRI did not improve PFS and response in chemotherapy-resistant gastric cancer, a trend towards better OS was observed. Further biomarker-driven studies with other anti-angiogenic RTK inhibitors are warranted. TRIAL REGISTRATION This study was registered prospectively in the NCT Clinical Trials Registry (ClinicalTrials.gov) under NCT01020630 on November 23, 2009 after approval by the leading ethics committee of the Medical Association of Rhineland-Palatinate, Mainz, in coordination with the participating ethics committees (see Additional file 2) on September 16, 2009.
Collapse
Affiliation(s)
- Markus Moehler
- University Medical Center, Johannes Gutenberg-University Mainz, I. Medizinische Klinik und Poliklinik, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Irina Gepfner-Tuma
- University Medical Center, Johannes Gutenberg-University Mainz, I. Medizinische Klinik und Poliklinik, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Annett Maderer
- University Medical Center, Johannes Gutenberg-University Mainz, I. Medizinische Klinik und Poliklinik, Langenbeckstraße 1, 55131 Mainz, Germany
| | | | - Joern Ruessel
- University Hospital Halle (Saale), Halle (Saale), Germany
| | | | | | | | | | | | | | - Frank Kullmann
- Kliniken Nordoberpfalz - Klinikum Weiden, Weiden, Germany
| | | | - Jens T. Siveke
- Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Jens Weusmann
- University Medical Center, Johannes Gutenberg-University Mainz, I. Medizinische Klinik und Poliklinik, Langenbeckstraße 1, 55131 Mainz, Germany
| | | | | | - Melanie Otte
- Praxisgemeinschaft für Onkologie und Urologie, Wilhelmshaven, Germany
| | | | - Jochem Koenig
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) of the University Medical Center Mainz, Mainz, Germany
| | - Peter R. Galle
- University Medical Center, Johannes Gutenberg-University Mainz, I. Medizinische Klinik und Poliklinik, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
14
|
Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumour Biol 2016; 37:10053-66. [PMID: 27193823 DOI: 10.1007/s13277-016-5069-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Progress in cancer biology has led to an increasing discovery of oncogenic alterations of the platelet-derived growth factor receptors (PDGFRs) in cancers. In addition, their overexpression in numerous cancers invariably makes PDGFRs and platelet-derived growth factors (PDGFs) prognostic and treatment markers in some cancers. The oncologic alterations of the PDGFR/PDGF system affect the extracellular, transmembrane and tyrosine kinase domains as well as the juxtamembrane segment of the receptor. The receptor is also involved in fusions with intracellular proteins and receptor tyrosine kinase. These discoveries undoubtedly make the system an attractive oncologic therapeutic target. This review covers elementary biology of PDGFR/PDGF system and its role as a prognostic and treatment marker in cancers. In addition, the multifarious therapeutic targets of PDGFR/PDGF system are discussed. Great potential exists in the role of PDGFR/PDGF system as a prognostic and treatment marker and for further exploration of its multifarious therapeutic targets in safe and efficacious management of cancer treatments.
Collapse
|
15
|
Norton KA, Popel AS, Pandey NB. Heterogeneity of chemokine cell-surface receptor expression in triple-negative breast cancer. Am J Cancer Res 2015; 5:1295-1307. [PMID: 26101698 PMCID: PMC4473311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/24/2015] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Tumor heterogeneity is a well-established concept in cancer research. In this paper, we examine an additional type of tumor cell heterogeneity - tumor cell-surface receptor heterogeneity. METHODS We use flow cytometry to measure the frequency and numbers of cell-surface receptors on triple negative breast cancer cell lines. RESULTS We find two distinct populations of human triple-negative breast cancer cells MDA-MB-231 when they are grown in culture, one with low surface levels of various chemokine receptors and a second with much higher levels. The population with high surface levels of these receptors is increased in the more metastatic MDA-MB-231-luc-d3h2ln cell line. CONCLUSION We hypothesize that this high cell-surface receptor population is involved in metastasis. We find that the receptor high populations can be modulated by tumor conditioned media and IL6 treatment indicating that the tumor microenvironment is important for the maintenance and sizes of these populations.
Collapse
Affiliation(s)
- Kerri-Ann Norton
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins UniversityBaltimore, MD 21205, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins UniversityBaltimore, MD 21205, USA
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins UniversityBaltimore, MD, USA
| | - Niranjan B Pandey
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins UniversityBaltimore, MD 21205, USA
| |
Collapse
|
16
|
Stagg BC, Uehara H, Lambert N, Rai R, Gupta I, Radmall B, Bates T, Ambati BK. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth. Cancers (Basel) 2014; 6:2330-42. [PMID: 25534570 PMCID: PMC4276969 DOI: 10.3390/cancers6042330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/12/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.
Collapse
Affiliation(s)
- Brian C Stagg
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Hironori Uehara
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Nathan Lambert
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Ruju Rai
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Isha Gupta
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Bryce Radmall
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Taylor Bates
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Balamurali K Ambati
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|