1
|
Rossokha Z, Fishchuk L, Lobanova O, Vershyhora V, Medvedieva N, Cheshuk V, Vereshchako R, Podolska S, Gorovenko N. Clinical significance of determining the hypermethylation of the RUNX3 gene promoter and its cohypermethylation with the BRCA1 gene for patients with breast cancer. J Cancer Res Clin Oncol 2023; 149:11919-11927. [PMID: 37420018 DOI: 10.1007/s00432-023-05034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE The aim of this study was to assess the clinical significance of RUNX3 gene hypermethylation in the pathogenetic mechanisms of breast cancer in women, taking into account its cohypermethylation with the BRCA1 gene. METHODS This study included 74 women with newly diagnosed breast cancer (samples from female primary breast carcinomas and paired peripheral blood samples) and 62 women without oncological pathology-control group (peripheral blood samples). Epigenetic testing for hypermethylation status studying was performed in all samples on freshly collected material with the addition of a preservative before the storage and DNA isolation. RESULTS Hypermethylation of the RUNX3 gene promoter region was detected in 71.6% samples of breast cancer tissue and in 35.13% samples of blood. The RUNX3 gene promoter region hypermethylation was significantly higher among breast cancer patients compared to the control group. The frequency of cohypermethylation in RUNX3 and BRCA1 genes was significantly increased in breast cancer tissues compared to the blood of patients. CONCLUSION A significantly increased frequency of the hypermethylation of the RUNX3 gene promoter region and its cohypermethylation with the BRCA1 gene promoter region was found in tumor tissue and blood samples from patients with breast cancer, in contrast to the control group. The identified differences indicate the importance of further investigations of suppressor genes cohypermethylation in patients with breast cancer. Further large-scale studies are needed to find out whether the detected hypermethylation and cohypermethylation of the RUNX3 gene promoter region will have an impact on the treatment strategy in patients.
Collapse
Affiliation(s)
- Zoia Rossokha
- State Institution "Reference-Centre for Molecular Diagnostics of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Liliia Fishchuk
- State Institution "Reference-Centre for Molecular Diagnostics of Public Health Ministry of Ukraine", Kyiv, Ukraine.
| | - Olga Lobanova
- Bogomolets National Medical University, Kyiv, Ukraine
| | - Viktoriia Vershyhora
- State Institution "Reference-Centre for Molecular Diagnostics of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Nataliia Medvedieva
- State Institution "Reference-Centre for Molecular Diagnostics of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
2
|
Liu H, Yan G, Li L, Wang D, Wang Y, Jin S, Jin Z, Li L, Zhu L. RUNX3 mediates keloid fibroblast proliferation through deacetylation of EZH2 by SIRT1. BMC Mol Cell Biol 2022; 23:52. [PMID: 36476345 PMCID: PMC9730640 DOI: 10.1186/s12860-022-00451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Keloid is a benign proliferative fibrous disease featured by excessive fibroblast proliferation after skin injury. However, the mechanism of abnormal cell proliferation is still unclear. Herein, we investigated the mechanism of abnormal proliferation in keloids involving Sirtuin 1(SIRT1)/ Zeste Homolog 2 (EZH2)/ Runt-related transcription factor 3 (RUNX3). METHODS: HE staining was used to observe the histopathological changes. Western blot was performed to detect SIRT1/EZH2/RUNX3 and cell cycle related proteins. RT-PCR detected EZH2 mRNA. After knockdown of EZH2 or overexpression of RUNX3, cell proliferation and cell cycle was analyzed. Immunoprecipitation was used to detect acetylated EZH2. RESULTS The results showed that overexpression of RUNX3 inhibited cell proliferation and arrested cell cycle at G1/S phase, whereas inhibition of SIRT1 promoted cell proliferation and G1/S phase of the cell cycle. Knockdown of EZH2 promoted the expression of RUNX3, inhibited cell proliferation and shortened the progression of G1 to S phase. Simultaneous knockdown of EZH2 and inhibition of SIRT1 reversed these effects. Inhibition of SIRT1 increased its protein stability by increasing EZH2 acetylation, thereby reducing the expression of RUNX3 and promoting cell proliferation. CONCLUSIONS Conclusively, the SIRT1/EZH2/RUNX3 axis may be an important pathway in the regulation of abnormal proliferation in keloids.
Collapse
Affiliation(s)
- Hanye Liu
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Guanghai Yan
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Li Li
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Dandan Wang
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Yu Wang
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Dermatology, Yanbian University Hospital, Yanji, 133002 People’s Republic of China
| | - Shan Jin
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Dermatology, Yanbian University Hospital, Yanji, 133002 People’s Republic of China
| | - Zhehu Jin
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Dermatology, Yanbian University Hospital, Yanji, 133002 People’s Republic of China
| | - Liangchang Li
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Lianhua Zhu
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Dermatology, Yanbian University Hospital, Yanji, 133002 People’s Republic of China
| |
Collapse
|
3
|
Wang D, Guo C, Li Y, Zhou M, Wang H, Liu J, Chen P. Oestrogen up-regulates DNMT1 and leads to the hypermethylation of RUNX3 in the malignant transformation of ovarian endometriosis. Reprod Biomed Online 2021; 44:27-37. [PMID: 34799276 DOI: 10.1016/j.rbmo.2021.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
RESEARCH QUESTION What is the mechanism of hypermethylation of runt-related transcription factor 3 (RUNX3) in the eutopic endometrium of endometriosis as biomarker in the malignant transformation of endometriosis? DESIGN Methylation-specific polymerase chain reaction was used to analyse the methylation status of RUNX3 in endometriosis-associated ovarian cancer (EAOC). Primary eutopic endometrial stromal cells (ESC) were isolated from the uteri of patients with ovarian endometriosis. After RUNX3 knockdown by RNA interference technology or ESC treated with oestradiol, the proliferation and invasion ability were evaluated in ESC by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and transwell assays. RESULTS The frequency of methylation of RUNX3 in neoplastic tissue in the EAOC group was significantly higher than that in the ectopic endometrium of the endometriosis group (P < 0.001), and the frequency of methylation of RUNX3 in the eutopic endometrium of the EAOC group was significantly higher than that in the endometriosis group (P < 0.001). However, there was no significant difference in the eutopic endometrium when compared between the endometriosis group and the control endometrium group (P = 0.233). Silencing RUNX3 promoted the proliferation and invasion of ESC (P < 0.001 and P < 0.001). Following intervention with oestrogen, it was observed that the oestradiol group showed higher levels of RUNX3 methylation (P < 0.001) and DNA methyltransferase 1 (DNMT1) mRNA and protein expression (P < 0.001 and P < 0.001), and lower RUNX3 mRNA and protein expression when compared with the ESC group (P < 0.001 and P < 0.001). CONCLUSION This study demonstrated that hypermethylation of the RUNX3 was related to the malignant transformation of endometriosis and that this process was related to corresponding changes in the eutopic endometrium. Furthermore, the 'oestrogen-DNMT1' signalling pathway may induce the hypermethylation of RUNX3 to promote the malignant transformation of endometriosis.
Collapse
Affiliation(s)
- Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang Liaoning Province 110042, People's Republic of China.
| | - Cuishan Guo
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang Liaoning Province 110004, People's Republic of China
| | - Yan Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang Liaoning Province 110004, People's Republic of China.
| | - Mingyi Zhou
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang Liaoning Province 110042, People's Republic of China
| | - Huimin Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang Liaoning Province 110042, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang Liaoning Province 110042, People's Republic of China
| | - Peng Chen
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang Liaoning Province 110042, People's Republic of China
| |
Collapse
|
4
|
Ouyang Q, Cui Y, Yang S, Wei W, Zhang M, Zeng J, Qu F. lncRNA MT1JP Suppresses Biological Activities of Breast Cancer Cells in vitro and in vivo by Regulating the miRNA-214/RUNX3 Axis. Onco Targets Ther 2020; 13:5033-5046. [PMID: 32581560 PMCID: PMC7280253 DOI: 10.2147/ott.s241503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The purpose of our research was to evaluate MT1JP in breast cancer. Material and Methods For clinical purpose, tissues were collected, and a correlation analysis ofMT1JP and miRNA-214 gene expressions was conducted. Using an in vitro study, MDA-MB-231 and MCF-7 cell lines were used as research objects in our research. Colony, flow cytometry, TUNEL, transwell, adhesion and wound healing assay were used to discuss the biological activities of the cells. In an in vivo study, tumor weight and volume were measured, and cell apoptosis was measured by TUNEL assay. The relative mechanism's proteins were evaluated by Western blotting or immunohistochemistry assay. Results Compared with adjacent tissues, MT1JP and miRNA-214 gene expressions were significantly different (P<0.001, respectively). By in vitro and in vivo studies, the biological activities of the cells were significantly decreased in MDA-MB-231 and MCF-7 cell lines with MT1JP overexpression. The relative mechanism was correlated with miRNA-214/RUNX3 axis. Conclusion The overexpression of MT1JP suppresses the biological activities of breast cancer cells by regulation miRNA-214/RUNX3 axis in vitro and vivo study.
Collapse
Affiliation(s)
- Qianwen Ouyang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 330009, People's Republic of China
| | - Yanru Cui
- Department of Physiology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Shixin Yang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 330009, People's Republic of China
| | - Wensong Wei
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 330009, People's Republic of China
| | - Mingyue Zhang
- Department of Pharmacology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Jie Zeng
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 330009, People's Republic of China
| | - Fei Qu
- Department of Pharmacology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| |
Collapse
|
5
|
Dahn ML, Cruickshank BM, Jackson AJ, Dean C, Holloway RW, Hall SR, Coyle KM, Maillet H, Waisman DM, Goralski KB, Giacomantonio CA, Weaver ICG, Marcato P. Decitabine Response in Breast Cancer Requires Efficient Drug Processing and Is Not Limited by Multidrug Resistance. Mol Cancer Ther 2020; 19:1110-1122. [PMID: 32156786 DOI: 10.1158/1535-7163.mct-19-0745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022]
Abstract
Dysregulation of DNA methylation is an established feature of breast cancers. DNA demethylating therapies like decitabine are proposed for the treatment of triple-negative breast cancers (TNBC) and indicators of response need to be identified. For this purpose, we characterized the effects of decitabine in a panel of 10 breast cancer cell lines and observed a range of sensitivity to decitabine that was not subtype specific. Knockdown of potential key effectors demonstrated the requirement of deoxycytidine kinase (DCK) for decitabine response in breast cancer cells. In treatment-naïve breast tumors, DCK was higher in TNBCs, and DCK levels were sustained or increased post chemotherapy treatment. This suggests that limited DCK levels will not be a barrier to response in patients with TNBC treated with decitabine as a second-line treatment or in a clinical trial. Methylome analysis revealed that genome-wide, region-specific, tumor suppressor gene-specific methylation, and decitabine-induced demethylation did not predict response to decitabine. Gene set enrichment analysis of transcriptome data demonstrated that decitabine induced genes within apoptosis, cell cycle, stress, and immune pathways. Induced genes included those characterized by the viral mimicry response; however, knockdown of key effectors of the pathway did not affect decitabine sensitivity suggesting that breast cancer growth suppression by decitabine is independent of viral mimicry. Finally, taxol-resistant breast cancer cells expressing high levels of multidrug resistance transporter ABCB1 remained sensitive to decitabine, suggesting that the drug could be used as second-line treatment for chemoresistant patients.
Collapse
Affiliation(s)
- Margaret L Dahn
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Ainsleigh J Jackson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cheryl Dean
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan W Holloway
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Steven R Hall
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Krysta M Coyle
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hillary Maillet
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David M Waisman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carman A Giacomantonio
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Halifax, Nova Scotia, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Zheng K, Yu J, Chen Z, Zhou R, Lin C, Zhang Y, Huang Z, Yu L, Zhao L, Wang Q. Ethanol promotes alcohol-related colorectal cancer metastasis via the TGF-β/RUNX3/Snail axis by inducing TGF-β1 upregulation and RUNX3 cytoplasmic mislocalization. EBioMedicine 2019; 50:224-237. [PMID: 31757777 PMCID: PMC6921366 DOI: 10.1016/j.ebiom.2019.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/04/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alcohol intake is a well-known lifestyle risk factor for CRC, and an increasing number of studies have revealed that alcohol intake is also tightly associated with CRC metastasis. However, the effect of alcohol on CRC metastasis and its underlying mechanism remain unclear. METHODS A retrospective cohort study was performed to investigate the characteristics of patients with alcohol-related CRC. The effects of ethanol on the biological behaviours of CRC cells were assessed through in vivo and in vitro assays using the Lieber-DeCarli ethanol liquid diet and ethanol, respectively. The ethanol-mediated signalling pathway and downstream factors were screened through ELISA, western blot, immunofluorescence and co-immunoprecipitation. FINDINGS Most patients with alcohol-related CRC, particularly those with tumour metastasis, were characterized by a notably higher circulating ethanol level and a lower systemic acetaldehyde level. Moreover, CRC cells accumulated in ethanol, but not acetaldehyde, to notably higher levels compared with adjacent normal cells. Alcohol intake significantly promoted CRC metastasis via the ethanol-mediated TGF-β/Smad/Snail axis, and ethanol induced the cytoplasmic mislocalization of RUNX3 and further promoted the aggressiveness of CRC by targeting Snail. Pirfenidone (PFD) significantly eliminated the effects of ethanol on CRC metastasis by specifically blocking TGF-β signalling. INTERPRETATION Alcohol intake plays a vital role in CRC metastasis via the ethanol-mediated TGF-β/RUNX3/Snail axis, and PFD might be a novel therapeutic management strategy for CRC.
Collapse
Affiliation(s)
- Kehong Zheng
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China; Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zetao Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lina Yu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Qian Wang
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China.
| |
Collapse
|
7
|
Liu H, Yan Z, Yin Q, Cao K, Wei Y, Rodriguez-Canales J, Ma D, Wu Y. RUNX3 Epigenetic Inactivation Is Associated With Estrogen Receptor Positive Breast Cancer. J Histochem Cytochem 2018; 66:709-721. [PMID: 30133331 DOI: 10.1369/0022155418797315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of Runt-related transcription factor 3 ( RUNX3) gene in breast cancer remains not fully understood. We studied the correlation between RUNX3 gene promoter methylation and estrogen receptor (ER) expression status in breast cancer. Three breast cancer cell lines and 113 formalin-fixed, paraffin-embedded breast cancer tissue samples were analyzed for RUNX3 expression. Methylation-specific polymerase chain reaction was used to analyze RUNX3 methylation on the samples. Migration and invasion ability were evaluated in MCF7 cell line (RUNX3 methylated) treated with methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) to study the effect of RUNX3 methylation status. Our data showed that the expression of RUNX3 was high in MCF10A but not in MCF7 and SKBR3 cell lines, while the RUNX3 promoter showed hypermethylation in MCF7 but not in MCF10A and SKBR3. In tissues samples, Immunohistochemical (IHC) expression of RUNX3 protein was higher in ER-negative samples than in ER-positive cases, and it was negatively correlated with the methylation status of the RUNX3 gene promoter. Proliferation, migration, and invasion of MCF7 were suppressed when 5-Aza-CdR treated. Also, the hypermethylation status of RUNX3 gene promoter was reversed and RUNX3 expression was increased. In summary, our data suggest that hypermethylation of the RUNX3 gene promoter may play an important role in ER-positive breast tumor progression.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology.,Laboratory of Clinical and Experimental Pathology.,Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Zhantao Yan
- Department of Pathology.,Laboratory of Clinical and Experimental Pathology.,Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Qianqian Yin
- Department of Pathology.,Laboratory of Clinical and Experimental Pathology.,Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Kai Cao
- Department of Pathology.,Laboratory of Clinical and Experimental Pathology.,Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yu Wei
- Department of Pathology.,Laboratory of Clinical and Experimental Pathology.,Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | | | - Dongshen Ma
- Department of Pathology.,Laboratory of Clinical and Experimental Pathology.,Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yongping Wu
- Department of Pathology.,Laboratory of Clinical and Experimental Pathology.,Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
8
|
Bai X, Han G, Liu Y, Jiang H, He Q. MiRNA-20a-5p promotes the growth of triple-negative breast cancer cells through targeting RUNX3. Biomed Pharmacother 2018; 103:1482-1489. [DOI: 10.1016/j.biopha.2018.04.165] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022] Open
|
9
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Saikia S, Rehman AU, Barooah P, Sarmah P, Bhattacharyya M, Deka M, Deka M, Goswami B, Husain SA, Medhi S. Alteration in the expression of MGMT and RUNX3 due to non-CpG promoter methylation and their correlation with different risk factors in esophageal cancer patients. Tumour Biol 2017; 39:1010428317701630. [PMID: 28468586 DOI: 10.1177/1010428317701630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Promoter methylation reflects in the inactivation of different genes like O6-methylguanine-DNA methyltransferase DNA repair gene and runt-related transcription factor 3, a known tumor suppressor gene in various cancers such as esophageal cancer. The promoter methylation was evaluated for O6-methylguanine-DNA methyltransferase and runt-related transcription factor 3 in CpG, CHH, and CHG context (where H is A, T, or C) by next-generation sequencing. The methylation status was correlated with quantitative messenger RNA expression. In addition, messenger RNA expression was correlated with different risk factors like tobacco, alcohol, betel nut consumption, and smoking habit. CpG methylation of O6-methylguanine-DNA methyltransferase promoter had a positive association in the development of esophageal cancer (p < 0.05), whereas runt-related transcription factor 3 promoter methylation showed no significant association (p = 1.0) to develop esophageal cancer. However, the non-CpG methylation, CHH, and CHG were significantly correlated with O6-methylguanine-DNA methyltransferase (p < 0.05) and runt-related transcription factor 3 (p < 0.05) promoters in the development of esophageal cancer. The number of cytosine converted to thymine (C→T) in O6-methylguanine-DNA methyltransferase promoter showed a significant correlation between cases and controls (p < 0.05), but in runt-related transcription factor 3 no such significant correlation was observed. Besides, messenger RNA expression was found to be significantly correlated with promoter hypermethylation of O6-methylguanine-DNA methyltransferase and runt-related transcription factor 3 in the context of CHG and CHH (p < 0.05). The CpG hypermethylation in O6-methylguanine-DNA methyltransferase showed positive (p < 0.05) association, whereas in runt-related transcription factor 3, it showed contrasting negative association (p = 0.23) with their messenger RNA expression. Tobacco, betel nut consumption, and smoking habits were associated with altered messenger RNA expression of O6-methylguanine-DNA methyltransferase (p < 0.05) and betel nut consumption and smoking habits were associated with runt-related transcription factor 3 (p < 0.05). There was no significant association between messenger RNA expression of O6-methylguanine-DNA methyltransferase and runt-related transcription factor 3 with alcohol consumption (p = 0.32 and p = 0.15). In conclusion, our results suggest that an aberrant messenger RNA expression may be the outcome of CpG, CHG, and CHH methylation in O6-methylguanine-DNA methyltransferase, whereas outcome of CHG and CHH methylation in runt-related transcription factor 3 promoters along with risk factors such as consumption of tobacco, betel nut, and smoking habits in esophageal cancer from Northeast India.
Collapse
Affiliation(s)
- Snigdha Saikia
- 1 Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, India.,2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | - Asad Ur Rehman
- 3 Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| | - Prajjalendra Barooah
- 1 Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, India.,2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | - Preeti Sarmah
- 2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | - Mallika Bhattacharyya
- 2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | - Muktanjalee Deka
- 4 Department of Pathology, Gauhati Medical College and Hospital, Guwahati, India
| | - Manab Deka
- 1 Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, India
| | - Bhabadev Goswami
- 2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | | | - Subhash Medhi
- 1 Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, India
| |
Collapse
|
11
|
Li H, Li D, Meng N. Effects of RUNX3 mediated Notch signaling pathway on biological characteristics of colorectal cancer cells. Int J Oncol 2017; 50:2059-2068. [PMID: 28498402 DOI: 10.3892/ijo.2017.3988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/09/2017] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effects of runt-related transcription factor 3 (RUNX3) mediated Notch pathway on the biological behavior of colorectal cancer (CRC) SW260 cells. CRC tissues and para-carcinoma tissues were collected from 182 CRC patients who had undergone surgical treatment between January 2008 and December 2010. Immunohistochemical staining with streptavidin-peroxidase (SP) was used to detect RUNX3, Notch1 and Jagged 1 expression levels. CRC SW260 cells were divided into the following groups: Control group, si-NC group, si-RUNX3 group, DAPT group, si-RUNX3+DAPT group, and si-NC+DAPT group. Expression levels of RUNX3, and Notch signaling related genes were measured by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and western blotting in vitro. Besides, MTT, soft agar colony formation, Annexin V-FITC/PI double staining and Transwell were performed to analyze the effects of RUNX3 on cell growth and metastasis. Lower positive expression rate of RUNX3 and higher positive expression rate of Notch1 and Jagged 1 were observed in CRC tissues than those in normal adjacent tissues with a negative correlation, and the expression levels were associated with the differentiation degree, TNM staging, lymph node metastasis and tumor invasion depth (all P<0.05). RUNX3 expression was reduced in si-RUNX3 and si-RUNX3+DAPT group but the expression levels of Notch signaling related genes were markedly increased in si-RUNX3 group or decreased in DAPT and si-NC+DAPT group, as compared with those in the control group (all P<0.05). In addition, the proliferation, colony formation, migration and invasion abilities of SW260 cells were enhanced in si-RUNX3 group but were restricted in DAPT and si-NC+DAPT group, which was contrary to cell apoptosis (all P<0.05). RUNX3 contributes to attenuate the proliferation and metastasis of CRC cells, and promotes cell apoptosis through inhibition of Notch signaling pathway.
Collapse
Affiliation(s)
- Hang Li
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Dan Li
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Ning Meng
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|