1
|
Lyu H, Bao S, Cai L, Wang M, Liu Y, Sun Y, Hu X. The role and research progress of serine metabolism in tumor cells. Front Oncol 2025; 15:1509662. [PMID: 40265021 PMCID: PMC12011608 DOI: 10.3389/fonc.2025.1509662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Serine is crucial for tumor initiation, progression, and adaptive immunity. Metabolic pathways for serine synthesis, acquisition, and utilization in tumors and tumor-associated cells are influenced by various physiological factors and the tumor microenvironment, leading to metabolic reprogramming and amplification. Excessive serine metabolism promotes abnormal macromolecule biosynthesis, mitochondrial dysfunction, and epigenetic modifications, driving malignant transformation, proliferation, metastasis, immune suppression, and drug resistance in tumor cells. Restricting dietary serine intake or reducing the expression of serine synthetic enzymes can effectively slow tumor growth and extend patient survival. Consequently, targeting serine metabolism has emerged as a novel and promising research focus in cancer research. This paper reviews serine metabolic pathways and their roles in tumor development. It summarizes the influencing factors of serine metabolism. The article explores the significance of serine synthesis and metabolizing enzymes, along with related biomarkers, in tumor diagnosis and treatment, providing new insights for developing targeted therapies that modulate serine metabolism in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Sun
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoyang Hu
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Katinas JM, Nayeen MJ, Schneider M, Shah K, Fifer AN, Klapper LM, Sharma A, Thalluri K, Van Nieuwenhze MS, Hou Z, Gangjee A, Matherly LH, Dann CE. Structural Characterization of 5-Substituted Pyrrolo[3,2- d]pyrimidine Antifolate Inhibitors in Complex with Human Serine Hydroxymethyl Transferase 2. Biochemistry 2024:10.1021/acs.biochem.3c00613. [PMID: 38324671 PMCID: PMC11303599 DOI: 10.1021/acs.biochem.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We previously discovered first-in-class multitargeted 5-substituted pyrrolo[3,2-d]pyrimidine antifolates that inhibit serine hydroxymethyltransferase 2 (SHMT2), resulting in potent in vitro and in vivo antitumor efficacies. In this report, we present crystallographic structures for SHMT2 in complex with an expanded series of pyrrolo[3,2-d]pyrimidine compounds with variations in bridge length (3-5 carbons) and the side chain aromatic ring (phenyl, thiophene, fluorine-substituted phenyl, and thiophene). We evaluated structural features of the inhibitor-SHMT2 complexes and correlations to inhibitor potencies (i.e., Kis), highlighting conserved polar contacts and identifying 5-carbon bridge lengths as key determinants of inhibitor potency. Based on the analysis of SHMT2 structural data, we investigated the impact of mutation of Tyr105 in SHMT2 kinetic analysis and studies with HCT116 cells with inducible expression of wild-type and Y105F SHMT2. Increased enzyme inhibition potency by the pyrrolo[3,2-d]pyrimidine inhibitors with Phe105 SHMT2 accompanied an increased growth inhibition of Phe105-expressing HCT116 cells compared to wild-type SHMT2. Pyrrolo[3,2-d]pyrimidine inhibitors with polyglutamate modifications were evaluated for potencies against SHMT2. We determined the crystal structures of SHMT2 in complex with our lead antifolate AGF347 lacking L-glutamate, or as a diglutamate and triglutamate, for comparison with parent AGF347. These data provide the first insights into the influence of antifolate polyglutamylation on SHMT2:inhibitor interactions. Collectively, our results provide new insights into the critical structural determinants of SHMT2 binding by pyrrolo[3,2-d]pyrimidine inhibitors as novel antitumor agents, as well as the first structural characterization of human SHMT2 in complex with polyglutamates of an SHMT2-targeted antifolate.
Collapse
Affiliation(s)
- Jade M Katinas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Md Junayed Nayeen
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mathew Schneider
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Khushbu Shah
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Alexandra N Fifer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lily M Klapper
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Abhishekh Sharma
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Kishore Thalluri
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Zhanjun Hou
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E Dann
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Nayeen MJ, Katinas JM, Magdum T, Shah K, Wong JE, O’Connor CE, Fifer AN, Wallace-Povirk A, Hou Z, Matherly LH, Dann CE, Gangjee A. Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria. J Med Chem 2023; 66:11294-11323. [PMID: 37582241 PMCID: PMC10461232 DOI: 10.1021/acs.jmedchem.3c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and β afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.
Collapse
Affiliation(s)
- Md. Junayed Nayeen
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Tejashree Magdum
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Khushbu Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer E. Wong
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Carrie E. O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Alexandra N. Fifer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
4
|
The Relationship between Histological Composition and Metabolic Profile in Breast Tumors and Peritumoral Tissue Determined with 1H HR-MAS NMR Spectroscopy. Cancers (Basel) 2023; 15:cancers15041283. [PMID: 36831625 PMCID: PMC9954108 DOI: 10.3390/cancers15041283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Breast tumors constitute the complex entities composed of cancer cells and stromal components. The compositional heterogeneity should be taken into account in bulk tissue metabolomics studies. The aim of this work was to find the relation between the histological content and 1H HR-MAS (high-resolution magic angle spinning nuclear magnetic resonance) metabolic profiles of the tissue samples excised from the breast tumors and the peritumoral areas in 39 patients diagnosed with invasive breast carcinoma. The total number of the histologically verified specimens was 140. The classification accuracy of the OPLS-DA (Orthogonal Partial Least Squares Discriminant Analysis) model differentiating the cancerous from non-involved samples was 87% (sensitivity of 72.2%, specificity of 92.3%). The metabolic contents of the epithelial and stromal compartments were determined from a linear regression analysis of the levels of the evaluated compounds against the cancer cell fraction in 39 samples composed mainly of cancer cells and intratumoral fibrosis. The correlation coefficients between the levels of several metabolites and a tumor purity were found to be dependent on the tumor grade (I vs II/III). The comparison of the levels of the metabolites in the intratumoral fibrosis (obtained from the extrapolation of the regression lines to 0% cancer content) to those levels in the fibrous connective tissue beyond the tumors revealed a profound metabolic reprogramming in the former tissue. The joint analysis of the metabolic profiles of the stromal and epithelial compartments in the breast tumors contributes to the increased understanding of breast cancer biology.
Collapse
|
5
|
Li C, Tao Y, Chen Y, Wu Y, He Y, Yin S, Xu S, Yu Y. Development of a metabolism-related signature for predicting prognosis, immune infiltration and immunotherapy response in breast cancer. Am J Cancer Res 2022; 12:5440-5461. [PMID: 36628282 PMCID: PMC9827085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
Breast cancer (BRCA) is the most commonly diagnosed cancer and among the top causes of cancer deaths globally. The abnormality of the metabolic process is an important characteristic that distinguishes cancer cells from normal cells. Currently, there are few metabolic molecular models to evaluate the prognosis and treatment response of BRCA patients. By analyzing RNA-seq data of BRCA samples from public databases via bioinformatic approaches, we developed a prognostic signature based on seven metabolic genes (PLA2G2D, GNPNAT1, QPRT, SHMT2, PAICS, NT5E and PLPP2). Low-risk patients showed better overall survival in all five cohorts (TCGA cohort, two external validation cohorts and two internal validation cohorts). There was a higher proportion of tumor-infiltrating CD8+ T cells, CD4+ memory resting T cells, gamma delta T cells and resting dendritic cells and a lower proportion of M0 and M2 macrophages in the low-risk group. Low-risk patients also showed higher ESTIMATE scores, higher immune function scores, higher Immunophenoscores (IPS) and checkpoint expression, lower stemness scores, lower TIDE (Tumor Immune Dysfunction and Exclusion) scores and IC50 values for several chemotherapeutic agents, suggesting that low-risk patients could respond more favorably to immunotherapy and chemotherapy. Two real-world patient cohorts receiving anti-PD-1 therapy were applied for validating the predictive results. Molecular subtypes identified based on these seven genes also showed different immune characteristics. Immunohistochemical data obtained from the human protein atlas database demonstrated the protein expression of signature genes. This research may contribute to the identification of metabolic targets for BRCA and the optimization of risk stratification and personalized treatment for BRCA patients.
Collapse
Affiliation(s)
- Chunzhen Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yijie Tao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yining Chen
- Faculty of Health Sciences and Engineering, University of Shanghai for Science and TechnologyShanghai 200433, China
| | - Yunyang Wu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yixian He
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Shulei Yin
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| |
Collapse
|
6
|
Shin E, Koo JS. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol 2021; 9:728759. [PMID: 34552932 PMCID: PMC8450384 DOI: 10.3389/fcell.2021.728759] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and is associated with high mortality rates despite the continuously advancing treatment strategies. Glucose is essential for cancer cell metabolism owing to the Warburg effect. During the process of glucose metabolism, various glycolytic metabolites, such as serine and glycine metabolites, are produced and other metabolic pathways, such as the pentose phosphate pathway (PPP), are associated with the process. Glucose is transported into the cell by glucose transporters, such as GLUT. Breast cancer shows high expressions of glucose metabolism-related enzymes and GLUT, which are also related to breast cancer prognosis. Triple negative breast cancer (TNBC), which is a high-grade breast cancer, is especially dependent on glucose metabolism. Breast cancer also harbors various stromal cells such as cancer-associated fibroblasts and immune cells as tumor microenvironment, and there exists a metabolic interaction between these stromal cells and breast cancer cells as explained by the reverse Warburg effect. Breast cancer is heterogeneous, and, consequently, its metabolic status is also diverse, which is especially affected by the molecular subtype, progression stage, and metastatic site. In this review, we will focus on glucose metabolism and glucose transporters in breast cancer, and we will additionally discuss their potential applications as cancer imaging tracers and treatment targets.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Zeng Y, Zhang J, Xu M, Chen F, Zi R, Yue J, Zhang Y, Chen N, Chin YE. Roles of Mitochondrial Serine Hydroxymethyltransferase 2 (SHMT2) in Human Carcinogenesis. J Cancer 2021; 12:5888-5894. [PMID: 34476002 PMCID: PMC8408114 DOI: 10.7150/jca.60170] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
In the last few years, cellular metabolic reprogramming has been acknowledged as a hallmark of human cancer and evaluated for its crucial role in supporting the proliferation and survival of human cancer cells. In a variety of human tumours, including hepatocellular carcinoma (HCC), breast cancer and non-small-cell lung cancer (NSCLC), a large amount of carbon is reused in serine/glycine biosynthesis, accompanied by higher expression of the key glycine synthetic enzyme mitochondrial serine hydroxymethyltransferase 2 (SHMT2). This enzyme can convert serine into glycine and a tetrahydrofolate-bound one-carbon unit, ultimately supporting thymidine synthesis and purine synthesis and promoting tumour growth. In tumour samples, elevated expression of SHMT2 was found to be associated with poor prognosis. In this review, the pivotal roles of SHMT2 in human carcinogenesis are described, highlighting the underlying regulatory mechanisms through promotion of tumour progression. In conclusion, SHMT2 may serve as a prognostic marker and a target for anticancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.,Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jie Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengmeng Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Fuxian Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ruidong Zi
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jicheng Yue
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanan Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
8
|
Xie M, Pei DS. Serine hydroxymethyltransferase 2: a novel target for human cancer therapy. Invest New Drugs 2021; 39:1671-1681. [PMID: 34215932 DOI: 10.1007/s10637-021-01144-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Serine and glycine are the primary sources of one-carbon units that are vital for cell proliferation. Their abnormal metabolism is known to be associated with cancer progression. As the key enzyme of serine metabolism, Serine Hydroxymethyltransferase 2 (SHMT2) has been a research hotspot in recent years. SHMT2 is a PLP-dependent tetrameric enzyme that catalyzes the reversible transition from serine to glycine, thus promoting the production of one-carbon units that are indispensable for cell growth and regulation of the redox and epigenetic states of cells. Under a hypoxic environment, SHMT2 can be upregulated and could promote the generation of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione for maintaining the redox balance. Accumulating evidence confirmed that SHMT2 facilitates cell proliferation and tumor growth and is tightly associated with poor prognosis. In this review, we present insights into the function and research development of SHMT2 and summarize the possible molecular mechanisms of SHMT2 in promoting tumor growth, in the hope that it could provide clues to more effective clinical treatment of cancer.
Collapse
Affiliation(s)
- Min Xie
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
9
|
Geeraerts SL, Heylen E, De Keersmaecker K, Kampen KR. The ins and outs of serine and glycine metabolism in cancer. Nat Metab 2021; 3:131-141. [PMID: 33510397 DOI: 10.1038/s42255-020-00329-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
Cancer cells reprogramme their metabolism to support unrestrained proliferation and survival in nutrient-poor conditions. Whereas non-transformed cells often have lower demands for serine and glycine, several cancer subtypes hyperactivate intracellular serine and glycine synthesis and become addicted to de novo production. Copy-number amplifications of serine- and glycine-synthesis genes and genetic alterations in common oncogenes and tumour-suppressor genes enhance serine and glycine synthesis, resulting in high production and secretion of these oncogenesis-supportive metabolites. In this Review, we discuss the contribution of serine and glycine synthesis to cancer progression. By relying on de novo synthesis pathways, cancer cells are able to enhance macromolecule synthesis, neutralize high levels of oxidative stress and regulate methylation and tRNA formylation. Furthermore, we discuss the immunosuppressive potential of serine and glycine, and the essentiality of both amino acids to promoting survival of non-transformed neighbouring cells. Finally, we point to the emerging data proposing moonlighting functions of serine- and glycine-synthesis enzymes and examine promising small molecules targeting serine and glycine synthesis.
Collapse
Affiliation(s)
- Shauni L Geeraerts
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Elien Heylen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| | - Kim R Kampen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
- Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Geeraerts SL, Kampen KR, Rinaldi G, Gupta P, Planque M, Louros N, Heylen E, De Cremer K, De Brucker K, Vereecke S, Verbelen B, Vermeersch P, Schymkowitz J, Rousseau F, Cassiman D, Fendt SM, Voet A, Cammue BPA, Thevissen K, De Keersmaecker K. Repurposing the Antidepressant Sertraline as SHMT Inhibitor to Suppress Serine/Glycine Synthesis-Addicted Breast Tumor Growth. Mol Cancer Ther 2021; 20:50-63. [PMID: 33203732 PMCID: PMC7611204 DOI: 10.1158/1535-7163.mct-20-0480] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Metabolic rewiring is a hallmark of cancer that supports tumor growth, survival, and chemotherapy resistance. Although normal cells often rely on extracellular serine and glycine supply, a significant subset of cancers becomes addicted to intracellular serine/glycine synthesis, offering an attractive drug target. Previously developed inhibitors of serine/glycine synthesis enzymes did not reach clinical trials due to unfavorable pharmacokinetic profiles, implying that further efforts to identify clinically applicable drugs targeting this pathway are required. In this study, we aimed to develop therapies that can rapidly enter the clinical practice by focusing on drug repurposing, as their safety and cost-effectiveness have been optimized before. Using a yeast model system, we repurposed two compounds, sertraline and thimerosal, for their selective toxicity against serine/glycine synthesis-addicted breast cancer and T-cell acute lymphoblastic leukemia cell lines. Isotope tracer metabolomics, computational docking, enzymatic assays, and drug-target interaction studies revealed that sertraline and thimerosal inhibit serine/glycine synthesis enzymes serine hydroxymethyltransferase and phosphoglycerate dehydrogenase, respectively. In addition, we demonstrated that sertraline's antiproliferative activity was further aggravated by mitochondrial inhibitors, such as the antimalarial artemether, by causing G1-S cell-cycle arrest. Most notably, this combination also resulted in serine-selective antitumor activity in breast cancer mouse xenografts. Collectively, this study provides molecular insights into the repurposed mode-of-action of the antidepressant sertraline and allows to delineate a hitherto unidentified group of cancers being particularly sensitive to treatment with sertraline. Furthermore, we highlight the simultaneous inhibition of serine/glycine synthesis and mitochondrial metabolism as a novel treatment strategy for serine/glycine synthesis-addicted cancers.
Collapse
Affiliation(s)
- Shauni Lien Geeraerts
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium
| | - Kim Rosalie Kampen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Purvi Gupta
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Elien Heylen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium
| | - Katrijn De Brucker
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium
| | - Stijn Vereecke
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Benno Verbelen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Pieter Vermeersch
- Department of Cardiovascular Sciences, University Hospitals Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Cassiman
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Arnout Voet
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium.
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
11
|
Qi C, Qin X, Zhou Z, Wang Y, Yang Q, Liao T. Circ_0072995 Promotes Cell Carcinogenesis via Up-Regulating miR-149-5p-Mediated SHMT2 in Breast Cancer. Cancer Manag Res 2020; 12:11169-11181. [PMID: 33173349 PMCID: PMC7648565 DOI: 10.2147/cmar.s272274] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Circ_0072995 is a novel identified circRNA and has been identified to involve in the metastasis of breast cancer. However, the detailed function and mechanism of circ_0072995 in the biological property of breast cancer cell remain vague. Materials and Methods The expression of circ_0072995, microRNA (miR)-149-5p and serine hydroxymethyltransferase 2 (SHMT2) mRNA was detected using quantitative real-time polymerase chain reaction. Western blot was used to detect the protein levels of SHMT2, hexokinase-2 (HK-2), lactate dehydrogenase a chain (LDHA), and glucose transporter 1 (GLUT1). Cell proliferation, apoptosis, migration, and invasion were analyzed using cell counting kit-8 assay, flow cytometry, caspase-3 activity analysis, cell adhesion assay and transwell assay, respectively. Glucose metabolism was calculated by measuring glucose uptake, lactate production, and adenosine triphosphate (ATP) levels. The interaction between miR-149-5p and circ_0072995 or SHMT2 was confirmed by dual-luciferase reporter assay. In vivo tumorigenesis was performed using the murine xenograft model. Results Circ_0072995 and SHMT2 were up-regulated in breast cancer tissues and cell lines, and knockdown of circ_0072995 or SHMT2 suppressed cell malignant properties and anaerobic glycolysis; importantly, SHMT2 overexpression attenuated the anticancer action of circ_0072995 knockdown in breast cancer. Besides, we also found circ_0072995 directly targeted miR-149-5p, thereby regulating its downstream gene SHMT2 by competitively binding to miR-149-5p. Additionally, xenograft analysis showed circ_0072995 silencing suppressed tumor growth via regulating SHMT2 and miR-149-5p in vivo. Conclusion This study demonstrated that circ_0072995 promoted cell malignant phenotypes and anaerobic glycolysis in breast cancer via up-regulating SHMT2 through sponging miR-149-5p, indicating a promising molecular target for breast cancer treatment.
Collapse
Affiliation(s)
- Chuang Qi
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, People's Republic of China
| | - Xianxiong Qin
- Department of Breast Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, People's Republic of China
| | - Zuozhi Zhou
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, People's Republic of China
| | - Yan Wang
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, People's Republic of China
| | - Qin Yang
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, People's Republic of China
| | - Tianzhi Liao
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, People's Republic of China
| |
Collapse
|
12
|
Dekhne AS, Hou Z, Gangjee A, Matherly LH. Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer. Mol Cancer Ther 2020; 19:2245-2255. [PMID: 32879053 DOI: 10.1158/1535-7163.mct-20-0423] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
13
|
Zafar A, Jabbar M, Manzoor Y, Gulzar H, Hassan SG, Nazir MA, Ain-ul-Haq, Mustafa G, Sahar R, Masood A, Iqbal A, Hussain M, Hasan M. Quantifying Serum Derived Differential Expressed and Low Molecular Weight Protein in Breast Cancer Patients. Protein Pept Lett 2020; 27:658-673. [DOI: 10.2174/0929866527666200110155609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Background:Searching the biomarker from complex heterogeneous material for early detection of disease is a challenging task in the field of biomedical sciences.Objective:The study has been arranged to explore the proteomics serum derived profiling of the differential expressed and low molecular weight protein in breast cancer patient.Methods:Quantitative proteome was analyzed using the Nano LC/Mass and Bioinformatics tool.Results:This quantification yields 239 total protein constituting 29% of differentially expressed protein, with 82% downregulated differential protein and 18% up-regulated differential protein. While 12% of total protein were found to be cancer inducing proteins. Gene Ontology (GO) described that the altered proteins with 0-60 kDa mass in nucleus, cytosol, ER, and mitochondria were abundant that chiefly controlled the RNA, DNA, ATP, Ca ion and receptor bindings.Conclusion:The study demonstrate that the organelle specific, low molecular weighted proteins are significantly important biomarker. That act as strong agents in the prognosis and diagnosis of breast cancer at early stage.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryum Jabbar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasmeen Manzoor
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Gulzar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shahzad Gul Hassan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Muniba Anum Nazir
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ain-ul-Haq
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghazala Mustafa
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Romana Sahar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aqeel Masood
- Bahawal Victoria Hospital, Bahawalpur (BVH), Pakistan
| | | | - Mulazim Hussain
- Department of Pediatrician, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Murtaza Hasan
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
14
|
Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165841. [PMID: 32439610 DOI: 10.1016/j.bbadis.2020.165841] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Metabolic pathways leading to the synthesis, uptake, and usage of the nonessential amino acid serine are frequently amplified in cancer. Serine encounters diverse fates in cancer cells, including being charged onto tRNAs for protein synthesis, providing head groups for sphingolipid and phospholipid synthesis, and serving as a precursor for cellular glycine and one-carbon units, which are necessary for nucleotide synthesis and methionine cycle reloading. This review will focus on the participation of serine and glycine in the mitochondrial one-carbon (SGOC) pathway during cancer progression, with an emphasis on the genetic and epigenetic determinants that drive SGOC gene expression. We will discuss recently elucidated roles for SGOC metabolism in nucleotide synthesis, redox balance, mitochondrial function, and epigenetic modifications. Finally, therapeutic considerations for targeting SGOC metabolism in the clinic will be discussed.
Collapse
Affiliation(s)
- Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Li X, Zhang K, Hu Y, Luo N. ERRα activates SHMT2 transcription to enhance the resistance of breast cancer to lapatinib via modulating the mitochondrial metabolic adaption. Biosci Rep 2020; 40:BSR20192465. [PMID: 31894856 PMCID: PMC6970080 DOI: 10.1042/bsr20192465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Lapatinib, a tyrosine kinase inhibitor, can initially benefit the patients with breast tumors but fails in later treatment due to the inevitable development of drug resistance. Estrogen-related receptor α (ERRα) modulates the metabolic adaptations in lapatinib-resistant cancer cells; however, the underlying mechanism remains unclear. ERRα was predicted to bind to the serine hydroxymethyltransferase 2 (SHMT2) transcription initiation site in the ER- and HER2-positive cell line BT-474; thus, we hypothesize that ERRα might modulate the resistance of breast cancer to lapatinib via regulating SHMT2. In the present study, we revealed that 2.5 and 5 µM lapatinib treatment could significantly decrease the expression and protein levels of ERRα and SHMT2; ERRα and SHMT2 expression and protein levels were significantly up-regulated in breast cancer cells, in particularly in breast cancer cells with resistance to lapatinib. ERRα knockdown restored the inhibitory effects of lapatinib on the BT-474R cell viability and migration; in the meantime, ERRα knockdown rescued the production of reactive oxygen species (ROS) whereas decreased the ratio of glutathione (GSH)/oxidized glutathione (GSSG) upon lapatinib treatment. Via targeting SHMT2 promoter region, ERRα activated the transcription of SHMT2. The effects of ERRα knockdown on BT-474R cells under lapatinib treatment could be significantly reversed by SHMT2 overexpression. In conclusion, ERRα knockdown suppresses the detoxification and the mitochondrial metabolic adaption in breast cancer resistant to lapatinib; ERRα activates SHMT2 transcription via targeting its promoter region, therefore enhancing breast cancer resistance to lapatinib.
Collapse
Affiliation(s)
- Xin Li
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kejing Zhang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Hu
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Na Luo
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
16
|
Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNγ axis. Oncogene 2020; 39:2509-2522. [PMID: 31988456 DOI: 10.1038/s41388-020-1160-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 12/26/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
An increasing number of enzymes involved in serine biosynthesis have been identified and correlated with malignant evolution in various types of cancer. Here we showed that the overexpression of phosphoserine aminotransferase 1 (PSAT1) is widely found in lung cancer tissues compared with nontumor tissues and predicts a poorer prognosis in patients with lung adenocarcinoma. PSAT1 expression was examined in a tissue microarray by immunohistochemistry. The data show that the knockdown of PSAT1 dramatically inhibits the in vitro and in vivo metastatic potential of highly metastatic lung cancer cells; conversely, the enforced expression of exogenous PSAT1 predominantly enhances the metastatic potential of lung cancer cells. Importantly, manipulating PSAT1 expression regulates the in vivo tumor metastatic abilities in lung cancer cells. Adjusting the glucose and glutamine concentrations did not alter the PSAT1-driven cell invasion properties, indicating that this process might not rely on the activation of its enzymatic function. RNA microarray analysis of transcriptional profiling from PSAT1 alternation in CL1-5 and CL1-0 cells demonstrated that interferon regulatory factor 1 (IRF1) acts as a crucial regulator of PSAT1-induced gene expression upon metastatic progression. Decreasing the IRF1-IFIH1 axis compromised the PSAT1-prompted transcriptional reprogramming in cancer cells. Our results identify PSAT1 as a key regulator by a novel PSAT1/IRF1 axis in lung cancer progression, which may serve as a potential biomarker and therapeutic target for the treatment of lung cancer patients.
Collapse
|
17
|
Curcumin and its Potential for Systemic Targeting of Inflamm-Aging and Metabolic Reprogramming in Cancer. Int J Mol Sci 2019; 20:ijms20051180. [PMID: 30857125 PMCID: PMC6429141 DOI: 10.3390/ijms20051180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Pleiotropic effects of curcumin have been the subject of intensive research. The interest in this molecule for preventive medicine may further increase because of its potential to modulate inflamm-aging. Although direct data related to its effect on inflamm-aging does not exist, there is a strong possibility that its well-known anti-inflammatory properties may be relevant to this phenomenon. Curcumin's binding to various proteins, which was shown to be dependent on cellular oxidative status, is yet another feature for exploration in depth. Finally, the binding of curcumin to various metabolic enzymes is crucial to curcumin's interference with powerful metabolic machinery, and can also be crucial for metabolic reprogramming of cancer cells. This review offers a synthesis and functional links that may better explain older data, some observational, in light of the most recent findings on curcumin. Our focus is on its modes of action that have the potential to alleviate specific morbidities of the 21st century.
Collapse
|
18
|
One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 2017; 8:23955-23977. [PMID: 28177894 PMCID: PMC5410357 DOI: 10.18632/oncotarget.15053] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer-related metabolism has recently emerged as one of the “hallmarks of cancer”. It has several important features, including altered metabolism of glucose and glutamine. Importantly, altered cancer metabolism connects different biochemical pathways into the one fine-tuned metabolic network, which stimulates high proliferation rates and plasticity to malignant cells. Among the keystones of cancer metabolism are one-carbon metabolism and nucleotide biosynthesis, which provide building blocks to anabolic reactions. Accordingly, the importance of these metabolic pathways for anticancer therapy has well been documented by more than fifty years of clinical use of specific metabolic inhibitors – methotrexate and nucleotides analogs. In this review we discuss one-carbon metabolism and nucleotide biosynthesis as common and specific features of many, if not all, tumors. The key enzymes involved in these pathways also represent promising anti-cancer therapeutic targets. We review different aspects of these metabolic pathways including their biochemistry, compartmentalization and expression of the key enzymes and their regulation at different levels. We also discuss the effects of known inhibitors of these pathways as well as the recent data on other enzymes of the same pathways as perspective pharmacological targets.
Collapse
|
19
|
Girotra S, Yeghiazaryan K, Golubnitschaja O. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics. Per Med 2016; 13:469-484. [PMID: 29767597 DOI: 10.2217/pme-2016-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.
Collapse
|