1
|
Yu Y, Zheng Z, Gao X, Gu Y, Zhang M, Hu B, Gao Q, Li Z, Chen Y, Li Q, Shen F, Zhu M, Hang D, Zhan Q, Wang L, Shen C, Lu X, Gu D, Ma H, Shen H, Jin G, Yan C. Plasma Metabolomic Signatures of H. pylori Infection, Alcohol Drinking, Smoking, and Risk of Gastric Cancer. Mol Carcinog 2025; 64:463-474. [PMID: 39630052 DOI: 10.1002/mc.23851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 02/13/2025]
Abstract
Circulating metabolic profiles have shown promising potential in identifying high-risk populations for various diseases, while metabolic perturbation plays an important role in gastric cancer. In this study, we conducted a cross-sectional study with 1800 participants to identify plasma metabolite signatures associated with environmental risk factors of gastric cancer. Subsequently, we evaluated the association between these signatures and gastric cancer risk in a nested case-control study involving 326 gastric cancer cases and 326 matched cancer-free controls. We conducted mediation analyses to elucidate the potential impact of metabolites on the association between environmental factors and gastric cancer. In the cross-sectional study, we identified 46 metabolites associated with Helicobacter pylori (H. pylori) infection, 365 with alcohol drinking, and 154 with smoking status. In the nested case-control study, 60 plasma metabolites, comprising 30 lipids, 15 amino acids, 6 xenobiotics, 3 nucleotides, 2 cofactors and vitamins, 2 carbohydrate, 1 energy, and 1 peptide, were associated with gastric cancer risk. A one-standard deviation increment in the H. pylori infection-related metabolomic signature was associated with an increased risk of gastric cancer (OR = 1.66, 95% CI: 1.32-2.09, p = 1.62 × 10-5). Furthermore, the effect of H. pylori infection on gastric cancer was partially mediated by the metabolomic signature (23.28%, 95% CI: 0.09-0.56) or adenine (13.69%, 95% CI: 0.05-0.31). In conclusion, we have identified metabolites associated with environmental factors and demonstrated the association between the H. pylori infection signature and gastric cancer risk. The findings provide novel insights into characterizing high-risk population for gastric cancer.
Collapse
Affiliation(s)
- Yuhui Yu
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhonghua Zheng
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinxiang Gao
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanliang Gu
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Beiping Hu
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qian Gao
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhe Li
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Shen
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Chronic Non-Communicable Disease Control, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Dong Hang
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Zhan
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Lu Wang
- Department of Chronic Non-Communicable Disease Control, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Chong Shen
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongxia Ma
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Guangfu Jin
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Chronic Non-Communicable Disease Control, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Caiwang Yan
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
2
|
Chao Y, Jin X, Guo R, Zhang H, Cui X, Qi Y. Characterization of Immune-Related circRNAs and mRNAs in Human Chronic Atrophic Gastritis. J Inflamm Res 2024; 17:8487-8500. [PMID: 39534060 PMCID: PMC11556230 DOI: 10.2147/jir.s472213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Chronic atrophic gastritis (CAG) is a severe condition characterized by inflammation and loss of appropriate mucosal glands in the stomach. The underlying mechanisms of CAG development remain unclear. Exploring immune-related circular RNAs (circRNAs) could provide insights for potential diagnostic and therapeutic strategies. Methods Samples from 40 patients with CAG and non-CAG (CNAG) underwent high-throughput sequencing, and EdgeR analysis identified differentially expressed circRNAs and mRNAs. Gene Ontology (GO) analysis elucidated biological functions, while Immune Cell Abundance Identifier (ImmuCellAI) estimated immune cell abundance. Flow cytometry analyzed immune cell infiltration. Weighted gene co-expression network analysis (WGCNA) identified hub genes related to the immune response in CAG. CircRNA-mRNA networks were constructed, and qRT-PCR validated findings. Results A total of 163 differentially expressed immune-related genes (DEIRGs) were identified between CAG and CNAG. The upregulated immune-related mRNAs in CAG were significantly enriched in antimicrobial humoral response, viral entry into host cells, neutrophil activation, and leukocyte migration. Conversely, downregulated immune-related mRNAs were linked to regulation of natural killer cell-mediated cytotoxicity, positive regulation of adaptive immune response, antigen receptor-mediated signaling pathway, and B cell activation. Immune Cell Abundance Identifier (ImmuCellAI) and flow cytometry confirmed increased neutrophil infiltration in CAG compared to CNAG. WGCNA identified 56 hub immune-related genes. Additionally, circRNA expression profiles in CNAG and CAG were explored, with 19 upregulated and 23 downregulated circRNAs identified in CAG. The upregulated circRNAs were associated with biological processes like carnitine metabolic process and regulation of B cell receptor signaling pathway. A circRNA-mRNA co-expression network was constructed based on five circRNAs highly related to hub immune-related genes. Furthermore, the expression of eight immune-related mRNAs and five circRNAs were validated in CAG. Conclusion This study is the first systematic analysis of circRNA profiles in CAG and provide important insights for potential immunotherapeutic strategies and early diagnostic biomarkers in CAG treatment.
Collapse
Affiliation(s)
- Yang Chao
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiya Jin
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rui Guo
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Hongyu Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
3
|
Zhao H, Zhao H, Wang J, Ren J, Yao J, Li Y, Zhang R. Bovine Omasum-Inspired Interfacial Carbon-Based Nanocomposite for Saliva Metabolic Screening of Gastric Cancer. Anal Chem 2023; 95:11296-11305. [PMID: 37458487 DOI: 10.1021/acs.analchem.3c01358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Gastric cancer is one of the most common malignant digestive cancers, and its diagnostic has still faced challenges based on metabolic analysis due to complex sample pretreatment and low metabolite abundance. In this study, inspired by the structure of bovine omasum, we in situ synthesized a novel interfacial carbon-based nanocomposite of graphene supported nickel nanoparticles-encapsulated in the nitrogen-doped carbon nanotube (Ni/N-CNT/rGO), which was served as a novel matrix with enhanced ionization efficiency for the matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) saliva metabolic analysis of gastric cancer. Benefiting from its high sp2 graphitic degree, large surface area, strong UV absorption, and rich active sites, Ni/N-CNT/rGO matrix exhibited excellent performances of reproducibility, coverage, salt-tolerance, sensitivity, and adsorption ability in MALDI-TOF MS. The differential scanning calorimetry (DSC) and thermal conversion behaviors explained the highly efficient LDI mechanism. Based on saliva metabolic fingerprints, Ni/N-CNT/rGO assisted LDI MS with cross-validation analysis could successfully distinguish gastric cancer patients from healthy controls through the screening of four potential biomarkers with an accuracy of 92.50%, specificity of 88.03%, and sensitivity of 97.12%. This work provided a fast and sensitive MS sensing platform for the metabolomics characterization of gastric cancer and might have potential value for precision medicine in the future.
Collapse
Affiliation(s)
- Huifang Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Huayu Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jie Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jianying Ren
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jia Yao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yanqiu Li
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
4
|
Skubisz K, Dąbkowski K, Samborowska E, Starzyńska T, Deskur A, Ambrozkiewicz F, Karczmarski J, Radkiewicz M, Kusnierz K, Kos-Kudła B, Sulikowski T, Cybula P, Paziewska A. Serum Metabolite Biomarkers for Pancreatic Tumors: Neuroendocrine and Pancreatic Ductal Adenocarcinomas-A Preliminary Study. Cancers (Basel) 2023; 15:3242. [PMID: 37370852 DOI: 10.3390/cancers15123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Pancreatic cancer is the most common pancreatic solid malignancy with an aggressive clinical course and low survival rate. There are a limited number of reliable prognostic biomarkers and a need to understand the pathogenesis of pancreatic tumors; neuroendocrine (PNET) and pancreatic ductal adenocarcinomas (PDAC) encouraged us to analyze the serum metabolome of pancreatic tumors and disturbances in the metabolism of PDAC and PNET. METHODS Using the AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) with liquid chromatography-mass spectrometry (LC-MS), we identified changes in metabolite profiles and disrupted metabolic pathways serum of NET and PDAC patients. RESULTS The concentration of six metabolites showed statistically significant differences between the control group and PDAC patients (p.adj < 0.05). Glutamine (Gln), acetylcarnitine (C2), and citrulline (Cit) presented a lower concentration in the serum of PDAC patients, while phosphatidylcholine aa C32:0 (PC aa C32:0), sphingomyelin C26:1 (SM C26:1), and glutamic acid (Glu) achieved higher concentrations compared to serum samples from healthy individuals. Five of the tested metabolites: C2 (FC = 8.67), and serotonin (FC = 2.68) reached higher concentration values in the PNET serum samples compared to PDAC, while phosphatidylcholine aa C34:1 (PC aa C34:1) (FC = -1.46 (0.68)) had a higher concentration in the PDAC samples. The area under the curves (AUC) of the receiver operating characteristic (ROC) curves presented diagnostic power to discriminate pancreatic tumor patients, which were highest for acylcarnitines: C2 with AUC = 0.93, serotonin with AUC = 0.85, and PC aa C34:1 with AUC = 0.86. CONCLUSIONS The observations presented provide better insight into the metabolism of pancreatic tumors, and improve the diagnosis and classification of tumors. Serum-circulating metabolites can be easily monitored without invasive procedures and show the present clinical patients' condition, helping with pharmacological treatment or dietary strategies.
Collapse
Affiliation(s)
- Karolina Skubisz
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Pediatric Hospital of Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Krzysztof Dąbkowski
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Anna Deskur
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Jakub Karczmarski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Mariusz Radkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Katarzyna Kusnierz
- The Department of Gastrointestinal Surgery, Medical University of Silesia, 40-752 Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-752 Katowice, Poland
| | - Tadeusz Sulikowski
- Department of General, Minimally Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Patrycja Cybula
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Molecular Biology Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| |
Collapse
|
5
|
Ahmad M, Yu J, Cheng S, Khan ZA, Luo Y, Luo H. Chick Early Amniotic Fluid (ceAF) Deters Tumorigenesis via Cell Cycle Arrest and Apoptosis. BIOLOGY 2022; 11:1577. [PMID: 36358278 PMCID: PMC9687777 DOI: 10.3390/biology11111577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023]
Abstract
In recent years, amniotic fluids have gained attention in cancer research. They have an influential role in protecting embryos against several anomalies. Chick early amniotic fluid (ceAF)-amniotic fluid isolated from growing chicken-has been used in many other studies, including myocardial infarctions and skin regeneration. In this study, we employed ceAF's promising therapeutic applications against tumorigenesis in both in vitro and in vivo studies. We selected three robust proliferating tumor cell lines: BCaP37, MCF7, and RKO. We found that selective dosage is required to obtain maximum impact to deter tumorigenesis. ceAF not only disrupted the uniform colonies of tumor cell lines via disturbing mitochondrial transmembrane potential, but also arrested many cells at growing G1 state via working agonistically with aphidicolin. The significant inhibition of tumor metastasis by ceAF was indicated by in vivo models. This leads to apoptosis analysis as verified by annexin-V staining stays and immunoblotting of critical proteins as cell cycle meditators and apoptosis regulators. Not only on the protein level, but we also tested ceAF's therapeutic potentials on mRNA levels as indicated by quantitative real-time PCR summarizing the promising role of ceAF in deterring tumor progression. In conclusion, our study reveals the potent role of ceAF against tumorigenesis in breast cancer and colon carcinoma. Further studies will be required to determine the critical components present in ceAF and its purification to narrow down this study.
Collapse
Affiliation(s)
- Mashaal Ahmad
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Zara Ahmad Khan
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| |
Collapse
|
6
|
Yoshikawa N, Yamamoto M, Kuribara-Souta A, Uehara M, Yamazaki H, Tanaka H. Amino Acid Profile in 18 Patients with Rheumatic Diseases Treated with Glucocorticoids and BCAAs. J Nutr Sci Vitaminol (Tokyo) 2021; 67:180-188. [PMID: 34193677 DOI: 10.3177/jnsv.67.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The administration of glucocorticoids to patients with rheumatic diseases often results in glucocorticoid-induced myopathy. We previously found that administration of branched-chain amino acids (BCAA) to such patients improves the loss of skeletal muscle, however, their individual differences were often observed. The present study, therefore, aims to identify specific parameters associated with BCAA-induced increases in skeletal muscle mass. Eighteen patients with rheumatic diseases treated with prednisolone were randomly assigned to receive additional BCAAs for 12 wk. Serum biochemistry, plasma fibroblast growth factor (FGF) 19 and 21, and plasma and urinary amino acid concentrations were assessed. The relationship between these parameters and the cross-sectional area (CSA) of the biceps femoris (slow-twitch muscle) and rectus femoris (fast-twitch muscle) was assessed using computed tomography. BCAA supplementation increased serum levels of creatinine and albumin and decreased ammonia and urinary 3-methylhistidine levels. With or without BCAA supplementation, each plasma amino acid concentration decreased during the study period, but the decrease was lower in patients receiving BCAA. Interestingly, a positive correlation was observed between plasma isoleucine, aspartate, and glutamate concentrations and improvement in the biceps femoris muscle atrophy. Plasma amino acid concentrations in patients with rheumatic diseases treated with glucocorticoids decreased despite tapering the dose of glucocorticoids, with a smaller decrease in the BCAA-treated group. Plasma BCAA, aspartic acid, and glutamate concentrations correlated positively with the rate of improvement in biceps femoris muscle atrophy, suggesting that these amino acids are associated with the BCAA-induced increase in muscle mass.
Collapse
Affiliation(s)
- Noritada Yoshikawa
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo.,Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Motohisa Yamamoto
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Akiko Kuribara-Souta
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Masaaki Uehara
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Hiroki Yamazaki
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo.,Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| |
Collapse
|
7
|
Liu T, Zhang J, Chai Z, Wang G, Cui N, Zhou B. Ginkgo biloba extract EGb 761-induced upregulation of LincRNA-p21 inhibits colorectal cancer metastasis by associating with EZH2. Oncotarget 2017; 8:91614-91627. [PMID: 29207671 PMCID: PMC5710951 DOI: 10.18632/oncotarget.21345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
EGb 761, the standard ginkgo biloba extract, is frequently prescribed in traditional Chinese medicine. Currently, there is no research focusing on its role in human colorectal cancer progression. In our study, we determined the anti-metastatic effect of EGb 761 on colorectal cancer cells and further explored the potential underlying regulatory mechanism. The cell migration and invasion assay indicated that EGb 761 treatment of colorectal cancer cells induced inhibition of cell migration and invasion ability in a concentration-dependent manner. To further explore the underlying regulatory mechanisms that may account for these findings, we performed quantitative real-time PCR (RT-qPCR), western blotting and immunoprecipitation analysis. The results showed that EGb 761 induced upregulation of LincRNA-p21 expression in a dose- and time-dependent manner. Overexpression of LincRNA-p21 also suppressed colorectal cancer cell metastasis. Furthermore, EGb 761 as well as LincRNA-p21 inhibited the expression of extracellular matrix protein, fibronectin. More importantly, RNA immunoprecipitation (RIP) and Chromatin immunoprecipitation (ChIP) assays showed that LincRNA-p21 directly interacted with EZH2, and this interaction suppressed the expression of fibronectin. Finally, the gain and loss function assay revealed that EGb 761 inhibited migration, invasion and fibronctin expression by the LincRNA-p21/EZH2 pathway in colorectal cancer cells. Hence, EGb 761 may be a promising treatment regimen for colorectal cancer and restoration of LincRNA-p21 levels may be helpful for enhancing the anti-cancer effect of EGb 761.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Integrated Chinese and Western Medicine Surgery, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Anorectal Surgery, Tianjin Binhai New Area Traditional Chinese Medicine Hospital, Tianjin, China
| | - Junzhong Zhang
- Department of Anorectal Surgery, Tianjin Binhai New Area Traditional Chinese Medicine Hospital, Tianjin, China
| | - Zhongqiu Chai
- Department of Science and Education, Tianjin Binhai New Area Traditional Chinese Medicine Hospital, Tianjin, China
| | - Gang Wang
- Department of Oncology, Ruijin Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Naiqiang Cui
- Department of Integrated Chinese and Western Medicine Surgery, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bing Zhou
- Department of Integrated Chinese and Western Medicine Surgery, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Wang X, Liu C, Wang J, Fan Y, Wang Z, Wang Y. Proton pump inhibitors increase the chemosensitivity of patients with advanced colorectal cancer. Oncotarget 2017; 8:58801-58808. [PMID: 28938598 PMCID: PMC5601694 DOI: 10.18632/oncotarget.18522] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
Changes in pH can alter the uptake of chemotherapy drugs. Proton pump inhibitors (PPIs) may therefore increase the chemosensitivity of cancer cells and cytotoxicity of chemotherapeutic drugs by increasing their uptake. We investigated the chemosensitizing potential of PPIs in colorectal cancer (CRC). Our in vitro data show that the PPI pantoprazole increases the chemosensitivity of CRC HT29 and RKO cells to fluorouracil (5-FU). Our in vivo data demonstrate that pantoprazole also increases the ability of 5-FU to inhibit CRC tumor growth in mice. Importantly, a retrospective clinical study of CRC patients receiving the FOLFOX or CapeOx regimen indicates that PPIs increase the chemosensitivity of CRC patients. Patients who received the FOLFOX regimen with a PPI had better overall survival (OS) and progression-free survival (PFS) than patients who did not receive a PPI during FOLFOX chemotherapy. The incidence of nausea and vomiting was also lower in patients receiving a PPI with FOLFOX or CapeOx than in those who did not receive PPI. These results indicate that PPIs may be successfully incorporated into the FOLFOX regimen to increase the chemotherapeutic effect for CRC patients.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Third Ward of Oncology Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Chun Liu
- Department of Biochemistry, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110001, China
| | - Jiaqi Wang
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Fan
- Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Zhenghua Wang
- Third Ward of Oncology Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yuanyuan Wang
- Third Ward of Oncology Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| |
Collapse
|
9
|
Wang X, Liu C, Wang J, Fan Y, Wang Z, Wang Y. Oxymatrine inhibits the migration of human colorectal carcinoma RKO cells via inhibition of PAI-1 and the TGF-β1/Smad signaling pathway. Oncol Rep 2016; 37:747-753. [PMID: 27959430 PMCID: PMC5355745 DOI: 10.3892/or.2016.5292] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 12/28/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) signaling has been shown to play a critical role in the development of epithelial-mesenchymal transition (EMT). PAI-1 is one of the most important target genes in the TGF-β/Smad signaling pathway, which can hinder the degradation of ECM composition and may promote cell invasion and migration. Oxymatrine (OM) is an alkaloid extracted from the Chinese herb Sophora flavescens Ait and has been demonstrated to inhibit the growth of various types of cancer cells including colorectal cancer. However, the anticancer effect of OM in colorectal cancer remains unclear. In the present study, we detected the expression of E-cadherin, α-SMA, FN, TGF-β1, PAI-1, Smad4, pP38 and pSmad2 in FHC, RKO and OM-treated RKO cells. We also detected pSmad2 and PAI-1 in RKO cells following the addition of SB203580 (a p38 MAPK inhibitor). The results showed that E-cadherin expression in RKO cells was significantly decreased, while PAI-1, TGF-β1, α-SMA, FN, Smad4, pSmad2 and pP38 expression levels were significantly increased in the RKO cells compared to levels in the FHC cells, which was almost completely reversed by OM. OM alleviated EMT induced in colorectal cancer via inhibition of TGF-β1/Smad signaling pathway activation by reducing P38-dependent increased expression of PAI-1. Hence, OM could be a novel therapeutic agent for colorectal cancer.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biochemistry, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110001, P.R. China
| | - Chun Liu
- Department of Biochemistry, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110001, P.R. China
| | - Jiaqi Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yue Fan
- Department of Human Resources, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Zhenghua Wang
- Department of Oncology (Third Ward), The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuanyuan Wang
- Department of Oncology (Third Ward), The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|