1
|
Divide and conquer: two stem cell populations in squamous epithelia, reserves and the active duty forces. Int J Oral Sci 2019; 11:26. [PMID: 31451683 PMCID: PMC6802623 DOI: 10.1038/s41368-019-0061-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/09/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Stem cells are of great interest to the scientific community due to their potential role in regenerative and rejuvenative medicine. However, their role in the aging process and carcinogenesis remains unclear. Because DNA replication in stem cells may contribute to the background mutation rate and thereby to cancer, reducing proliferation and establishing a relatively quiescent stem cell compartment has been hypothesized to limit DNA replication-associated mutagenesis. On the other hand, as the main function of stem cells is to provide daughter cells to build and maintain tissues, the idea of a quiescent stem cell compartment appears counterintuitive. Intriguing observations in mice have led to the idea of separated stem cell compartments that consist of cells with different proliferative activity. Some epithelia of short-lived rodents appear to lack quiescent stem cells. Comparing stem cells of different species and different organs (comparative stem cell biology) may allow us to elucidate the evolutionary pressures such as the balance between cancer and longevity that govern stem cell biology (evolutionary stem cell biology). The oral mucosa and its stem cells are an exciting model system to explore the characteristics of quiescent stem cells that have eluded biologists for decades.
Collapse
|
2
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
3
|
Hu B, Shi D, Lv X, Wu F, Chen S, Shao Z. Prognostic and clinicopathological significance of DEPTOR expression in cancer patients: a meta-analysis. Onco Targets Ther 2018; 11:5083-5092. [PMID: 30174446 PMCID: PMC6110285 DOI: 10.2147/ott.s167355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background DEP domain containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR), a recently discovered endogenous inhibitor of mTOR, has been found to be abnormally expressed in various tumors. Recent studies have demonstrated that DEPTOR could serve as a potential prognostic biomarker in several kinds of cancer. However, the prognostic value of DEPTOR is still controversial so far. Patients and methods PubMed, Embase and Web of Science were systematically searched to obtain all relevant articles about the prognostic value of DEPTOR in cancer patients. ORs or HRs with corresponding 95% CIs were pooled to estimate the association between DEP-TOR expression and the clinicopathological characteristics or survival of cancer patients. Results A total of nine eligible studies with 974 cancer patients were included in our meta-analysis. Our results demonstrated that the expression of DEPTOR was not associated with the overall survival (OS) (pooled HR=0.795, 95% CI=0.252-2.509) and event-free survival (EFS) (pooled HR=1.244, 95% CI=0.543-2.848) in cancer patients. Furthermore, subgroup analysis divided by sample size, type of cancer, Newcastle-Ottawa Scale (NOS) score and evaluation of DEPTOR expression showed identical prognostic value. In addition, our analysis also revealed that there was no significant association between expression level of DEPTOR and clinicopathological characteristics, such as tumor stage, lymph node metastasis, differentiation grade and gender. Conclusion Our meta-analysis suggested that despite the fact that DEPTOR could be overexpressed or downregulated in cancer patients, it might not be a potential marker to predict the prognosis of cancer patients.
Collapse
Affiliation(s)
- Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Fashuai Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|
4
|
Jin F, Zhu G, Li D, Ni T, Dai X, Wang H, Feng J, Qian Y, Yang L, Guo S, Hisamitsu T, Liu Y. Celastrus orbiculatus extracts induce cell cycle arrest and apoptosis in human esophageal squamous carcinoma ECA-109 cells in vitro via the PI3K/AKT/mTOR signaling pathway. Oncol Lett 2018; 15:1591-1599. [PMID: 29434854 PMCID: PMC5774469 DOI: 10.3892/ol.2017.7459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/11/2017] [Indexed: 11/30/2022] Open
Abstract
Recently, Celastrus orbiculatus ethyl acetate extracts (COE) have been investigated for their anticancer effects on digestive tract tumors. However, the therapeutic effects of COE on esophageal squamous carcinoma cells (ESCC) have not been investigated. In the present study, the effects of COE on the cell cycle and apoptosis of ESCCs were assessed in vitro, and it was revealed that COE treatment triggered G0/G1 cell cycle arrest, and induced DNA damage and apoptosis in a dose-dependent manner in ESCC. Activation of the phosphatidylinositol 3-kinase/protein kinase-B/mechanistic target of rapamycin (mTOR) pathway was also suppressed by COE. Additionally, the combined treatment with COE and rapamycin (an mTOR inhibitor) acted synergistically in ECA-109 cells compared with the treatment with COE or rapamycin alone. These findings extend the understanding of the action of COE and suggest that COE has potential as a treatment option for ESCC as a single treatment or in combination.
Collapse
Affiliation(s)
- Feng Jin
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Guang Zhu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dan Li
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Tengyang Ni
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xiaojun Dai
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Department of Oncology, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu 225009, P.R. China
| | - Haibo Wang
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Jun Feng
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yayun Qian
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Lin Yang
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Shiyu Guo
- Department of Physiology, Showa University, Tokyo 142-8555, Japan
| | | | - Yanqing Liu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
5
|
Catena V, Fanciulli M. Deptor: not only a mTOR inhibitor. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:12. [PMID: 28086984 PMCID: PMC5237168 DOI: 10.1186/s13046-016-0484-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 01/09/2023]
Abstract
Deptor is an important protein that belongs to the mTORC1 and mTORC2 complexes, able to interact with mTOR and to inhibit its kinase activity. As a natural mTOR inhibitor, Deptor is involved in several molecular pathways, such as cell growth, apoptosis, autophagy and ER stress response. For this reason, Deptor seems to play an important role in controlling cellular homeostasis. Despite several recent insights characterizing Deptor functions and regulation, its complete role within cells has not yet been completely clarified. Indeed, quite recently, Deptor has been associated with chromatin, and it has been demonstrated having a role in transcriptional regulation, controlling in such way endoplasmatic reticulum activity. From all these observations it is not surprising that Deptor can behave either as an oncogene or oncosuppressor, depending on the cell- or tissue-contexts. This review highlights recent progresses made in our understanding of the many activities of Deptor, describing its transcriptional and post-transcriptional regulation in different cancer cell types. Moreover, here we discuss the possibility of using compounds able to inhibit Deptor or to disrupt its interaction with mTOR as novel approaches for cancer therapy.
Collapse
Affiliation(s)
- Valeria Catena
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
6
|
Identification of DEP domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues. Sci Rep 2016; 6:39655. [PMID: 28000796 PMCID: PMC5175133 DOI: 10.1038/srep39655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022] Open
Abstract
The Dishevelled/EGL-10/Pleckstrin (DEP) domain-containing (DEPDC) proteins have seven members. However, whether this superfamily can be distinguished from other proteins based only on the amino acid sequences, remains unknown. Here, we describe a computational method to segregate DEPDCs and non-DEPDCs. First, we examined the Pfam numbers of the known DEPDCs and used the longest sequences for each Pfam to construct a phylogenetic tree. Subsequently, we extracted 188-dimensional (188D) and 20D features of DEPDCs and non-DEPDCs and classified them with random forest classifier. We also mined the motifs of human DEPDCs to find the related domains. Finally, we designed experimental verification methods of human DEPDC expression at the mRNA level in hepatocellular carcinoma (HCC) and adjacent normal tissues. The phylogenetic analysis showed that the DEPDCs superfamily can be divided into three clusters. Moreover, the 188D and 20D features can both be used to effectively distinguish the two protein types. Motif analysis revealed that the DEP and RhoGAP domain was common in human DEPDCs, human HCC and the adjacent tissues that widely expressed DEPDCs. However, their regulation was not identical. In conclusion, we successfully constructed a binary classifier for DEPDCs and experimentally verified their expression in human HCC tissues.
Collapse
|
7
|
Wu YB, Lu D, He ZF, Jin CG. PIM1 polymorphism and PIM1 expression as predisposing factors of esophageal squamous cell carcinoma in the Asian population. Onco Targets Ther 2016; 9:2919-25. [PMID: 27274285 PMCID: PMC4876089 DOI: 10.2147/ott.s103392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our study aimed to identify the association between a PIM1 polymorphism and PIM1 expression levels with clinicopathological features of esophageal squamous cell carcinoma (ESCC). A total of 168 patients with ESCC were recruited as the case group, and 180 healthy individuals were included as the control group. Polymerase chain reaction-direct sequencing was employed to analyze all genotypes containing the PIM1 -1 882 A>T mutation. Immunohistochemistry was used to detect PIM1 expression. The distributions of genotype AA and allele A of PIM1 -1 882 A>T were higher in the case group than in the control group (both P<0.05). AT + TT carriers had a lower risk of ESCC than AA carriers (P<0.05). PIM1 polymorphism was related to the invasion depth, degree of differentiation, and lymphatic metastasis of ESCC (P<0.05). PIM1 expression was associated with lymphatic metastasis of ESCC and PIM1 polymorphism (both P<0.05). PIM1 -1 882 A>T and the overexpression of PIM1 were associated with the clinicopathological features of ESCC, and PIM1 -1 882 A>T may help to reduce the risk of ESCC in the Asian population.
Collapse
Affiliation(s)
- Yuan-Bo Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Di Lu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhi-Feng He
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chan-Guan Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|