1
|
Shih LC, Hsu SW, Chen KY, Hsu CL, Liu YF, Wang YC, Shih HY, Chang WS, Bau DAT, Tsai CW. Association of Matrix Metalloproteinase-7 Genotypes With Nasopharyngeal Carcinoma Risk. In Vivo 2025; 39:1314-1324. [PMID: 40294998 PMCID: PMC12041999 DOI: 10.21873/invivo.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND/AIM Nasopharyngeal carcinoma (NPC) is a multifactorial malignancy influenced by Epstein-Barr virus (EBV) infection, genetic susceptibility, and environmental factors. Matrix metalloproteinase-7 (MMP-7), a key regulator of extracellular matrix remodeling, has been implicated in NPC progression. This study investigated the association between MMP-7 rs11568818 and rs11568819 genotypes and NPC susceptibility in a Taiwanese cohort consisted of 208 NPC cases and 416 cancer-free controls. MATERIALS AND METHODS The genotypic patterns of MMP-7 rs11568818 and rs11568819 were revealed by utilizing PCR-RFLP methodology. In addition, the interaction between MMP-7 genotypes and lifestyle factors (including smoking, alcohol consumption, and betel quid chewing) was also analyzed in a stratified manner. RESULTS Genotypic distribution analysis of MMP-7 rs11568818 showed no significant association with NPC risk (p for trend=0.4641). Individuals carrying the AG (OR=1.22, 95%CI=0.79-1.90, p=0.4384) or GG (OR=1.74, 95%CI=0.52-5.79, p=0.5539) genotypes exhibited a modestly elevated, but statistically non-significant, risk compared to AA carriers. Similarly, allelic frequency analysis indicated that the G allele did not significantly contribute to NPC susceptibility (OR=1.28, 95%CI=0.87-1.87, p=0.2433). Stratified analysis revealed a significant interaction between MMP-7 rs11568818 and smoking status (p for trend=0.0018). Among smokers, AG and GG genotypes were associated with an increased NPC risk (AG: OR=2.70, 95%CI=1.34-5.44, p=0.0076; GG: OR=9.27, 95%CI=1.01-84.66, p=0.0345), which remained significant after adjusting for confounders (adjusted OR=2.53, 95%CI=1.27-4.88; adjusted OR=7.89, 95%CI=1.02-47.38). No interactions were observed with alcohol consumption or betel quid chewing. Additionally, no polymorphic genotypes were detected for MMP-7 rs11568819 in the studied population. CONCLUSION While MMP-7 rs11568818 does not directly influence NPC susceptibility in a Taiwanese population, its interaction with smoking may contribute to elevated NPC risk.
Collapse
Affiliation(s)
- Liang-Chun Shih
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Otorhinolaryngology-Head and Neck Surgery, Asia University Hospital, Taichung, Taiwan, R.O.C
| | - Shih-Wei Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C
- National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Kai-Yuan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Che-Lun Hsu
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yen-Fang Liu
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Hou-Yu Shih
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.;
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.;
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
2
|
Tseng C, Chen CM, Hsieh YH, Lin CY, Chen JW, Hsiao PH, Fong YC, Wang PH, Chen PN, Lin RC. MTA2 knockdown suppresses human osteosarcoma metastasis by inhibiting uPA expression. Aging (Albany NY) 2024; 16:12239-12251. [PMID: 39248711 PMCID: PMC11424574 DOI: 10.18632/aging.206070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024]
Abstract
The relationship between metastasis-associated protein 2 (MTA2) overexpression and tumor growth and metastasis has been extensively studied in a variety of tumor cells but not in human osteosarcoma cells. This study aims to elucidate the clinical significance, underlying molecular mechanisms, and biological functions of MTA2 in human osteosarcoma in vitro and in vivo. Our results show that MTA2 was elevated in osteosarcoma cell lines and osteosarcoma tissues and was associated with tumor stage and overall survival of osteosarcoma patients. Knockdown of MTA2 inhibited osteosarcoma cell migration and invasion by reducing the expression of urokinase-type plasminogen activator (uPA). Bioinformatic analysis demonstrated that high levels of uPA in human osteosarcoma tissues correlated positively with MTA2 expression. Furthermore, treatment with recombinant human uPA (Rh-uPA) caused significant restoration of OS cell migration and invasion in MTA2 knockdown osteosarcoma cells. We found that ERK1/2 depletion increased the expression of uPA, facilitating osteosarcoma cell migration and invasion. Finally, MTA2 depletion significantly reduced tumor metastasis and the formation of lung nodules in vivo. Overall, our study suggests that MTA2 knockdown suppresses osteosarcoma cell metastasis by decreasing uPA expression via ERK signaling. This finding provides new insight into potential treatment strategies against osteosarcoma metastasis by targeting MTA2.
Collapse
Affiliation(s)
- Chun Tseng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung, Taiwan
- Department of Biomedical Sciences National Chung Cheng University, Chiayi, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Yu Lin
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
| | - Jian-Wen Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
| | - Pang-Hsuan Hsiao
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Pei-Han Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Renn-Chia Lin
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
4
|
Wei S, Sun S, Zhou X, Zhang C, Li X, Dai S, Wang Y, Zhao L, Shan B. SNHG5 inhibits the progression of EMT through the ubiquitin-degradation of MTA2 in oesophageal cancer. Carcinogenesis 2021; 42:315-326. [PMID: 33095847 DOI: 10.1093/carcin/bgaa110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial-mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shiping Sun
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.,Blood Transfusion Department, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China
| | - Xinliang Zhou
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Suli Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yaojie Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
5
|
Dai SL, Wei SS, Zhang C, Li XY, Liu YP, Ma M, Lv HL, Zhang Z, Zhao LM, Shan BE. MTA2 promotes the metastasis of esophageal squamous cell carcinoma via EIF4E-Twist feedback loop. Cancer Sci 2021; 112:1060-1074. [PMID: 33340431 PMCID: PMC7935808 DOI: 10.1111/cas.14778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis‐associated protein 2 (MTA2) is frequently amplified in many types of cancers; however, the role and underlying molecular mechanism of MTA2 in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we reported that MTA2 is highly expressed in ESCC tissue and cells, and is closely related to the malignant characteristics and poor prognosis of patients with ESCC. Through in vitro and in vivo experiments, we demonstrated that MTA2 significantly promoted ESCC growth, metastasis, and epithelial‐mesenchymal transition (EMT) progression. This integrative analysis combined with expression microarray showed that MTA2 could interact with eukaryotic initiation factor 4E (EIF4E), which positively regulates the expression of Twist, known as a master regulator of EMT. Moreover, the results of chromatin immunoprecipitation revealed that MTA2 was recruited to the E‐cadherin promoter by Twist, which reduced the acetylation level of the promoter region and thus inhibited expression of E‐cadherin, and subsequently promoted the aggressive progression of ESCC. Collectively, our study provided novel evidence that MTA2 plays an aggressive role in ESCC metastasis by a novel EIF4E‐Twist positive feedback loop, which may provide a potential therapeutic target for the management of ESCC.
Collapse
Affiliation(s)
- Su-Li Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Si-Si Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Ya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue-Ping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Ma
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui-Lai Lv
- Department of Fifth Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lian-Mei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bao-En Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Kang Y, He W, Ren C, Qiao J, Guo Q, Hu J, Xu H, Jiang X, Wang L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct Target Ther 2020; 5:245. [PMID: 33093441 PMCID: PMC7582884 DOI: 10.1038/s41392-020-00340-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck region which mainly distributes in southern China and Southeast Asia and has a crucial association with the Epstein-Barr virus. Based on epidemiological data, both incidence and mortality of NPC have significantly declined in recent decades grounded on the improvement of living standard and medical level in an endemic region, in particular, with the clinical use of individualized chemotherapy and intensity-modulated radiotherapy (IMRT) which profoundly contributes to the cure rate of NPC patients. To tackle the challenges including local recurrence and distant metastasis in the current NPC treatment, we discussed the implication of using targeted therapy against critical molecules in various signal pathways, and how they synergize with chemoradiotherapy in the NPC treatment. Combination treatment including targeted therapy and IMRT or concurrent chemoradiotherapy is presumably to be future options, which may reduce radiation or chemotherapy toxicities and open new avenues for the improvement of the expected functional outcome for patients with advanced NPC.
Collapse
Affiliation(s)
- Yuanbo Kang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Weihan He
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Jincheng Qiao
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuyong Guo
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyu Hu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongjuan Xu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
7
|
Chen YS, Hung TW, Su SC, Lin CL, Yang SF, Lee CC, Yeh CF, Hsieh YH, Tsai JP. MTA2 as a Potential Biomarker and Its Involvement in Metastatic Progression of Human Renal Cancer by miR-133b Targeting MMP-9. Cancers (Basel) 2019; 11:cancers11121851. [PMID: 31771219 PMCID: PMC6966675 DOI: 10.3390/cancers11121851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Metastasis-associated protein 2 (MTA2) was previously known as a requirement to maintain malignant potentials in several human cancers. However, the role of MTA2 in the progression of renal cell carcinoma (RCC) has not yet been delineated. In this study, MTA2 expression was significantly increased in RCC tissues and cell lines. Increased MTA2 expression was significantly associated with tumour grade (p = 0.002) and was an independent prognostic factor for overall survival with a high RCC tumour grade. MTA2 knockdown inhibited the migration, invasion, and in vivo metastasis of RCC cells without effects on cell proliferation. Regarding molecular mechanisms, MTA2 knockdown reduced the activity, protein level, and mRNA expression of matrix metalloproteinase-9 (MMP-9) in RCC cells. Further analyses demonstrated that patients with lower miR-133b expression had poorer survival rates than those with higher expression from The Cancer Genome Atlas database. Moreover, miR-133b modulated the 3′untranslated region (UTR) of MMP-9 promoter activities and subsequently the migratory and invasive abilities of these dysregulated expressions of MTA2 in RCC cells. The inhibition of MTA2 could contribute to human RCC metastasis by regulating the expression of miR-133b targeting MMP-9 expression.
Collapse
Affiliation(s)
- Yong-Syuan Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
| | - Tung-Wei Hung
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou 24451, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chu-Che Lee
- Department of Medicine Research, Buddhist Dalin Tzu Chi Hospital, Chiayi 62247, Taiwan;
| | - Chang-Fang Yeh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (Y.-H.H.); (J.-P.T.); Tel.: +886-0424730022 (Y.-H.H.); +886-052648000 (J.-P.T.)
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien 97010, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Correspondence: (Y.-H.H.); (J.-P.T.); Tel.: +886-0424730022 (Y.-H.H.); +886-052648000 (J.-P.T.)
| |
Collapse
|
8
|
Shaikh I, Ansari A, Ayachit G, Gandhi M, Sharma P, Bhairappanavar S, Joshi CG, Das J. Differential gene expression analysis of HNSCC tumors deciphered tobacco dependent and independent molecular signatures. Oncotarget 2019; 10:6168-6183. [PMID: 31692905 PMCID: PMC6817442 DOI: 10.18632/oncotarget.27249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancer is the sixth most common cancer worldwide, with tobacco as the leading cause. However, it is increasing in non-tobacco users also, hence limiting our understanding of its underlying molecular mechanisms. RNA-seq analysis of cancers has proven as effective tool in understanding disease etiology. In the present study, RNA-Seq of 86 matched Tumor/Normal pairs, of tobacco smoking (TOB) and non-smokers (N-TOB) HNSCC samples analyzed, followed by validation on 375 similar datasets. Total 2194 and 2073 differentially expressed genes were identified in TOB and N-TOB tumors, respectively. GO analysis found muscle contraction as the most enriched biological process in both TOB and N-TOB tumors. Pathway analysis identified muscle contraction and salivary secretion pathways enriched in both categories, whereas calcium signaling and neuroactive ligand-receptor pathway was more enriched in TOB and N-TOB tumors respectively. Network analysis identified muscle development related genes as hub node i. e. ACTN2, MYL2 and TTN in both TOB and N-TOB tumors, whereas EGFR and MYH6, depicts specific role in TOB and N-TOB tumors. Additionally, we found enriched gene networks possibly be regulated by tumor suppressor miRNAs such as hsa-miR-29/a/b/c, hsa-miR-26b-5p etc., suggestive to be key riboswitches in regulatory cascade of HNSCC. Interestingly, three genes PKLR, CST1 and C17orf77 found to show opposite regulation in each category, hence suggested to be key genes in separating TOB from N-TOB tumors. Our investigation identified key genes involved in important pathways implicated in tobacco dependent and independent carcinogenesis hence may help in designing precise HNSCC diagnostics and therapeutics strategies.
Collapse
Affiliation(s)
- Inayatullah Shaikh
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Afzal Ansari
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Garima Ayachit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Monika Gandhi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Priyanka Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Shivarudrappa Bhairappanavar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Chaitanya G. Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Jayashankar Das
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| |
Collapse
|
9
|
Tseng TY, Chiou HL, Lin CW, Chen YS, Hsu LS, Lee CH, Hsieh YH. Repression of metastasis-associated protein 2 for inhibiting metastasis of human oral cancer cells by promoting the p-cofilin-1/ LC3-II expression. J Oral Pathol Med 2019; 48:959-966. [PMID: 31359510 DOI: 10.1111/jop.12941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The overexpression of metastasis-associated protein 2 (MTA2) contributes to human tumor progression and metastasis in various tumor cells. However, the role of MTA2 in human oral cancer progression remains unknown. MATERIALS AND METHODS MTA2 expression in human oral tumor tissues and cell lines was measured by immunohistochemistry and Western blotting. Cell proliferation and cell cycle were analyzed using MTT assay and flow cytometry. The effects of MTA2 on oral cell migration and invasion were investigated using migration and invasion assays. The expression of MTA2, p-cofilin-1, and MTA2-induced LC3-II levels were measured using Western blotting and an immunofluorescence assay. RESULTS Based on the human oral cancer tissue array and TCGA database, we found that MTA2 was increased in oral cancer tissues than in non-tumor oral tissues (P < .01). Moreover, MTA2 is significantly associated with tumor grade (P < .01) and the overall survival rate of patients with grade III tumor (P < .05). MTA2 expression in oral cancer cells was markedly higher than that in normal oral cells. Cell proliferation and cell cycle were not significantly changed in the cells inhibited by MTA2. MTA2 knockdown can inhibit cell migration and invasion of human oral cancer cells. Furthermore, we suggest that MTA2 inhibition enhances p-cofilin and LC3-II expression, and the knockdown of LC3-II expression in cells inhibited by MTA2 had the opposite effect. CONCLUSION These results indicate that MTA2 may serve as a candidate prognostic biomarker and that targeting autophagy is a potential therapeutic strategy for treating human oral cancer.
Collapse
Affiliation(s)
- Tsai-Yi Tseng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Graduate Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Pottier C, Kriegsmann M, Alberts D, Smargiasso N, Baiwir D, Mazzucchelli G, Herfs M, Fresnais M, Casadonte R, Delvenne P, Pauw E, Longuespée R. Microproteomic Profiling of High‐Grade Squamous Intraepithelial Lesion of the Cervix: Insight into Biological Mechanisms of Dysplasia and New Potential Diagnostic Markers. Proteomics Clin Appl 2018; 13:e1800052. [DOI: 10.1002/prca.201800052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/06/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Charles Pottier
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
- Department of Medical OncologyUniversity of Liège Liège Belgium
| | - Mark Kriegsmann
- Institute of pathologyUniversity of Heidelberg Heidelberg Germany
| | - Deborah Alberts
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | | | - Gabriel Mazzucchelli
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | - Michael Herfs
- Laboratory of Experimental PathologyGIGA‐CancerDepartment of PathologyUniversity of Liège Liège Belgium
| | - Margaux Fresnais
- Department of Clinical Pharmacology and PharmacoepidemiologyUniversity of Heidelberg Heidelberg Germany
- German Cancer Consortium (DKTK)‐German Cancer Research Center (DKFZ) Heidelberg Germany
| | | | - Philippe Delvenne
- Laboratory of Experimental PathologyGIGA‐CancerDepartment of PathologyUniversity of Liège Liège Belgium
| | - Edwin Pauw
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | - Rémi Longuespée
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
- Institute of pathologyUniversity of Heidelberg Heidelberg Germany
- Proteopath GmbH Trier Germany
| |
Collapse
|
11
|
Zhang BJ, Lan GP, Si JY, Li YL, Huang B, Deng ZX, Si YF, Chen MM, Shen XY, Wang Y. Correlation of metastasis-associated protein expression with prognosis and chemotherapy in nasopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2537-2549. [PMID: 31938367 PMCID: PMC6958279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/14/2017] [Indexed: 06/10/2023]
Abstract
The aim of this study was to elaborate the correlation between metastasis-associated protein (MTA) family and the occurrence, progression, prognosis and chemotherapy efficiency in nasopharyngeal carcinoma (NPC).The expression of MTA1, MTA2 and MTA3 protein were detected by immunohistochemistry in a tissue microarray (TMAs) which contains tissue samples of 152 NPC patients embedded by formalin-fixed paraffin. The MTA proteins were mainly expressed in the nuclei of NPC tissues and the correlations between MTAs expression and clinical parameters as well as prognosis of NPC patients showed ethnical differences according to statistically analysis. The results showed that in Han ethnic group, MTA1 expression was positively correlated with N staging, while the expression of MTA2 was negatively correlated with age, and the expression of MTA3 was positively correlated with gender. Patients with high MTA1 expression had poorprognosis. In Zhuang ethnic group, only MTA3 expression was positively correlated with age, recurrence and metastasis of NPC patients; neither MTA1 nor MTA2 expression had any correlation with clinical indexes. Patients with high MTA3 expression had unfavorable prognosis. In addition, our results showed that overall survival among Zhuang NPC patients with low expression of MTA2 increased significantly owing to "carboplatin + fluorouracil" chemotherapy. This therapeutic success, however, did not translate to longer overall survival among Han NPC patients. The biological function of MTA protein family in NPC patients was different among different ethnic groups. In conclusion, we demonstrated that MTAs had a certain tumor promoting function in patients with NPC, and the biological functions of MTAs might be ethnic differences, which suggesting MTAs to be important markers for guiding clinical treatment of NPC.
Collapse
Affiliation(s)
- Ben-Jian Zhang
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi Zhuang Autonomous Region, China
| | - Gui-Ping Lan
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi Zhuang Autonomous Region, China
| | - Jin-Yuan Si
- Department of Otolaryngology, Head and Neck Surgery, Skull Base Surgery Center, Xuanwu Hospital, Capital Medical UniversityBeijing, China
| | - Yi-Liang Li
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi Zhuang Autonomous Region, China
| | - Bo Huang
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi Zhuang Autonomous Region, China
| | - Zhuo-Xia Deng
- Institute of Nasopharyngeal Carcinoma, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi Zhuang Autonomous Region, China
| | - Yong-Feng Si
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi Zhuang Autonomous Region, China
| | - Ming-Min Chen
- National Engineering Center for BiochipShanghai, China
| | | | - Ying Wang
- National Engineering Center for BiochipShanghai, China
| |
Collapse
|
12
|
An JX, Ma MH, Zhang CD, Shao S, Zhou NM, Dai DQ. miR-1236-3p inhibits invasion and metastasis in gastric cancer by targeting MTA2. Cancer Cell Int 2018; 18:66. [PMID: 29743816 PMCID: PMC5930941 DOI: 10.1186/s12935-018-0560-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background MicroRNAs deregulation are common in human tumor progression. miR-1236-3p has been reported to function as tumor suppressor microRNA in various malignancies. The aim of this study was to demonstrate the downregulated expression of miR-1236-3p in gastric cancer (GC) tissues and cell lines, and clarify its biological function in GC. Methods Real-time polymerase chain reaction was used to measure the mRNA level of miR-1236-3p in GC. Dual luciferase assay was used to demonstrate that MTA2 was one of the candidate target genes of miR-1236-3p. Western blots were utilized to detect the protein levels. Cell function assays were also performed to determine the function of miR-1236-3p in GC. Results miR-1236-3p expression, which was associated with lymph node metastasis, differentiation and clinical stage, was significantly reduced in GC tissues and cell lines. miR-1236-3p over-expression could inhibit GC cell proliferation, migration and invasion, and inhibition of miR-1236-3p expression had opposite effects. Furthermore, we demonstrated that MTA2 was a candidate target of miR-1236-3p, and miR-1236-3p over-expression significantly inhibited the process of epithelial-mesenchymal transition. We also found that miR-1236-3p could suppress the PI3K/Akt signaling pathway in GC cells. Conclusions Our results suggest that miR-1236-3p functions as a tumor suppressor in GC and could be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Jia-Xiang An
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Ming-Hui Ma
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Chun-Dong Zhang
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Shuai Shao
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Nuo-Ming Zhou
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Dong-Qiu Dai
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| |
Collapse
|
13
|
Pérez-Valencia JA, Prosdocimi F, Cesari IM, da Costa IR, Furtado C, Agostini M, Rumjanek FD. Angiogenesis and evading immune destruction are the main related transcriptomic characteristics to the invasive process of oral tongue cancer. Sci Rep 2018; 8:2007. [PMID: 29386520 PMCID: PMC5792437 DOI: 10.1038/s41598-017-19010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
Metastasis of head and neck tumors is responsible for a high mortality rate. Understanding its biochemistry may allow insights into tumorigenesis. To that end we carried out RNA-Seq analyses of 5 SCC9 derived oral cancer cell lines displaying increased invasive potential. Differentially expressed genes (DEGs) were annotated based on p-values and false discovery rate (q-values). All 292 KEGG pathways related to the human genome were compared in order to pinpoint the absolute and relative contributions to the invasive process considering the 8 hallmarks of cancer plus 2 new defined categories, as well as we made with our transcriptomic data. In terms of absolute contribution, the highest correlations were associated to the categories of evading immune destruction and energy metabolism and for relative contributions, angiogenesis and evading immune destruction. DEGs were distributed into each one of all possible modes of regulation, regarding up, down and continuum expression, along the 3 stages of metastatic progression. For p-values twenty-six genes were consistently present along the tumoral progression and 4 for q-values. Among the DEGs, we found 2 novel potentially informative metastatic markers: PIGG and SLC8B1. Furthermore, interactome analysis showed that MYH14, ANGPTL4, PPARD and ENPP1 are amenable to pharmacological interventions.
Collapse
Affiliation(s)
- Juan Alberto Pérez-Valencia
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Francisco Prosdocimi
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Italo M Cesari
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Igor Rodrigues da Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Michelle Agostini
- Departamento de Patologia e Diagnóstico Oral, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Franklin David Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Wu M, Wang S, Hu L, Liang Y, Zhong Y, Jiang M, Ye X. Polyclonal antibody preparation against candidate tumour suppressor protein MIP for detection of its expression and localization in hepatocellular carcinoma. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1371641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Minhua Wu
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, P.R. China
| | - Shengchun Wang
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, P.R. China
| | - Li Hu
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, P.R. China
| | - Yanqing Liang
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, P.R. China
| | - Yu Zhong
- Research Center, Guangdong Medical University, Zhanjiang, P.R. China
| | - Minqin Jiang
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, P.R. China
| | - Xiaoxia Ye
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, P.R. China
| |
Collapse
|
15
|
Wu M, Ye X, Wang S, Li Q, Lai Y, Yi Y. MicroRNA-148b suppresses proliferation, migration, and invasion of nasopharyngeal carcinoma cells by targeting metastasis-associated gene 2. Onco Targets Ther 2017; 10:2815-2822. [PMID: 28652762 PMCID: PMC5476744 DOI: 10.2147/ott.s135664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs) play important roles in tumorigenesis and metastasis by regulating genes expression. MiRNA-148b (miR-148b) had been reported to inhibit tumor progression in some kinds of cancers, but the functions of miR-148b in nasopharyngeal carcinoma (NPC) remain largely unknown. The aim of this study was to investigate the functional role of miR-148b in NPC. METHODS Expression of miR-148b in NPC tissues and cell lines was detected by quantitative reverse transcription polymerase chain reaction. MiR-148b was overexpressed in CNE2 and C666-1 cells by miR-148b mimic transfection. The effects of miR-148b on cell proliferation, migration, and invasion were determined by colony formation assays, cell viability assays, and transwell assays. The target gene of miR-148b was investigated by luciferase assays, and the rescue experiment was performed. RESULTS MiR-148b was downregulated in NPC tissues and cell lines. Ectopic miR-148b expression significantly inhibited proliferation, migration, and invasion of CNE2 and C666-1 cells. We identified that metastasis-associated gene 2 (MTA2) is a direct target of miR-148b. Rescue experiment demonstrated that the tumor-suppressive effects of miR-148b on C666-1 cell were partly reversed by restoration of MTA2 expression. Moreover, miR-148b expression was negatively related to mRNA level of MTA2 in NPC tissues. CONCLUSION Our findings elucidate that miR-148b negatively regulates the growth, migration, and invasion of NPC cells, at least in part, by targeting MTA2. The present study indicates that miR-148b is a potential therapeutic agent for NPC.
Collapse
Affiliation(s)
- Minhua Wu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xiaoxia Ye
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Shengchun Wang
- Department of Pathology, Guangdong Medical University, Dongguan, People's Republic of China
| | - Qinghua Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yinxuan Lai
- Health Management and Medical Examination Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yanmei Yi
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
16
|
Jiang Z, Sun X, Zhang Q, Ji X, Yu Q, Huang T, Chen D, Chen H, Mei X, Wang L, He L, Fang J, Hou L, Wang L. Identification of candidate biomarkers that involved in the epigenetic transcriptional regulation for detection gastric cancer by iTRAQ based quantitative proteomic analysis. Clin Chim Acta 2017; 471:29-37. [PMID: 28502558 DOI: 10.1016/j.cca.2017.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND The sensitivities and specificities of biomarkers for gastric cancer are insufficient for clinical detection, and new diagnostics are therefore urgently required. METHODS A discovery set of gastric cancer tissues was labeled with iTRAQ reagents, separated using SCX chromatography, and identified using LC-ESI-MS/MS. A validation set of gastric cancer tissues was used to confirm the expression levels of potential markers. RESULTS The present study detected metastasis-associated protein 2 (MTA2) and Histone deacetylases 1 (HDAC1) proteins that were overexpressed in gastric cancer tissues compared with that in adjacent gastric tissue. The sensitivity and specificity of MTA2 in detecting 76 cases gastric cancers were 57.9% (95% CI: 46.5%-69.3%) and 55.3% (95% CI: 43.8%-66.7%), respectively. The sensitivity and specificity of HDAC1 were 61.8% (95% CI: 50.7%-73%) and 63.2% (95% CI: 52.1%-74.3%), respectively. The co-expression of MTA2 and HDAC1 in gastric cancer achieved 65.3% sensitivity (95% CI: 51.5%-79.1%) and 65.2% specificity (95% CI: 50.9%-79.5%), which was strongly associated with lymph node metastasis and TNM staging. CONCLUSION The present findings indicated a tight correlation between the MTA2 and HDAC1 expression level and lymph node metastasis and TNM staging in gastric cancers. Therefore, MTA2 and HDAC1 might be predictors of lymph node metastasis phenotype and possible target molecule for anticancer drug design in human gastric cancer.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Xingwang Sun
- Department of Pathology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Qiong Zhang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Xingli Ji
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Qin Yu
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Ting Huang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Daogang Chen
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Hui Chen
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Xiaohan Mei
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Linyu Wang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Linyan He
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Junhua Fang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Li Hou
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Li Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, PR China.
| |
Collapse
|
17
|
Wang B, Gu Q, Li J. DOC-2/DAB2 interactive protein regulates proliferation and mobility of nasopharyngeal carcinoma cells by targeting PI3K/Akt pathway. Oncol Rep 2017; 38:317-324. [DOI: 10.3892/or.2017.5704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
|
18
|
miR-548b inhibits the proliferation and invasion of malignant gliomas by targeting metastasis tumor-associated protein-2. Neuroreport 2016; 27:1266-1273. [DOI: 10.1097/wnr.0000000000000690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Quantitative proteomic analysis reveals that proteins required for fatty acid metabolism may serve as diagnostic markers for gastric cancer. Clin Chim Acta 2016; 464:148-154. [PMID: 27884752 DOI: 10.1016/j.cca.2016.11.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Gastric cancer is one of the leading causes of cancer-related deaths worldwide. The sensitivities and specificities of current biomarkers for gastric cancer are insufficient for clinical detection, and new diagnostic tests are therefore urgently required. METHODS A discovery set of gastric cancer and adjacent normal tissues were analyzed for differentially expressed proteins by labeling of peptide digests with isobaric tag for relative and absolute quantitation (iTRAQ) reagents followed by liquid chromatography-electrospray ionization-tandem mass spectrometry. A validation set of 70 pairs of gastric cancer and adjacent normal tissues were examined to confirm the expression levels of the potential biomarkers identified by iTRAQ labeling. RESULTS We detected 431 proteins associated with 16 KEGG pathways that were differentially expressed in gastric cancer tissues, of which 224 were upregulated and 207 were downregulated in gastric cancer tissues. Coexpression of fatty acid binding protein (FABP1) and fatty acid synthase (FASN) in gastric cancer tissues (61.4% sensitivity and 77.1% specificity) was strongly associated with lymph node metastasis and Tumor, Node, Metastasis stage I/II. CONCLUSION Quantitative proteomic analysis of gastric cancer tissues revealed that coexpression of FABP1 and FASN may serve as a biomarker for detection of early gastric cancer.
Collapse
|