1
|
Liu T, Chen Q, Liu R, Sun Y, Wang Y, Zhu Y, Zhao T. DMGAT: predicting ncRNA-drug resistance associations based on diffusion map and heterogeneous graph attention network. Brief Bioinform 2025; 26:bbaf179. [PMID: 40251829 PMCID: PMC12008124 DOI: 10.1093/bib/bbaf179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/21/2025] Open
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in drug resistance and sensitivity, making them important biomarkers and therapeutic targets. However, predicting ncRNA-drug associations is challenging due to issues such as dataset imbalance and sparsity, limiting the identification of robust biomarkers. Existing models often fall short in capturing local and global sequence information, limiting the reliability of predictions. This study introduces DMGAT (diffusion map and heterogeneous graph attention network), a novel deep learning model designed to predict ncRNA-drug associations. DMGAT integrates diffusion maps for sequence embedding, graph convolutional networks for feature extraction, and GAT for heterogeneous information fusion. To address dataset imbalance, the model incorporates sensitivity associations and employs a random forest classifier to select reliable negative samples. DMGAT embeds ncRNA sequences and drug SMILES using the word2vec technique, capturing local and global sequence information. The model constructs a heterogeneous network by combining sequence similarity and Gaussian Interaction Profile kernel similarity, providing a comprehensive representation of ncRNA-drug interactions. Evaluated through five-fold cross-validation on a curated dataset from NoncoRNA and ncDR, DMGAT outperforms seven state-of-the-art methods, achieving the highest area under the receiver operating characteristic curve (0.8964), area under the precision-recall curve (0.8984), recall (0.9576), and F1-score (0.8285). The raw data are released to Zenodo with identifier 13929676. The source code of DMGAT is available at https://github.com/liutingyu0616/DMGAT/tree/main.
Collapse
Affiliation(s)
- Tingyu Liu
- School of Medicine and Heath, Harbin Institute of Technology, 150000, Nangang District, Xidazhi Street No. 90, Harbin, China
| | - Qiuhao Chen
- Zhengzhou Research Institute, Harbin Instituteof Technology, 150000, Nangang District, Xidazhi Street No. 90, Harbin, Heilongjiang, China
| | - Renjie Liu
- Zhengzhou Research Institute, Harbin Instituteof Technology, 150000, Nangang District, Xidazhi Street No. 90, Harbin, Heilongjiang, China
| | - Yuzhi Sun
- School of Computer Science and Technology, Harbin Institute of Technology, 150000, Nangang District, Xidazhi Street No. 90, Harbin, Heilongjiang, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, 150000, Nangang District, Xidazhi Street No. 90, Harbin, Heilongjiang, China
| | - Yan Zhu
- College of Veterinary Medicine, Northeast Agricultural University, 150038, Xiangfang District, Changjiang Road No. 600, Harbin, China
| | - Tianyi Zhao
- School of Medicine and Heath, Harbin Institute of Technology, 150000, Nangang District, Xidazhi Street No. 90, Harbin, China
- Zhengzhou Research Institute, Harbin Instituteof Technology, 150000, Nangang District, Xidazhi Street No. 90, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Clinicopathological Significance and Prognostic Values of Long Noncoding RNA BCYRN1 in Cancer Patients: A Meta-Analysis and Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2022; 2022:8903265. [PMID: 35874631 PMCID: PMC9303157 DOI: 10.1155/2022/8903265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022]
Abstract
Background Although combination therapies have substantially improved the clinical outcomes of cancer patients, the prognosis and early diagnosis remain unsatisfactory. As a result, it is critical to look for novel indicators linked to cancer. Despite a number of recent studies indicating that the lncRNA brain cytoplasmic RNA1(BCYRN1) may be a potential predictive biomarker in cancer patients, BCYRN1's prognostic value is still being debated. Methods We utilized PubMed, Embase, Web of Science, and the Cochrane Library to search for studies related to BCYRN1 until October 2021. Valid data were extracted after determining the articles according to the inclusion and exclusion criteria, and forest plots were made using Stata software. We used hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals to evaluate the relationship between abnormal BCYRN1 expression and patient prognosis and clinicopathological characteristics. Results Meta-analysis revealed that increased BCYRN1 expression was associated with both overall tumor survival (OS; HR = 1.84, 95% CI 1.51–2.25, p < 0.0001) and disease-free survival (DFS; HR = 1.65, 95% CI 1.20–2.26, p=0.002). Furthermore, a strong association was discovered between increased BCYRN1 expression and tumor invasion depth (OR = 2.11, 95% CI 1.49–2.99, p=0.000), clinical stage (OR = 2.52, 95% CI 1.18–5.37, p=0.017), and distant tumor metastasis (OR = 4.19, 95% CI 1.45–12.05, p=0.008). Conclusions We found that high BCYRN1 expression was associated with poor survival prognosis and aggressive clinicopathological characteristics in various cancers, indicating that it is a potential prognostic indicator as well as a therapeutic target. Further research is needed on pan-cancer cohorts to determine the clinical relevance of BCYRN1 in distinct cancer types.
Collapse
|
3
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
4
|
Xue W, Zheng Y, Shen Z, Li L, Fan Z, Wang W, Zhu Z, Zhai Y, Zhao J, Kan Q. Involvement of long non-coding RNAs in the progression of esophageal cancer. Cancer Commun (Lond) 2021; 41:371-388. [PMID: 33605567 PMCID: PMC8118593 DOI: 10.1002/cac2.12146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/12/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors of the digestive system with high incidence and mortality rate worldwide. Therefore, exploring the pathogenesis of EC and searching for new targeted therapies are the current research hotspot for EC treatment. Long non‐coding RNAs (lncRNAs) are endogenous RNAs with more than 200 nucleotides, but without protein‐coding function. In recent years, lncRNAs have gradually become the focuses in the field of non‐coding RNA. Some lncRNAs have been proved to be closely related to the pathogenesis of EC. Many lncRNAs are abnormally expressed in EC and participate in many biological processes including cell proliferation, apoptosis, and metastasis by inhibiting or promoting target gene expression. LncRNAs can also regulate the progression of EC through epithelial‐mesenchymal transformation (EMT), which is closely related to the occurrence, development, and prognosis of EC. In this article, we review and discuss the involvement of lncRNAs in the progression of EC.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yuanyuan Zheng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Zhibo Shen
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Lifeng Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Zhirui Fan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Wenbin Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Zijia Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yunkai Zhai
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Jie Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
5
|
Abstract
In this review, Yeganeh et al. summarize different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms. RNA polymerase (Pol) III is responsible for transcription of different noncoding genes in eukaryotic cells, whose RNA products have well-defined functions in translation and other biological processes for some, and functions that remain to be defined for others. For all of them, however, new functions are being described. For example, Pol III products have been reported to regulate certain proteins such as protein kinase R (PKR) by direct association, to constitute the source of very short RNAs with regulatory roles in gene expression, or to control microRNA levels by sequestration. Consistent with these many functions, deregulation of Pol III transcribed genes is associated with a large variety of human disorders. Here we review different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms.
Collapse
Affiliation(s)
- Meghdad Yeganeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
BCYRN1 is correlated with progression and prognosis in gastric cancer. Biosci Rep 2020; 39:220767. [PMID: 31652309 PMCID: PMC6859112 DOI: 10.1042/bsr20190505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/04/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA brain cytoplasmic RNA 1 (BCYRN1) has been found to play an important role in tumorigenesis of a variety of tumors including gastric cancer (GC). However, the prognostic significance and molecular mechanism of BCYRN1 was still unknown in GC. In the present study, we found BCYRN1 expression was dramatically elevated in GC tissues and cell lines, and positively associated with tumor depth, lymph node metastasis and clinical stage in patients with GC. Moreover, univariate and multivariate Cox regression analyses demonstrated that high BCYRN1 expression was independent prognostic factor for overall survival in GC patients. In lncRNA-microRNA interactome database, we found that there were putative binding sites between BCYRN1 and miR-204-5p. Furthermore, we confirmed that down-regulation of BCYRN1 inhibited GC cell proliferation, migration and invasion through directly up-regulated miR-204-5p expression. In conclusion, BCYRN1 acts as a promising prognostic predictor in GC patients and regulated GC cell proliferation, cell cycle, migration and invasion through targeting miR-204-5p.
Collapse
|
7
|
Wang X, Wang C, Xu H, Xie H. Long Non-Coding RNA SLC25A21-AS1 Promotes Multidrug Resistance in Nasopharyngeal Carcinoma by Regulating miR-324-3p/IL-6 Axis. Cancer Manag Res 2020; 12:3949-3957. [PMID: 32547230 PMCID: PMC7264158 DOI: 10.2147/cmar.s251820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC), one of the most common types of head and neck tumor, occurred in the epithelial lining of the nasopharynx and is mainly prevalent in Southeast Asia and Southern China. However, the molecular mechanisms of NPC multidrug resistance still remained largely unclear. Methods The qRT-PCR assay was performed to examine SLC25A21-AS1, miR-324-3p and IL-6 expression in NPC tissues and cell. The CCK8 assay and colony formation assay were used to detect cell growth. In addition, CCK8 assay was performed to detect IC50 values of different drugs in NPC cell. Results In this study, we found that SLC25A21-AS1 expression was increased in NPC tissues and cell line, and knockdown of SLC25A21-AS1 inhibited cell growth and MDR in NPC cell. Moreover, SLC25A21-AS1 acted as a ceRNA for miR-324-3p and facilitates NPC cell growth and MDR by regulating the miR-324-3p/IL-6 axis. Conclusion Our findings demonstrated the role of SLC25A21-AS1/miR-324-3p/IL-6 axis in cell growth and MDR in NPC, which might be a potential prognostic and diagnostic marker in NPC patients and provide new insight into the molecular mechanism of MDR in NPC chemotherapy.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Otolaryngology, Liangxiang Hospital, Capital Medical University, Beijing 102401, People's Republic of China
| | - Chunhui Wang
- Department of Otolaryngology, Liangxiang Hospital, Capital Medical University, Beijing 102401, People's Republic of China
| | - Hong Xu
- Department of Otolaryngology, Liangxiang Hospital, Capital Medical University, Beijing 102401, People's Republic of China
| | - Hong Xie
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| |
Collapse
|
8
|
Jang S, Shin H, Lee Y. Functional Analysis of RNA Motifs Essential for BC200 RNA-mediated Translational Regulation. BMB Rep 2020. [PMID: 31234958 PMCID: PMC7061212 DOI: 10.5483/bmbrep.2020.53.2.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA) is proposed to act as a local translational modulator by inhibiting translation after being targeted to neuronal dendrites. However, the mechanism by which BC200 RNA inhibits translation is not fully understood. Although a detailed functional analysis of RNA motifs is essential for understanding the BC200 RNA-mediated translation-inhibition mechanism, there is little relevant research on the subject. Here, we performed a systematic domain-dissection analysis of BC200 RNA to identify functional RNA motifs responsible for its translational-inhibition activity. Various RNA variants were assayed for their ability to inhibit translation of luciferase mRNA in vitro. We found that the 111–200-nucleotide region consisting of part of the Alu domain as well as the A/C-rich domain (consisting of both the A-rich and C-rich domains) is most effective for translation inhibition. Surprisingly, we also found that individual A-rich, A/C-rich, and Alu domains can enhance translation but at different levels for each domain, and that these enhancing effects manifest as cap-dependent translation.
Collapse
Affiliation(s)
- Seonghui Jang
- Department of Chemistry, KAIST, Daejeon 34141, Korea
- Korea Food Research Institute, Wanju 55365, Korea
| | - Heegwon Shin
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
9
|
Tan N, Zhu B, Shu H, Tao YF, Wu JR, Fang M, Li CR, Chen ZQ, Ou C. Effect of lncRNA‑BC200 on proliferation and migration of liver cancer cells in vitro and in vivo. Oncol Rep 2019; 43:461-470. [PMID: 31894342 PMCID: PMC6967153 DOI: 10.3892/or.2019.7447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
In recent years, the important role of long non‑coding RNAs (lncRNAs) in the development of liver cancer has received increasing attention. The abnormal expression level of long non‑coding RNAs has been associated with the occurrence and development of liver cancer. However, the role and molecular mechanisms of lncRNAs in the development and progression of liver cancer are not fully understood. The present study aimed to clarify the function and molecular mechanism of lncRNA brain cytoplasmic 200 (BC200) in liver cancer. In the present study, it was found that BC200 expression level was higher in hepatocellular carcinoma (HCC) tissues than that in adjacent tissues. Cell function was examined by constructing BC200 knockout (KO) and BC200‑overexpression in vitro models. It was found that BC200 affected the proliferation and migration of HepG2 cells. Interestingly, it was found that BC200 affected the expression of c‑Myc protein but did not affect the mRNA expression level of c‑MYC. BC200 KO cells exhibited a reduced protein expression level of Bax protein and an increased protein expression level of Bcl‑xL. Conversely, BC200 overexpression reduced the expression of Bcl‑xL protein and increased the expression of Bax protein. Importantly, it was found that BC200 affected the formation of subcutaneous tumors in nude mice. In conclusion, the present results suggested that lncRNA BC200 may play an important role in liver cancer.
Collapse
Affiliation(s)
- Ni Tan
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bo Zhu
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Shu
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yi-Feng Tao
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun-Rong Wu
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Min Fang
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chun-Rong Li
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhong-Qing Chen
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chao Ou
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Barton M, Santucci-Pereira J, Vaccaro OG, Nguyen T, Su Y, Russo J. BC200 overexpression contributes to luminal and triple negative breast cancer pathogenesis. BMC Cancer 2019; 19:994. [PMID: 31646972 PMCID: PMC6813071 DOI: 10.1186/s12885-019-6179-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/20/2019] [Indexed: 01/04/2023] Open
Abstract
Background Long non coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that are not translated into proteins, but regulate the transcription of genes involved in different cellular processes, including cancer. Epidemiological analyses have demonstrated that parous women have a decreased risk of developing breast cancer in postmenopausal years if they went through a full term pregnancy in their early twenties. We here provide evidence of the role of BC200 in breast cancer and, potentially, in pregnancy’s preventive effect in reducing the lifetime risk of developing breast cancer. Methods Transcriptome analysis of normal breast of parous and nulliparous postmenopausal women revealed that several lncRNAs are differentially expressed in the parous breast. RNA sequencing of healthy postmenopausal breast tissue biopsies from eight parous and eight nulliparous women showed that there are 42 novel lncRNAs differentially expressed between these two groups. Screening of several of these 42 lncRNAs by RT-qPCR in different breast cancer cell lines, provided evidence that one in particular, lncEPCAM (more commonly known as BC200), was a strong candidate involved in cancer progression. Proliferation, migration, invasion and xerograph studies confirmed this hypothesis. Results The poorly studied oncogenic BC200 was selected to be tested in vitro and in vivo to determine its relevance in breast cancer and also to provide us with an understanding of its role in the increased susceptibility of the nulliparous women to cancer. Our results show that BC200 is upregulated in nulliparous women, and breast cancer cells and tissue. The role of BC200 is not completely understood in any of the breast cancer subtypes. We here provide evidence that BC200 has a role in luminal breast cancer as well as in the triple negative breast cancer subtype. Conclusion When overexpressed in luminal and triple negative breast cancer cell lines, BC200 shows increased proliferation, migration, and invasion in vitro. In vivo, overexpression of BC200 increased tumor size. Although treatment for cancer using lncRNAs as targets is in its infancy, the advancement in knowledge and technology to study their relevance in disease could lead to the development of novel treatment and preventive strategies for breast cancer.
Collapse
Affiliation(s)
- Maria Barton
- Biochemistry Department, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA. .,The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA.
| | - Julia Santucci-Pereira
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Olivia G Vaccaro
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Theresa Nguyen
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Yanrong Su
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Jose Russo
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| |
Collapse
|
11
|
Ming XL, Feng YL, He DD, Luo CL, Rong JL, Zhang WW, Ye P, Chai HY, Liang CZ, Tu JC. Role of BCYRN1 in hepatocellular carcinoma pathogenesis by lncRNA-miRNA-mRNA network analysis and its diagnostic and prognostic value. Epigenomics 2019; 11:1209-1231. [PMID: 31339046 DOI: 10.2217/epi-2018-0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: This study aimed to excavate the roles of BCYRN1 in hepatocellular carcinoma (HCC). Methods: A comprehensive strategy of microarray data mining, computational biology and experimental verification were adopted to assess the clinical significance of BCYRN1 and identify related pathways. Results: BCYRN1 was upregulated in HCC and its expression was positively associated with both tumor, node, metastasis and worse survival rate in patients with HCC. Through combing plasma BCYRN1 with alpha fetoprotein, the diagnosis of HCC was remarkably improved. BCYRN1 may regulate some cancer-related pathways to promote HCC initiation via an lncRNA-miRNA-mRNA network. Conclusion: Our results propose BCYRN1 as a potential diagnostic and prognostic biomarker and offer a novel perspective to explore the etiopathogenesis of HCC.
Collapse
Affiliation(s)
- Xin-Liang Ming
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Yan-Lin Feng
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Ding-Dong He
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Chang-Liang Luo
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Jia-Ling Rong
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Wu-Wen Zhang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Peng Ye
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Hong-Yan Chai
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Chun-Zi Liang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Jian-Cheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| |
Collapse
|
12
|
Han X, Xu Z, Tian G, Tang Z, Gao J, Wei Y, Xu X. Suppression of the long non-coding RNA MALAT-1 impairs the growth and migration of human tongue squamous cell carcinoma SCC4 cells. Arch Med Sci 2019; 15:992-1000. [PMID: 31360193 PMCID: PMC6657264 DOI: 10.5114/aoms.2018.73343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/06/2017] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Aberrant expression of long non-coding RNAs (lncRNAs) is associated with metastasis and poor prognosis in patients with various cancer types. However, few studies have assessed lncRNAs in oral squamous cell carcinoma (OSCC). This study aimed to investigate the expression and impact of lncRNAs in OSCC. MATERIAL AND METHODS Real-time PCR analysis was used to examine the expression of four lncRNAs, MALAT-1, UCA1, BC200 and SRA, in 14 OSCC and adjacent normal tissue pairs. The impact of MALAT-1 suppression by siRNA on the proliferation, apoptosis, anchorage-independent growth and migration of the human tongue carcinoma cell line SSC4 was also determined. RESULTS MALAT-1 levels were significantly higher in the OSCC tissue than in the normal tissues (p < 0.004); no significant differences in UCA1, BC200 or SRA RNA levels were observed. Knockdown of MALAT-1 by siRNA significantly suppressed proliferation of SSC4 cells (p < 0.004) and enhanced their apoptosis (p < 0.001). In addition, siRNA-mediated suppression of MALAT-1 inhibited SSC4 cell colony formation (p < 0.001) and migration (p < 0.004). CONCLUSIONS Elevated expression of MALAT-1 in OSCC may play a role in tumorigenesis and/or metastasis. Further studies are necessary to identify the mechanism by which MALAT-1 influences SCC4 growth and migration and validate its increased expression in OSCC patients.
Collapse
Affiliation(s)
- Xu Han
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Zixiao Xu
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Gang Tian
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Zhen Tang
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - JianYong Gao
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yibo Wei
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - XiaoGang Xu
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
Shin H, Kim Y, Kim M, Lee Y. BC200 RNA: An Emerging Therapeutic Target and Diagnostic Marker for Human Cancer. Mol Cells 2018; 41:993-999. [PMID: 30590906 PMCID: PMC6315322 DOI: 10.14348/molcells.2018.0425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
One of the most interesting findings from genome-wide expression analysis is that a considerable amount of noncoding RNA (ncRNA) is present in the cell. Recent studies have identified diverse biological functions of ncRNAs, which are expressed in a much wider array of forms than proteins. Certain ncRNAs associated with diseases, in particular, have attracted research attention as novel therapeutic targets and diagnostic markers. BC200 RNA, a 200-nucleotide ncRNA originally identified as a neuron-specific transcript, is abnormally over-expressed in several types of cancer tissue. A number of recent studies have suggested mechanisms by which abnormal expression of BC200 RNA contributes to the development of cancer. In this article, we first provide a brief review of a recent progress in identifying functions of BC200 RNA in cancer cells, and then offer examples of other ncRNAs as new therapeutic targets and diagnostic markers for human cancer. Finally, we discuss future directions of studies on BC200 RNA for new cancer treatments.
Collapse
Affiliation(s)
- Heegwon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Youngmi Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Meehyein Kim
- Virus Research and Testing Group, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
14
|
Prognostic Value of Long Noncoding RNAs in Patients with Gastrointestinal Cancer: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2018; 2018:5340894. [PMID: 30598708 PMCID: PMC6287160 DOI: 10.1155/2018/5340894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
Gastrointestinal cancers (GICs) are a huge threat to human health, which mainly include esophageal, gastric, and colorectal cancers. The purpose of this study was to clarify the prognostic value of long noncoding RNAs (lncRNAs) in GICs. A total of 111 articles were included, and 13103 patients (3123 with esophageal cancer, 4972 with gastric cancer, and 5008 with colorectal cancer) were enrolled in this study. The pooled hazard ratio (HR) values and corresponding 95% confidence interval (95% CI) of overall survival (OS) related to different lncRNA expressions in esophageal, gastric, colorectal, and gastrointestinal cancer patients were 1.92 (1.70–2.16), 1.96 (1.77–2.16), 2.10 (1.87–2.36), and 2.00 (1.87–2.13), respectively. We have identified 74 lncRNAs which were associated closely with poor prognosis of GIC patients, including 58 significantly upregulated lncRNA expression and 16 significantly downregulated lncRNA expression. In addition, 47 of the included studies revealed relative mechanisms and 12 of them investigated the correlation between lncRNAs and microRNAs. Taken together, this meta-analysis supports that specific lncRNAs are significantly related to the prognosis of GIC patients and may serve as novel markers for predicting the prognosis of GIC patients. Furthermore, lncRNAs may have a promising contribution to lncRNA-based targeted therapy and clinical decision-making in the future.
Collapse
|
15
|
Samson J, Cronin S, Dean K. BC200 (BCYRN1) - The shortest, long, non-coding RNA associated with cancer. Noncoding RNA Res 2018; 3:131-143. [PMID: 30175286 PMCID: PMC6114260 DOI: 10.1016/j.ncrna.2018.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
With the discovery that the level of RNA synthesis in human cells far exceeds what is required to express protein-coding genes, there has been a concerted scientific effort to identify, catalogue and uncover the biological functions of the non-coding transcriptome. Long, non-coding RNAs (lncRNAs) are a diverse group of RNAs with equally wide-ranging biological roles in the cell. An increasing number of studies have reported alterations in the expression of lncRNAs in various cancers, although unravelling how they contribute specifically to the disease is a bigger challenge. Originally described as a brain-specific, non-coding RNA, BC200 (BCYRN1) is a 200-nucleotide, predominantly cytoplasmic lncRNA that has been linked to neurodegenerative disease and several types of cancer. Here we summarise what is known about BC200, primarily from studies in neuronal systems, before turning to a review of recent work that aims to understand how this lncRNA contributes to cancer initiation, progression and metastasis, along with its possible clinical utility as a biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | - K. Dean
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Landskron L, Steinmann V, Bonnay F, Burkard TR, Steinmann J, Reichardt I, Harzer H, Laurenson AS, Reichert H, Knoblich JA. The asymmetrically segregating lncRNA cherub is required for transforming stem cells into malignant cells. eLife 2018; 7:31347. [PMID: 29580384 PMCID: PMC5871330 DOI: 10.7554/elife.31347] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor cells display features that are not found in healthy cells. How they become immortal and how their specific features can be exploited to combat tumorigenesis are key questions in tumor biology. Here we describe the long non-coding RNA cherub that is critically required for the development of brain tumors in Drosophila but is dispensable for normal development. In mitotic Drosophila neural stem cells, cherub localizes to the cell periphery and segregates into the differentiating daughter cell. During tumorigenesis, de-differentiation of cherub-high cells leads to the formation of tumorigenic stem cells that accumulate abnormally high cherub levels. We show that cherub establishes a molecular link between the RNA-binding proteins Staufen and Syncrip. As Syncrip is part of the molecular machinery specifying temporal identity in neural stem cells, we propose that tumor cells proliferate indefinitely, because cherub accumulation no longer allows them to complete their temporal neurogenesis program. Many biological signals control how cells grow and divide. However, cancer cells do not obey these growth-restricting signals, and as a result large tumors may develop. Recent experiments have suggested that stem cells – the precursors to the different types of specialized cells found in the body – are particularly important for generating tumors. A stem cell normally divides unequally to form a self-renewing cell and a more specialized cell (often a progenitor cell that will give rise to increasingly specialized cell types). The timing of when the specialization occurs can be key to guiding the ultimately produced cell progenies to their final identity. However, in a tumor cells can retain the ability to self-renew. Ultimately, the resulting ‘tumor stem cells’ become immortal and proliferate indefinitely. It is not fully understood why this uncontrolled proliferation occurs. Just like mammals (including humans), fruit flies can develop tumors. Some of the DNA mutations responsible for tumor development were already identified in flies as early as in the 1970s. This has made fruit flies a well-studied model system for uncovering the principle defects that cause tumors to form. Landskron et al. have now studied the neural stem cells found in brain tumors in fruit flies. Additional DNA mutations were not responsible for these cells becoming immortal. Instead, certain RNA molecules – products that are ‘transcribed’ from the DNA – were present in different amounts in tumor cells. The RNA that showed the greatest increase in tumor cells is a so-called long non-coding RNA named cherub. This RNA molecule has no important role in normal fruit flies, but is critical for tumor formation. Landskron et al. found that during cell division cherub segregates from the neural stem cells to the newly formed progenitor cells, where it breaks down over time. Progenitor cells that contain high levels of cherub give rise to tumor-generating neural stem cells. At the molecular level, cherubhelps two proteins to interact with each other: one called Syncrip that makes the neural stem cells take on a older identity, and another one (Staufen) that tethers it to the cell membrane. By restricting Syncrip to a particular location in the cell, cherub alters the timing of stem cell specialization, which contributes to tumor formation. Overall, the results presented by Landskron et al. reveal a new role for long non-coding RNAs: controlling the localization of the proteins that determine the fate of the cell. They also highlight a critical link between the timing of stem cell development and the proliferation of the cells. Further work is now needed to test whether the same control mechanism works in species other than fruit flies.
Collapse
Affiliation(s)
- Lisa Landskron
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Steinmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Francois Bonnay
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas R Burkard
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Jonas Steinmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Ilka Reichardt
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Heike Harzer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Jürgen A Knoblich
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
17
|
Ren H, Yang X, Yang Y, Zhang X, Zhao R, Wei R, Zhang X, Zhang Y. Upregulation of LncRNA BCYRN1 promotes tumor progression and enhances EpCAM expression in gastric carcinoma. Oncotarget 2017; 9:4851-4861. [PMID: 29435146 PMCID: PMC5797017 DOI: 10.18632/oncotarget.23585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/13/2017] [Indexed: 11/25/2022] Open
Abstract
Brain cytoplasmic RNA 1 (BCYRN1), along non-coding RNA, plays a critical role in various diseases, including some cancers. However, the expression of BCYRN1 and its roles in gastric carcinoma (GC) still remain unidentified. Thus, this study employed RT-qPCR to detect expression of BCYRN1 in 85 paired GC samples and adjacent normal tissues, and performed in vitro studies to explore effects of BCYRN1 in GC cells on cell proliferation, apoptosis and migration. We found BCYRN1 was significantly upregulated in GC samples, and its expression was positively correlated with advanced TNM stage (p = 0.0012) and tumor size (p = 0.027). Functionally, BCYRN1 knockdown by siRNA could inhibit cell proliferation, induce G1/G0 cell cycle arrest, increase apoptosis and impair migratory ability of AGS cells. Moreover, the results of RT-qPCR and western blotting indicated that knockdown of BCYRN1 notably decreased the expression of epithelial cell adhesion molecules (EpCAM). Otherwise, overexpression of BCYRN1 in GC cells (BGC-823 and SGC-7901) could reverse the effects of BCYRN1 knockdown. Taken together, our data indicate for the first time that BCYRN1 acts as an oncogenic lncRNA in GC progression and may be a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Hao Ren
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.,Department of Laboratory, Yuhuangding Hospital, Qingdao University Medical College, Yantai, Shandong Province, China
| | - Xiaomin Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiaoyu Zhang
- Clinical Medicine of Undergraduate, Taishan Medical University, Taian, Shandong Province, China
| | - Rui Zhao
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ran Wei
- Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
18
|
Kim Y, Lee J, Shin H, Jang S, Kim SC, Lee Y. Biosynthesis of brain cytoplasmic 200 RNA. Sci Rep 2017; 7:6884. [PMID: 28761139 PMCID: PMC5537265 DOI: 10.1038/s41598-017-05097-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA), a neuron-specific non-coding RNA, is also highly expressed in a number of tumors of non-neuronal origin. However, the biosynthesis of BC200 RNA remains poorly understood. In this study, we show that the efficient transcription of BC200 RNA requires both internal and upstream promoter elements in cancer cells. The transcription complex seems to interact with a broad range of sequences within the upstream 100-bp region. The cellular levels and half-lives of BC200 RNA were found to differ across various cancer cell types, but there was no significant correlation between these parameters. Exogenously expressed BC200 RNA had a shorter half-life than that observed for the endogenous version in cancer cells, suggesting that BC200 RNA might be protected by some limiting factor(s) in cancer cells. Transient transfection experiments showed that the transcriptional activity of the exogenous BC200 RNA promoter element varied depending on the cancer cell type. However, the promoter activities together with the half-life data could not explain the differences in the levels of BC200 RNA among different cell types, suggesting that there is another level of transcriptional regulation beyond that detected by our transient transfection experiments.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Heegwon Shin
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Seonghui Jang
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
19
|
Li CQ, Huang GW, Wu ZY, Xu YJ, Li XC, Xue YJ, Zhu Y, Zhao JM, Li M, Zhang J, Wu JY, Lei F, Wang QY, Li S, Zheng CP, Ai B, Tang ZD, Feng CC, Liao LD, Wang SH, Shen JH, Liu YJ, Bai XF, He JZ, Cao HH, Wu BL, Wang MR, Lin DC, Koeffler HP, Wang LD, Li X, Li EM, Xu LY. Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma. Oncogenesis 2017; 6:e297. [PMID: 28194033 PMCID: PMC5337622 DOI: 10.1038/oncsis.2017.1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/17/2016] [Accepted: 12/23/2016] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have a critical role in cancer initiation and progression, and thus may mediate oncogenic or tumor suppressing effects, as well as be a new class of cancer therapeutic targets. We performed high-throughput sequencing of RNA (RNA-seq) to investigate the expression level of lncRNAs and protein-coding genes in 30 esophageal samples, comprised of 15 esophageal squamous cell carcinoma (ESCC) samples and their 15 paired non-tumor tissues. We further developed an integrative bioinformatics method, denoted URW-LPE, to identify key functional lncRNAs that regulate expression of downstream protein-coding genes in ESCC. A number of known onco-lncRNA and many putative novel ones were effectively identified by URW-LPE. Importantly, we identified lncRNA625 as a novel regulator of ESCC cell proliferation, invasion and migration. ESCC patients with high lncRNA625 expression had significantly shorter survival time than those with low expression. LncRNA625 also showed specific prognostic value for patients with metastatic ESCC. Finally, we identified E1A-binding protein p300 (EP300) as a downstream executor of lncRNA625-induced transcriptional responses. These findings establish a catalog of novel cancer-associated functional lncRNAs, which will promote our understanding of lncRNA-mediated regulation in this malignancy.
Collapse
Affiliation(s)
- C-Q Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - G-W Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Z-Y Wu
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Y-J Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - X-C Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Y-J Xue
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Y Zhu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - J-M Zhao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - M Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - J Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - J-Y Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - F Lei
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Q-Y Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - S Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - C-P Zheng
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - B Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Z-D Tang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - C-C Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - L-D Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - S-H Wang
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - J-H Shen
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Y-J Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - X-F Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - J-Z He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - H-H Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - B-L Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - M-R Wang
- Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - D-C Lin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| | - H P Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- National University Cancer Institute of Singapore, National University Health System and National University Hospital, Singapore, Singapore
| | - L-D Wang
- Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - X Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China. E-mail:
| | - E-M Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China. E-mail:
| | - L-Y Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China. E-mail:
| |
Collapse
|