1
|
Surgical Planning of Sacral Nerve Stimulation Procedure in Presence of Sacral Anomalies by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques. Polymers (Basel) 2020; 12:polym12030581. [PMID: 32150891 PMCID: PMC7182873 DOI: 10.3390/polym12030581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Sacral nerve stimulation or sacral neuromodulation involves the implantation of a stimulating electrode lead through the sacral foramina. In patients with anatomical sacral anomalies, it can constitute a challenging procedure due to a lack of common reference points present in the normal anatomy. In this study, we present an innovative application of additive manufacturing for the planning of sacral nerve stimulation techniques and related surgical procedures in complex cases, and we verify that the use of personalized patient models may help to manage the presence of sacral anomalies. The use of two alternative additive manufacturing technologies working with thermoplastic and thermoset polymers, including fused deposition modeling as low-cost alternative and laser stereolithography as industrial gold standard, is compared in terms of viability, precision and overall production costs. They pay special attention to fidelity in terms of the bone microstructure reconstruction, which is necessary for adequately planning electrode insertion. Advantages and limitations of the alternative approaches are discussed and ideas for future developments and for solving current challenges are presented.
Collapse
|
2
|
Keller EE, Patras I, Hutu I, Roider K, Sievert KD, Aigner L, Janetschek G, Lusuardi L, Zimmermann R, Bauer S. Early sacral neuromodulation ameliorates urinary bladder function and structure in complete spinal cord injury minipigs. Neurourol Urodyn 2019; 39:586-593. [PMID: 31868966 PMCID: PMC7027870 DOI: 10.1002/nau.24257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Aims To determine the effects of early sacral neuromodulation (SNM) and pudendal neuromodulation (PNM) on lower urinary tract (LUT) function, minipigs with complete spinal cord injury (cSCI) were analyzed. SNM and PNM have been proposed as therapeutic approaches to improve bladder function, for example after cSCI. However, further evidence on efficacy is required before these methods can become clinical practice. Methods Eleven adults, female Göttingen minipigs with cSCI at vertebral level T11‐T12 were included: SNM (n = 4), PNM (n = 4), and SCI control (SCIC: n = 3). Tissue from six healthy minipigs was used for structural comparisons. Stimulation was started 1 week after cSCI. Awake urodynamics was performed on a weekly basis. After 16 weeks follow‐up, samples from the urinary bladder were taken for analyses. Results SNM improved bladder function with better capacities and lower detrusor pressures at voiding and avoided the emergence of detrusor sphincter dyssynergia (DSD). PNM and untreated SCI minipigs had less favorable outcomes with either DSD or constant urinary retention. Structural results revealed SCI‐typical fibrotic alterations in all cSCI minipigs. However, SNM showed a better‐balanced distribution of smooth muscle to connective tissue with a trend towards the reduced progression of bladder wall scarring. Conclusion Early SNM led to an avoidance of the emergence of DSD showing a more physiological bladder function during a 4 month follow‐up period after cSCI. This study might pave the way for the clinical continuation of early SNM for the treatment of neurogenic LUT dysfunction after SCI.
Collapse
Affiliation(s)
- Elena E Keller
- Department of Urology and Andrology, University Clinics Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Irina Patras
- Banat University of Agricultural Science and Veterinary Medicine, Timișoara, Romania
| | - Ioan Hutu
- Banat University of Agricultural Science and Veterinary Medicine, Timișoara, Romania
| | - Karin Roider
- Department of Urology and Andrology, University Clinics Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Karl-Dietrich Sievert
- Klinik für Urologie, Klinikum Lippe, Detmold, Germany.,Department of Urology, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster of Tissue Regeneration, Vienna, Austria
| | - Günter Janetschek
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Lukas Lusuardi
- Department of Urology and Andrology, University Clinics Salzburg, Salzburg, Austria
| | | | - Sophina Bauer
- Department of Urology and Andrology, University Clinics Salzburg, Salzburg, Austria
| |
Collapse
|
3
|
Meier K, Qerama E, Ettrup KS, Glud AN, Alstrup AKO, Sørensen JCH. Segmental innervation of the Göttingen minipig hind body. An electrophysiological study. J Anat 2018; 233:411-420. [PMID: 30040118 DOI: 10.1111/joa.12865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2018] [Indexed: 11/26/2022] Open
Abstract
The Göttingen minipig is being used increasingly in biomedical research. The anatomical structure of the porcine peripheral nervous system has been extensively characterized, but no equivalent to the dermatome map, which is so valuable in human neurophysiological research, has been created. We characterized the medullar segmental skin and muscle innervations of the minipig hind body, using neurophysiological methodology. Six adult minipigs underwent unilateral laminectomy from L2 to S3, exposing the nerve roots. The skin of the hind part of the body was divided into 36 predefined fields, based on anatomical landmarks for consistent reproducibility. We recorded the evoked potential in each exposed nerve root L2-S3 for cutaneous stimulation of each skin field, mapping the sensory innervation of the entire hind body. We subsequently recorded the motor response in seven predefined muscles during sequential stimulation of the L2-S3 nerve roots. We obtained a clear sensory evoked potential in the nerve roots during stimulation of the skin fields, allowing us to map the sensory innervation of the minipig hind body. Neurophysiological data from skin stimulation and muscle recordings enabled us to map the sensory innervation of the Göttingen minipig hind body and provide information about muscular innervation. The skin fields were sensory innervated by more than one root. The muscles each had one dominant root with minor contribution from neighboring roots. This is consistent with experimental data from human studies.
Collapse
Affiliation(s)
- Kaare Meier
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Anesthesiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Center for Experimental Neuroscience (CENSE), Aarhus University, Aarhus, Denmark
| | - Erisela Qerama
- Department of Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kåre Schmidt Ettrup
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Center for Experimental Neuroscience (CENSE), Aarhus University, Aarhus, Denmark
| | - Andreas Nørgaard Glud
- Department of Clinical Medicine, Center for Experimental Neuroscience (CENSE), Aarhus University, Aarhus, Denmark.,Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | | | - Jens Christian Hedemann Sørensen
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Center for Experimental Neuroscience (CENSE), Aarhus University, Aarhus, Denmark
| |
Collapse
|