1
|
Yin H, Zhang M, Zhang Y, Zhang X, Zhang X, Zhang B. Liquid biopsies in cancer. MOLECULAR BIOMEDICINE 2025; 6:18. [PMID: 40108089 PMCID: PMC11923355 DOI: 10.1186/s43556-025-00257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025] Open
Abstract
Cancer ranks among the most lethal diseases worldwide. Tissue biopsy is currently the primary method for the diagnosis and biological analysis of various solid tumors. However, this method has some disadvantages related to insufficient tissue specimen collection and intratumoral heterogeneity. Liquid biopsy is a noninvasive approach for identifying cancer-related biomarkers in peripheral blood, which allows for repetitive sampling across multiple time points. In the field of liquid biopsy, representative biomarkers include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. Many studies have evaluated the prognostic and predictive roles of CTCs and ctDNA in various solid tumors. Although these studies have limitations, the results of most studies appear to consistently demonstrate the correlations of high CTC counts and ctDNA mutations with lower survival rates in cancer patients. Similarly, a reduction in CTC counts throughout therapy may be a potential prognostic indicator related to treatment response in advanced cancer patients. Moreover, the biochemical characteristics of CTCs and ctDNA can provide information about tumor biology as well as resistance mechanisms against targeted therapy. This review discusses the current clinical applications of liquid biopsy in cancer patients, emphasizing its possible utility in outcome prediction and treatment decision-making.
Collapse
Affiliation(s)
- Hang Yin
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Manjie Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yu Zhang
- Dalian Medical University, Dalian, 116000, China
| | - Xuebing Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Xia Zhang
- Dalian Fifth People's Hospital, Dalian, 116000, China.
| | - Bin Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
2
|
de Nóbrega M, Dos Reis MB, Pereira ÉR, de Souza MF, de Syllos Cólus IM. The potential of cell-free and exosomal microRNAs as biomarkers in liquid biopsy in patients with prostate cancer. J Cancer Res Clin Oncol 2022; 148:2893-2910. [PMID: 35922694 DOI: 10.1007/s00432-022-04213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Prostate cancer (PCa) is the 4th most diagnosed cancer and the 8th leading cause of cancer-related death worldwide. Currently, clinical risk stratification models including factors like PSA levels, Gleason score, and digital rectal examination are used for this purpose. There is a need for novel biomarkers that can distinguish between indolent and aggressive pathology and reduce the risk of overdiagnosis/overtreatment. Liquid biopsy has a non-invasive character, can lead to less morbidity and provide new biomarkers, such as miRNAs, that regulate diverse important cellular processes. Here, we report an extended revision about the role of cell-free and exosomal miRNAs (exomiRNAs) as biomarkers for screening, diagnosis, prognosis, or treatment of PCa. METHODS A comprehensive review of the published literature was conducted focusing on the usefulness, advantages, and clinical applications of cell-free and exomiRNAs in serum and plasma. Using PubMed database 53 articles published between 2012 and 2021 were selected and discussed from the perspective of their use as diagnostic, prognostic and therapeutic biomarkers for PCa. RESULTS We identify 119 miRNAs associated with PCa development and the cell-free and exosomal miR-21, miR-141, miR-200c, and miR-375 were consistently associated with progression in multiple cohorts/studies. However, standardized experimental procedures, and well-defined and clinically relevant cohort studies are urgently needed to confirm the biomarker potential of cell-free and exomiRNAs in serum or plasma. CONCLUSION Cell-free and exomiRNAs in serum or plasma are promising tools for be used as non-invasive biomarkers for diagnostic, prognosis, therapy improvement and clinical outcome prediction in PCa patients.
Collapse
Affiliation(s)
- Monyse de Nóbrega
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Mariana Bisarro Dos Reis
- Barretos Cancer Hospital (Molecular Oncology Research Center), Barretos, SP, CEP 14784-400, Brazil
| | - Érica Romão Pereira
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Marilesia Ferreira de Souza
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil.
| |
Collapse
|
3
|
Schitcu VH, Raduly L, Nutu A, Zanoaga O, Ciocan C, Munteanu VC, Cojocneanu R, Petrut B, Coman I, Braicu C, Berindan-Neagoe I. MicroRNA Dysregulation in Prostate Cancer. Pharmgenomics Pers Med 2022; 15:177-193. [PMID: 35300057 PMCID: PMC8923686 DOI: 10.2147/pgpm.s348565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer biology is complex, and needs to be deciphered. The latest evidence reveals the significant role of non-coding RNAs, particularly microRNAs (miRNAs), as key regulatory factors in cancer. Therefore, the identification of altered miRNA patterns involved in prostate cancer will allow them to be used for development of novel diagnostic and prognostic biomarkers. Patients and Methods: We performed a miRNAs transcriptomic analysis, using microarray (10 matched pairs tumor tissue versus normal adjacent tissue, selected based on inclusion criteria), followed by overlapping with TCGA data. A total of 292 miRNAs were differentially expressed, with 125 upregulated and 167 downregulated in TCGA patients’ cohort with PRAD (prostate adenocarcinoma), respectively for the microarray experiments; 16 upregulated and 44 downregulated miRNAs were found in our cohort. To confirm our results obtained for tumor tissue, we performed validation with qRT-PCR at the tissue and plasma level of two selected transcripts, and finally, we focused on the identification of altered miRNAs involved in key biological processes. Results: A common signature identified a panel of 12 upregulated and 1 downregulated miRNA, targeting and interconnected in a network with the TP53, AGO2, BIRC5 gene and EGFR as a core element. Among this signature, the overexpressed transcripts (miR-20b-5p, miR-96-5p, miR-183-5p) and the downregulated miR-542-5p were validated by qRT-PCR in an additional patients’ cohort of 34 matched tumor and normal adjacent paired samples. Further, we performed the validation of the expression level for miR-20b-5p, miR-96-5p, miR-183-5p plasma, on the same patients’ cohort versus a healthy control group, confirming the overexpression of these transcripts in the PRAD group, demonstrating the liquid biopsy as a potential investigational tool in prostate cancer. Conclusion: In this pilot study, we provide evidence on miRNA dysregulation and its association with key functional components of the PRAD landscape, where an important role is acted by miR-20b-5p, miR-542-5p, or the oncogenic cluster miR-183-96-182.
Collapse
Affiliation(s)
- Vlad Horia Schitcu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Vlad Cristian Munteanu
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Bogdan Petrut
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Ioan Coman
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
- Correspondence: Cornelia Braicu, Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gh. Marinescu Street, Cluj-Napoca, 400337, Romania, Tel +40-264-597-256, Fax +40-264-597-257, Email ;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| |
Collapse
|
4
|
Xie M, Gao XS, Ma MW, Gu XB, Li HZ, Lyu F, Bai Y, Chen JY, Ren XY, Liu MZ. Population-Based Comparison of Different Risk Stratification Systems Among Prostate Cancer Patients. Front Oncol 2021; 11:646073. [PMID: 33928035 PMCID: PMC8076565 DOI: 10.3389/fonc.2021.646073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background It is not known which risk stratification system has the best discrimination ability for predicting prostate cancer death. Methods We identified patients with non-metastatic primary prostate adenocarcinoma diagnosis between 2004 and 2015 using the Surveillance, Epidemiology, and End Results database. Patients were categorized in different risk groups using the three frequently used risk stratification systems of the National Comprehensive Cancer Network guideline (NCCN-g), American Urological Association guideline (AUA-g), and European Association of Urology guideline (EAU-g), respectively. Associations between risk classification and prostate cancer-specific mortality (PCSM) were determined using Kaplan–Meier analyses and multivariable regression with Cox proportional hazards model. Area under the receiver operating characteristics curve (AUC) analyses were used to test the discrimination ability of the three risk grouping systems. Results We analyzed 310,062 patients with a median follow-up of 61 months. A total of 36,368 deaths occurred, including 6,033 prostate cancer deaths. For all the three risk stratification systems, the risk groups were significantly associated with PCSM. The AUC of the model relying on NCCN-g, AUA-g, and EAU-g risk stratification systems for PCSM at specifically 8 years were 0.818, 0.793, and 0.689 in the entire population; 0.819, 0.795, and 0.691 in Whites; 0.802, 0.777, and 0.681 in Blacks; 0.862, 0.818, and 0.714 in Asians; 0.845, 0.806, and 0.728 in Chinese patients. Regardless of the age, marital status, socioeconomic status, and treatment modality, AUC of the model relying on NCCN-g and AUA-g for PCSM was greater than that relying on EAU-g; AUC of the model relying on NCCN-g system was greater than that of the AUA-g system. Conclusions The NCCN-g and AUA-g risk stratification systems perform better in discriminating PCSM compared to the EAU-g system. The discrimination ability of the NCCN-g system was better than that of the AUA-g system. It is recommended to use NCCN-g to evaluate risk groups for prostate cancer patients and then provide more appropriate corresponding treatment recommendations.
Collapse
Affiliation(s)
- Mu Xie
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Xiao-Bin Gu
- Department of Radiation Oncology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Hong-Zhen Li
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Jia-Yan Chen
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Ming-Zhu Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| |
Collapse
|
5
|
Bahreyni A, Luo H. Advances in Targeting Cancer-Associated Genes by Designed siRNA in Prostate Cancer. Cancers (Basel) 2020; 12:E3619. [PMID: 33287240 PMCID: PMC7761674 DOI: 10.3390/cancers12123619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Short interfering RNAs (siRNAs) have provided novel insights into the field of cancer treatment in light of their ability to specifically target and silence cancer-associated genes. In recent years, numerous studies focus on determining genes that actively participate in tumor formation, invasion, and metastasis in order to establish new targets for cancer treatment. In spite of great advances in designing various siRNAs with diverse targets, efficient delivery of siRNAs to cancer cells is still the main challenge in siRNA-mediated cancer treatment. Recent advancements in the field of nanotechnology and nanomedicine hold great promise to meet this challenge. This review focuses on recent findings in cancer-associated genes and the application of siRNAs to successfully silence them in prostate cancer, as well as recent progress for effectual delivery of siRNAs to cancer cells.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
6
|
Labbé M, Hoey C, Ray J, Potiron V, Supiot S, Liu SK, Fradin D. microRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation. Mol Cancer 2020; 19:63. [PMID: 32293453 PMCID: PMC7087366 DOI: 10.1186/s12943-020-01186-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
As the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death, understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death. The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression, miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the tumor microenvironment, and can ultimately affect a tumor's response to radiotherapy. Furthermore, much interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes.
Collapse
Affiliation(s)
- Maureen Labbé
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Christianne Hoey
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jessica Ray
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Vincent Potiron
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Stéphane Supiot
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto and Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Delphine Fradin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
| |
Collapse
|