1
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
3
|
Arjmand B, Kokabi Hamidpour S, Rabbani Z, Tayanloo-Beik A, Rahim F, Aghayan HR, Larijani B. Organ on a Chip: A Novel in vitro Biomimetic Strategy in Amyotrophic Lateral Sclerosis (ALS) Modeling. Front Neurol 2022; 12:788462. [PMID: 35111126 PMCID: PMC8802668 DOI: 10.3389/fneur.2021.788462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis is a pernicious neurodegenerative disorder that is associated with the progressive degeneration of motor neurons, the disruption of impulse transmission from motor neurons to muscle cells, and the development of mobility impairments. Clinically, muscle paralysis can spread to other parts of the body. Hence it may have adverse effects on swallowing, speaking, and even breathing, which serves as major problems facing these patients. According to the available evidence, no definite treatment has been found for amyotrophic lateral sclerosis (ALS) that results in a significant outcome, although some pharmacological and non-pharmacological treatments are currently applied that are accompanied by some positive effects. In other words, available therapies are only used to relieve symptoms without any significant treatment effects that highlight the importance of seeking more novel therapies. Unfortunately, the process of discovering new drugs with high therapeutic potential for ALS treatment is fraught with challenges. The lack of a broad view of the disease process from early to late-stage and insufficiency of preclinical studies for providing validated results prior to conducting clinical trials are other reasons for the ALS drug discovery failure. However, increasing the combined application of different fields of regenerative medicine, especially tissue engineering and stem cell therapy can be considered as a step forward to develop more novel technologies. For instance, organ on a chip is one of these technologies that can provide a platform to promote a comprehensive understanding of neuromuscular junction biology and screen candidate drugs for ALS in combination with pluripotent stem cells (PSCs). The structure of this technology is based on the use of essential components such as iPSC- derived motor neurons and iPSC-derived skeletal muscle cells on a single miniaturized chip for ALS modeling. Accordingly, an organ on a chip not only can mimic ALS complexities but also can be considered as a more cost-effective and time-saving disease modeling platform in comparison with others. Hence, it can be concluded that lab on a chip can make a major contribution as a biomimetic micro-physiological system in the treatment of neurodegenerative disorders such as ALS.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rabbani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia, and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Bagher Larijani
| |
Collapse
|
4
|
Santoso JW, Li X, Gupta D, Suh GC, Hendricks E, Lin S, Perry S, Ichida JK, Dickman D, McCain ML. Engineering skeletal muscle tissues with advanced maturity improves synapse formation with human induced pluripotent stem cell-derived motor neurons. APL Bioeng 2021; 5:036101. [PMID: 34286174 PMCID: PMC8282350 DOI: 10.1063/5.0054984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
To develop effective cures for neuromuscular diseases, human-relevant in vitro models of neuromuscular tissues are critically needed to probe disease mechanisms on a cellular and molecular level. However, previous attempts to co-culture motor neurons and skeletal muscle have resulted in relatively immature neuromuscular junctions (NMJs). In this study, NMJs formed by human induced pluripotent stem cell (hiPSC)-derived motor neurons were improved by optimizing the maturity of the co-cultured muscle tissue. First, muscle tissues engineered from the C2C12 mouse myoblast cell line, cryopreserved primary human myoblasts, and freshly isolated primary chick myoblasts on micromolded gelatin hydrogels were compared. After three weeks, only chick muscle tissues remained stably adhered to hydrogels and exhibited progressive increases in myogenic index and stress generation, approaching values generated by native muscle tissue. After three weeks of co-culture with hiPSC-derived motor neurons, engineered chick muscle tissues formed NMJs with increasing co-localization of pre- and postsynaptic markers as well as increased frequency and magnitude of synaptic activity, surpassing structural and functional maturity of previous in vitro models. Engineered chick muscle tissues also demonstrated increased expression of genes related to sarcomere maturation and innervation over time, revealing new insights into the molecular pathways that likely contribute to enhanced NMJ formation. These approaches for engineering advanced neuromuscular tissues with relatively mature NMJs and interrogating their structure and function have many applications in neuromuscular disease modeling and drug development.
Collapse
Affiliation(s)
- Jeffrey W. Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Xiling Li
- Department of Biological Sciences, Dornsife College of Arts and Letters, University of Southern California, Los Angeles, California 90089, USA
| | - Divya Gupta
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Gio C. Suh
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Eric Hendricks
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Shaoyu Lin
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Sarah Perry
- Department of Biological Sciences, Dornsife College of Arts and Letters, University of Southern California, Los Angeles, California 90089, USA
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Dion Dickman
- Department of Biological Sciences, Dornsife College of Arts and Letters, University of Southern California, Los Angeles, California 90089, USA
| | - Megan L. McCain
- Author to whom correspondence should be addressed:. Tel: +1 2138210791. URL:https://livingsystemsengineering.usc.edu
| |
Collapse
|
5
|
Saini J, Faroni A, Reid AJ, Mouly V, Butler-Browne G, Lightfoot AP, McPhee JS, Degens H, Al-Shanti N. Cross-talk between motor neurons and myotubes via endogenously secreted neural and muscular growth factors. Physiol Rep 2021; 9:e14791. [PMID: 33931983 PMCID: PMC8087923 DOI: 10.14814/phy2.14791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular junction (NMJ) research is vital to advance the understanding of neuromuscular patho‐physiology and development of novel therapies for diseases associated with NM dysfunction. In vivo, the micro‐environment surrounding the NMJ has a significant impact on NMJ formation and maintenance via neurotrophic and differentiation factors that are secreted as a result of cross‐talk between muscle fibers and motor neurons. Recently we showed the formation of functional NMJs in vitro in a co‐culture of immortalized human myoblasts and motor neurons from rat‐embryo spinal‐cord explants, using a culture medium free from serum and neurotrophic or growth factors. The aim of this study was to assess how functional NMJs were established in this co‐culture devoid of exogenous neural growth factors. To investigate this, an ELISA‐based microarray was used to compare the composition of soluble endogenously secreted growth factors in this co‐culture with an a‐neural muscle culture. The levels of seven neurotrophic factors brain‐derived neurotrophic factor (BDNF), glial‐cell‐line‐derived neurotrophic factor (GDNF), insulin‐like growth factor‐binding protein‐3 (IGFBP‐3), insulin‐like growth factor‐1 (IGF‐1), neurotrophin‐3 (NT‐3), neurotrophin‐4 (NT‐4), and vascular endothelial growth factor (VEGF) were higher (p < 0.05) in the supernatant of NMJ culture compared to those in the supernatant of the a‐neural muscle culture. This indicates that the cross‐talk between muscle and motor neurons promotes the secretion of soluble growth factors contributing to the local microenvironment thereby providing a favourable regenerative niche for NMJs formation and maturation.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Dept. of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Dept. of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | | | - Adam P Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Institute of Sport Science and Innovations, Kaunas, Lithuania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
6
|
Saini J, Faroni A, Reid AJ, Mamchaoui K, Mouly V, Butler-Browne G, Lightfoot AP, McPhee JS, Degens H, Al-Shanti N. A Novel Bioengineered Functional Motor Unit Platform to Study Neuromuscular Interaction. J Clin Med 2020; 9:jcm9103238. [PMID: 33050427 PMCID: PMC7599749 DOI: 10.3390/jcm9103238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background: In many neurodegenerative and muscular disorders, and loss of innervation in sarcopenia, improper reinnervation of muscle and dysfunction of the motor unit (MU) are key pathogenic features. In vivo studies of MUs are constrained due to difficulties isolating and extracting functional MUs, so there is a need for a simplified and reproducible system of engineered in vitro MUs. Objective: to develop and characterise a functional MU model in vitro, permitting the analysis of MU development and function. Methods: an immortalised human myoblast cell line was co-cultured with rat embryo spinal cord explants in a serum-free/growth fact media. MUs developed and the morphology of their components (neuromuscular junction (NMJ), myotubes and motor neurons) were characterised using immunocytochemistry, phase contrast and confocal microscopy. The function of the MU was evaluated through live observations and videography of spontaneous myotube contractions after challenge with cholinergic antagonists and glutamatergic agonists. Results: blocking acetylcholine receptors with α-bungarotoxin resulted in complete, cessation of myotube contractions, which was reversible with tubocurarine. Furthermore, myotube activity was significantly higher with the application of L-glutamic acid. All these observations indicate the formed MU are functional. Conclusion: a functional nerve-muscle co-culture model was established that has potential for drug screening and pathophysiological studies of neuromuscular interactions.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
| | - Alessandro Faroni
- Manchester Academic Health Science Centre, Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester M1 7DN, UK; (A.F.); (A.J.R.)
- Manchester Academic Health Science Centre, Department of Plastic Surgery & Burns, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Adam J. Reid
- Manchester Academic Health Science Centre, Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester M1 7DN, UK; (A.F.); (A.J.R.)
- Manchester Academic Health Science Centre, Department of Plastic Surgery & Burns, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Gillian Butler-Browne
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Adam P. Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK;
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
- Correspondence:
| |
Collapse
|
7
|
Abstract
Organs-on-chips are broadly defined as microfabricated surfaces or devices designed to engineer cells into microscale tissues with native-like features and then extract physiologically relevant readouts at scale. Because they are generally compatible with patient-derived cells, these technologies can address many of the human relevance limitations of animal models. As a result, organs-on-chips have emerged as a promising new paradigm for patient-specific disease modeling and drug development. Because neuromuscular diseases span a broad range of rare conditions with diverse etiology and complex pathophysiology, they have been especially challenging to model in animals and thus are well suited for organ-on-chip approaches. In this Review, we first briefly summarize the challenges in neuromuscular disease modeling with animal models. Next, we describe a variety of existing organ-on-chip approaches for neuromuscular tissues, including a survey of cell sources for both muscle and nerve, and two- and three-dimensional neuromuscular tissue-engineering techniques. Although researchers have made tremendous advances in modeling neuromuscular diseases on a chip, the remaining challenges in cell sourcing, cell maturity, tissue assembly and readout capabilities limit their integration into the drug development pipeline today. However, as the field advances, models of healthy and diseased neuromuscular tissues on a chip, coupled with animal models, have vast potential as complementary tools for modeling multiple aspects of neuromuscular diseases and identifying new therapeutic strategies. Summary: Modeling neuromuscular diseases is challenging due to their complex etiology and pathophysiology. Here, we review the cell sources and tissue-engineering procedures that are being integrated as emerging neuromuscular disease models.
Collapse
Affiliation(s)
- Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|