1
|
Thomsen MS, Kostrikov S, Routhe LG, Johnsen KB, Helgudóttir SS, Gudbergsson JM, Andresen TL, Moos T. Remodeling of the brain angioarchitecture in experimental chronic neurodegeneration. Neurobiol Dis 2025; 204:106761. [PMID: 39662534 DOI: 10.1016/j.nbd.2024.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Chronic neurodegenerative diseases are characterized by substantial inflammation with putative impairment of the brain vasculature also commonly observed. To address effects of chronic neurodegeneration on the regional vasculature under experimentally controlled circumstances, the glutamate receptor agonist ibotenic acid was injected into striatum of adult rats, which causes excitotoxicity in the substantia nigra pars reticulata (SNpr) due to imbalance between inhibitory inputs from the striatum and excitatory signals from the subthalamic nucleus. Brains were examined at 28 days (short-term neurodegeneration) and 91 days (long-term neurodegeneration) and analyzed for vascular remodeling taking both 2D and 3D approaches, the latter involving confocal microscopy of optically cleared samples combined with machine learning-based image analysis. Crysectioned and microdissected samples were analyzed for protein and gene expression respectively. The resulting neurodegeneration was accompanied by regional tissue loss and inflammation. The 3D analysis of the degenerating SNpr revealed substantial changes of the vasculature with higher density, increased diameter, and number of tortuous vessels already after 28 days, evidently continuing at 91 days. Interestingly, the vascular remodeling changes occurred without changes in the expression of endothelial tight junction proteins, vascular basement membrane proteins, or markers of angiogenesis. We propose that remodeling of the vasculature in neurodegeneration occurs due to regional tissue atrophy, which leaves the vasculature operating but prone to additional pathologies.
Collapse
Affiliation(s)
- Maj Schneider Thomsen
- Neurobiology research and drug delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Serhii Kostrikov
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lisa Greve Routhe
- Neurobiology research and drug delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kasper Bendix Johnsen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Steinunn Sara Helgudóttir
- Neurobiology research and drug delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Johann Mar Gudbergsson
- Neurobiology research and drug delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Torben Moos
- Neurobiology research and drug delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
2
|
Wang X, Yang J, Zhang X, Cai J, Zhang J, Cai C, Zhuo Y, Fang S, Xu X, Wang H, Liu P, Zhou S, Wang W, Hu Y, Fang J. An endophenotype network strategy uncovers YangXue QingNao Wan suppresses Aβ deposition, improves mitochondrial dysfunction and glucose metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156158. [PMID: 39447228 DOI: 10.1016/j.phymed.2024.156158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), an escalating global health issue, lacks effective treatments due to its complex pathogenesis. YangXue QingNao Wan (YXQNW) is a China Food and Drug Administration (CFDA)- approved TCM formula that has been repurposed in clinical Phase II for the treatment of AD. Identifying YXQNW's active ingredients and their mechanisms is crucial for developing effective AD treatments. PURPOSE This study aims to elucidate the anti-AD effects of YXQNW and to explore its potential therapeutic mechanisms employing an endophenotype network strategy. METHODS Herein we present an endophenotype network strategy that combines active ingredient identification in rat serum, network proximity prediction, metabolomics, and in vivo experimental validation in two animal models. Specially, utilizing UPLC-Q-TOF-MS/MS, active ingredients are identified in YXQNW to build a drug-target network. We applied network proximity to identify potential AD pathological mechanisms of YXQNW via integration of drug-target network, AD endophenotype gene sets, and human protein interactome, and validated related mechanisms in two animal models. In a d-galactose-induced senescent rat model, YXQNW was administered at varying doses for cognitive and neuronal assessments through behavioral tests, Nissl staining, and transmission electron microscopy (TEM). Metabolomic analysis with LC-MS revealed YXQNW's influence on brain metabolites, suggesting therapeutic pathways. Levels of key proteins and biochemicals were measured by WB and ELISA, providing insights into YXQNW's neuroprotective mechanisms. In addition, 5×FAD model mice were used and administered YXQNW by gavage for 14 days at two doses. Amyloid-β levels, transporter expression, and cerebral blood flow have been detected by MRI and biochemical assays. RESULTS The network proximity analysis showed that the effect of YXQNW on AD was highly correlated with amyloid β, synaptic function, glucose metabolism and mitochondrial function. The results of metabolomics combined with in vivo experimental validation suggest that YXQNW has the potential to ameliorate glucose transport abnormalities in the brain by upregulating the expression of GLUT1 and GLUT3, while further enhancing glucose metabolism through increased O-GlcNAcylation and mitigating mitochondrial dysfunction via the AMPK/Sirt1 pathway, thereby improving d-galactose-induced cognitive deficits in rats. Additionally, YXQNW treatment significantly decreased Aβ1-42 levels and enhanced cerebral blood flow (CBF) in the hippocampus of 5×FAD mice. while mechanistic findings indicated that YXQNW treatment increased the expression of ABCB1, an Aβ transporter, in 5×FAD model mice to promote the clearance of Aβ from the brain and alleviate AD-like symptoms. CONCLUSIONS This study reveals that YXQNW may mitigate AD by inhibiting Aβ deposition and ameliorating mitochondrial dysfunction and glucose metabolism, thus offering a promising therapeutic approach for AD.
Collapse
Affiliation(s)
- Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinna Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Xiaolian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinyong Cai
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Jieqi Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Peng Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Wenjia Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Yunhui Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
3
|
Sun R, Shang J, Yan X, Zhao J, Wang W, Wang W, Li W, Gao C, Wang F, Zhang H, Wang Y, Cao H, Zhang J. VCAM1 Drives Vascular Inflammation Leading to Continuous Cortical Neuronal Loss Following Chronic Cerebral Hypoperfusion. J Alzheimers Dis 2023; 91:1541-1555. [PMID: 36641679 DOI: 10.3233/jad-221059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is associated with neuronal loss and blood-brain barrier (BBB) impairment in vascular dementia (VaD). However, the relationship and the molecular mechanisms between BBB dysfunction and neuronal loss remain elusive. OBJECTIVE We explored the reasons for neuron loss following CCH. METHODS Using permanent bilateral common carotid artery occlusion (2VO) rat model, we observed the pathological changes of cortical neurons and BBB in the sham group as well as rats 3d, 7d, 14d and 28d post 2VO. In order to further explore the factors influencing neuron loss following CCH with regard to cortical blood vessels, we extracted cortical brain microvessels at five time points for transcriptome sequencing. Finally, integrin receptor a4β1 (VLA-4) inhibitor was injected into the tail vein, and cortical neuron loss was detected again. RESULTS We found that cortical neuron loss following CCH is a continuous process, but damage to the BBB is acute and transient. Results of cortical microvessel transcriptome analysis showed that biological processes related to vascular inflammation mainly occurred in the chronic phase. Meanwhile, cell adhesion molecules, cytokine-cytokine receptor interaction were significantly changed at this phase. Among them, the adhesion molecule VCAM1 plays an important role. Using VLA-4 inhibitor to block VCAM1-VLA-4 interaction, cortical neuron damage was ameliorated at 14d post 2VO. CONCLUSION Injury of the BBB may not be the main reason for persistent loss of cortical neurons following CCH. The continuous inflammatory response within blood vessels maybe an important factor in the continuous loss of cortical neurons following CCH.
Collapse
Affiliation(s)
- Ruihua Sun
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Junkui Shang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xi Yan
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jingran Zhao
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wan Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjing Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wei Li
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Chenhao Gao
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Fengyu Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Haohan Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yanliang Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Huixia Cao
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Obrenovich M, Singh SK, Li Y, Perry G, Siddiqui B, Haq W, Reddy VP. Natural Product Co-Metabolism and the Microbiota-Gut-Brain Axis in Age-Related Diseases. Life (Basel) 2022; 13:41. [PMID: 36675988 PMCID: PMC9865576 DOI: 10.3390/life13010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Complementary alternative medicine approaches are growing treatments of diseases to standard medicine practice. Many of these concepts are being adopted into standard practice and orthomolecular medicine. Age-related diseases, in particular neurodegenerative disorders, are particularly difficult to treat and a cure is likely a distant expectation for many of them. Shifting attention from pharmaceuticals to phytoceuticals and "bugs as drugs" represents a paradigm shift and novel approaches to intervention and management of age-related diseases and downstream effects of aging. Although they have their own unique pathologies, a growing body of evidence suggests Alzheimer's disease (AD) and vascular dementia (VaD) share common pathology and features. Moreover, normal metabolic processes contribute to detrimental aging and age-related diseases such as AD. Recognizing the role that the cerebral and cardiovascular pathways play in AD and age-related diseases represents a common denominator in their pathobiology. Understanding how prosaic foods and medications are co-metabolized with the gut microbiota (GMB) would advance personalized medicine and represents a paradigm shift in our view of human physiology and biochemistry. Extending that advance to include a new physiology for the advanced age-related diseases would provide new treatment targets for mild cognitive impairment, dementia, and neurodegeneration and may speed up medical advancements for these particularly devastating and debilitating diseases. Here, we explore selected foods and their derivatives and suggest new dementia treatment approaches for age-related diseases that focus on reexamining the role of the GMB.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Department of Veteran's Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| | - Yi Li
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, MO 63103, USA
| | - George Perry
- Department of Neuroscience Developmental and Regenerative Biology, University of Texas, San Antonio, TX 78249, USA
| | - Bushra Siddiqui
- School of Medicine, Northeast Ohio College of Medicine, Rootstown, OH 44272, USA
| | - Waqas Haq
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
5
|
Mehan S, Bhalla S, Siddiqui EM, Sharma N, Shandilya A, Khan A. Potential Roles of Glucagon-Like Peptide-1 and Its Analogues in Dementia Targeting Impaired Insulin Secretion and Neurodegeneration. Degener Neurol Neuromuscul Dis 2022; 12:31-59. [PMID: 35300067 PMCID: PMC8921673 DOI: 10.2147/dnnd.s247153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Dementia is a chronic, irreversible condition marked by memory loss, cognitive decline, and mental instability. It is clinically related to various progressive neurological diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington’s. The primary cause of neurological disorders is insulin desensitization, demyelination, oxidative stress, and neuroinflammation accompanied by various aberrant proteins such as amyloid-β deposits, Lewy bodies accumulation, tau formation leading to neurofibrillary tangles. Impaired insulin signaling is directly associated with amyloid-β and α-synuclein deposition, as well as specific signaling cascades involved in neurodegenerative diseases. Insulin dysfunction may initiate various intracellular signaling cascades, including phosphoinositide 3-kinase (PI3K), c-Jun N-terminal kinases (JNK), and mitogen-activated protein kinase (MAPK). Neuronal death, inflammation, neuronal excitation, mitochondrial malfunction, and protein deposition are all influenced by insulin. Recent research has focused on GLP-1 receptor agonists as a potential therapeutic target. They increase glucose-dependent insulin secretion and are beneficial in neurodegenerative diseases by reducing oxidative stress and cytokine production. They reduce the deposition of abnormal proteins by crossing the blood-brain barrier. The purpose of this article is to discuss the role of insulin dysfunction in the pathogenesis of neurological diseases, specifically dementia. Additionally, we reviewed the therapeutic target (GLP-1) and its receptor activators as a possible treatment of dementia.
Collapse
Affiliation(s)
- Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- Correspondence: Sidharth Mehan, Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India, Tel +91 8059889909; +91 9461322911, Email ;
| | - Sonalika Bhalla
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Nidhi Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ambika Shandilya
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Orekhov AN, Poznyak AV, Sobenin IA, Nikifirov NN, Ivanova EA. Mitochondrion as a Selective Target for the Treatment of Atherosclerosis: Role of Mitochondrial DNA Mutations and Defective Mitophagy in the Pathogenesis of Atherosclerosis and Chronic Inflammation. Curr Neuropharmacol 2021; 18:1064-1075. [PMID: 31744449 PMCID: PMC7709151 DOI: 10.2174/1570159x17666191118125018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory condition that affects different arteries in the human body and often leads to severe neurological complications, such as stroke and its sequelae. Affected blood vessels develop atherosclerotic lesions in the form of focal thickening of the intimal layer, so called atherosclerotic plaques. OBJECTIVES Despite the high priority of atherosclerosis research for global health and the numerous preclinical and clinical studies conducted, currently, there is no effective pharmacological treatment that directly impacts atherosclerotic plaques. Many knowledge gaps exist in our understanding of the mechanisms of plaque formation. In this review, we discuss the role of mitochondria in different cell types involved in atherogenesis and provide information about mtDNA mutations associated with the disease. RESULTS Mitochondria of blood and arterial wall cells appear to be one of the important factors in disease initiation and development. Significant experimental evidence connects oxidative stress associated with mitochondrial dysfunction and vascular disease. Moreover, mitochondrial DNA (mtDNA) deletions and mutations are being considered as potential disease markers. Further study of mtDNA damage and associated dysfunction may open new perspectives for atherosclerosis treatment. CONCLUSION Mitochondria can be considered as important disease-modifying factors in several chronic pathologies. Deletions and mutations of mtDNA may be used as potential disease markers. Mitochondria-targeting antioxidant therapies appear to be promising for the development of treatment of atherosclerosis and other diseases associated with oxidative stress and chronic inflammation.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russian Federation,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian, Federation,Institute of Human Morphology, Moscow 117418, Russian Federation
| | - Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russian Federation
| | - Igor A Sobenin
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russian Federation,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian, Federation,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Nikita N Nikifirov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian, Federation,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia,Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow 119334, Russia
| | | |
Collapse
|
7
|
Obrenovich M, Jaworski H, Tadimalla T, Mistry A, Sykes L, Perry G, Bonomo RA. The Role of the Microbiota-Gut-Brain Axis and Antibiotics in ALS and Neurodegenerative Diseases. Microorganisms 2020; 8:E784. [PMID: 32456229 PMCID: PMC7285349 DOI: 10.3390/microorganisms8050784] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
: The human gut hosts a wide and diverse ecosystem of microorganisms termed the microbiota, which line the walls of the digestive tract and colon where they co-metabolize digestible and indigestible food to contribute a plethora of biochemical compounds with diverse biological functions. The influence gut microbes have on neurological processes is largely yet unexplored. However, recent data regarding the so-called leaky gut, leaky brain syndrome suggests a potential link between the gut microbiota, inflammation and host co-metabolism that may affect neuropathology both locally and distally from sites where microorganisms are found. The focus of this manuscript is to draw connection between the microbiota-gut-brain (MGB) axis, antibiotics and the use of "BUGS AS DRUGS" for neurodegenerative diseases, their treatment, diagnoses and management and to compare the effect of current and past pharmaceuticals and antibiotics for alternative mechanisms of action for brain and neuronal disorders, such as Alzheimer disease (AD), Amyotrophic Lateral Sclerosis (ALS), mood disorders, schizophrenia, autism spectrum disorders and others. It is a paradigm shift to suggest these diseases can be largely affected by unknown aspects of the microbiota. Therefore, a future exists for applying microbial, chemobiotic and chemotherapeutic approaches to enhance translational and personalized medical outcomes. Microbial modifying applications, such as CRISPR technology and recombinant DNA technology, among others, echo a theme in shifting paradigms, which involve the gut microbiota (GM) and mycobiota and will lead to potential gut-driven treatments for refractory neurologic diseases.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Hayden Jaworski
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Tara Tadimalla
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adil Mistry
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Lorraine Sykes
- Department of Laboratory Medicine, Metro Health Medical Center, Cleveland, OH 44109, USA;
| | - George Perry
- Department of Biology University of Texas San Antonio, San Antonio, TX 78249, USA;
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Zhunina OA, Yabbarov NG, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. Neurodegenerative Diseases Associated with Mitochondrial DNA Mutations. Curr Pharm Des 2020; 26:103-109. [DOI: 10.2174/1381612825666191122091320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Mitochondrial dysfunction underlies several human chronic pathologies, including cardiovascular
disorders, cancers and neurodegenerative diseases. Impaired mitochondrial function associated with oxidative
stress can be a result of both nuclear and mitochondrial DNA (mtDNA) mutations. Neurological disorders associated
with mtDNA mutations include mitochondrial encephalomyopathy, chronic progressive external ophthalmoplegia,
neurogenic weakness, and Leigh syndrome. Moreover, mtDNA mutations were shown to play a role in the
development of Parkinson and Alzheimer’s diseases. In this review, current knowledge on the distribution and
possible roles of mtDNA mutations in the onset and development of various neurodegenerative diseases, with
special focus on Parkinson’s and Alzheimer’s diseases has been discussed.
Collapse
Affiliation(s)
- Olga A. Zhunina
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd., 8, 117149, Moscow, Russian Federation
| | - Nikita G. Yabbarov
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd., 8, 117149, Moscow, Russian Federation
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240, Moscow, Russian Federation
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3rd Cherepkovskaya Street, Moscow 121552, Russian Federation
| | - Alexander N. Orekhov
- Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russian Federation
| |
Collapse
|
9
|
Ghanbarabadi M, Falanji F, Rad A, Chazani Sharahi N, Amoueian S, Amin M, Molavi M, Amin B. Neuroprotective effects of clavulanic acid following permanent bilateral common carotid artery occlusion in rats. Drug Dev Res 2019; 80:1110-1119. [PMID: 31482584 DOI: 10.1002/ddr.21595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/28/2019] [Accepted: 08/08/2019] [Indexed: 11/05/2022]
Abstract
We investigated whether clavulanic acid could improve learning and memory, in rats underwent bilateral occlusion of common carotid artery (2VO). Seventy male Wistar rats were subjected to 2VO, with a 1-week interval between right and left artery occlusions. After 2VO, animals received clavulanic acid (10, 20, 40 mg/kg, intraperitoneally), from day 8 to 20. Spatial memory was assessed in the Morris water maze, 1 week after the induction of 2VO (day 15). The mRNA expression levels of bcl-2, bcl2-associated x protein (bax), caspase-3, inducible nitric oxide synthase (iNOS), and amyloid beta precursor protein (APP) were measured in the neocortex and hippocampus. Clavulanic acid significantly decreased the escape latency and swimming time in the training trial days. As well, it increased time and distance percentage in the target quadrant, while it decreased such factors in the opposite quadrant in the final trial day, compared to 2VO + normal saline animals. Real time-PCR data showed a significant higher mRNA expression of bax, caspase 3, and iNOS in the hippocampus and neocortex of 2VO animal compared to nonoccluded rats. APP increased in the neocortex but not hippocampus. Compared with 2VO animals, clavulanic acid significantly down-regulated the expression of iNOS, caspase 3, and APP, accompanied by diminishing the bax/bcl2 ratio. Our results reveal a potential therapeutic use of clavulanic acid for cognitive dysfunction associated with cerebral hypoperfusion in vascular dementia and Alzheimer disease.
Collapse
Affiliation(s)
- Mustafa Ghanbarabadi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Department of Biochemistry and Nutrition, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Sakineh Amoueian
- Pathology Department, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamadreza Amin
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mehdi Molavi
- Department of Internal Medicine, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
10
|
Maclin JMA, Wang T, Xiao S. Biomarkers for the diagnosis of Alzheimer's disease, dementia Lewy body, frontotemporal dementia and vascular dementia. Gen Psychiatr 2019; 32:e100054. [PMID: 31179427 PMCID: PMC6551430 DOI: 10.1136/gpsych-2019-100054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Dementia is a chronic brain disorder classified by four distinct diseases that impact cognition and mental degeneration. Each subgroup exhibits similar brain deficiencies and mutations. This review will focus on four dementia subgroups: Alzheimer’s disease, vascular dementia, frontotemporal dementia and dementia Lewy body. Aim The aim of this systematic review is to create a concise overview of unique similarities within dementia used to locate and identify new biomarker methods in diagnosing dementia. Methods 123 300 articles published after 2010 were identified from PubMed, JSTOR, WorldCat Online Computer Library and PALNI (Private Academic Library Network of Indiana) using the following search items (in title or abstract): ‘Neurodegenerative Diseases’ OR ‘Biomarkers’ OR ‘Alzheimer’s Disease’ OR ‘Frontal Temporal Lobe Dementia’ OR ‘Vascular Dementia’ OR ‘Dementia Lewy Body’ OR ‘Cerebral Spinal Fluid’ OR ‘Mental Cognitive Impairment’. 47 studies were included in the qualitative synthesis. Results Evidence suggested neuroimaging with amyloid positron emission tomography (PET) scanning and newly found PET tracers to be more effective in diagnosing Alzheimer’s and amnesiac mental cognitive impairment than carbon-11 Pittsburgh compound-B radioisotope tracer. Newly created methods to make PET scans more accurate and practical in clinical settings signify a major shift in diagnosing dementia and neurodegenerative diseases. Conclusion Vast improvements in neuroimaging techniques have led to newly discovered biomarkers and diagnostics. Neuroimaging with amyloid PET scanning surpasses what had been considered the dominant method of neuroimaging and MRI. Newly created methods to make PET scans more accurate and practical in clinical settings signify a major shift in diagnosing dementia pathology. Continued research and studies must be conducted to improve current findings and streamline methods to further subcategorise neurodegenerative disorders and diagnosis.
Collapse
Affiliation(s)
- Joshua Marvin Anthony Maclin
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.,Department of Neuroscience, Earlham College, Richmond, Indiana, USA
| | - Tao Wang
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.,Department of Neuroscience, Earlham College, Richmond, Indiana, USA
| | - Shifu Xiao
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.,Department of Neuroscience, Earlham College, Richmond, Indiana, USA
| |
Collapse
|
11
|
Hussein OA, Abdel-Hafez AMM, Abd El Kareim A. Rat hippocampal CA3 neuronal injury induced by limb ischemia/reperfusion: A possible restorative effect of alpha lipoic acid. Ultrastruct Pathol 2018; 42:133-154. [PMID: 29466087 DOI: 10.1080/01913123.2018.1427165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Limb ischemia reperfusion (I/R) injury is associated with serious local and systemic effects. Reperfusion may augment tissue injury in excess of that produced by ischemia alone. The hippocampus has been reported to be vulnerable to I/R injury. Alpha lipoic acid (ALA) is an endogenous antioxidant with a powerful antioxidative, anti-inflammatory, and antiapoptotic properties. We studied the probable restorative effect of ALA on limb I/R-induced structural damage of rat hippocampus. Forty adult male albino rats were divided equally into four groups: group I (sham); group II (I/R-1 day) has undergone bilateral femoral arteries occlusion (3 h), then reperfusion for 1 day; group III (I/R-7 days) has undergone reperfusion for seven days; group IV (I/R-ALA) has undergone I/R as group III and received an intraperitoneal injection of ALA (100 mg/kg) for 7 days. I/R groups revealed degenerative changes in the pyramidal neuronal perikarya of CA3 field in the form of dark-stained cytoplasm, dilated RER cisternae, mitochondrial alterations, and dense bodies' accumulation. Their dendrites showed disorganized microtubules. Astrogliosis is featured by an increased number and increased immunoreactivity of astrocytes for glial fibrillary acid protein. Morphometric data revealed significant reduction of light neurons, surface area of neurons, and thickness of the CA3 layer. Most blood capillaries exhibited narrow lumen and irregular basal lamina. ALA ameliorated the neuronal damage. Pyramidal neurons revealed preservation of normal structure. Significant increase in the thickness of pyramidal layer in CA3 field and surface area and number of light neurons was observed but astrogliosis persisted. Limb I/R had a deleterious remote effect on the hippocampus aggravated with longer period of reperfusion. This work may encourage the use of ALA in the critical clinical settings with I/R injury.
Collapse
Affiliation(s)
- Ola A Hussein
- a Histology and Cell biology Department, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Amel M M Abdel-Hafez
- a Histology and Cell biology Department, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Ayat Abd El Kareim
- a Histology and Cell biology Department, Faculty of Medicine , Assiut University , Assiut , Egypt
| |
Collapse
|
12
|
Inhibition of excessive autophagy and mitophagy mediates neuroprotective effects of URB597 against chronic cerebral hypoperfusion. Cell Death Dis 2018; 9:733. [PMID: 29955058 PMCID: PMC6023888 DOI: 10.1038/s41419-018-0755-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
URB597 (URB) has therapeutic potential for treating chronic cerebral hypoperfusion (CCH)-induced neuronal death. The present study investigated the protective effects of URB on autopahgy and mitophagy in a CCH model as well as the underlying mechanisms. The ultrastructural changes were examined by electron microscopy. The mitochondrial membrane potential was assessed by immunofluorescence. The expressions of autophagy-related proteins (beclin-1, p62, and LC3), lysosome-related proteins (CTSD and LAMP1), and mitophagy-related proteins (BNIP3, cyt C and parkin) were evaluated by western blotting, and the interaction of beclin-1 and Bcl-2 were determined by immunoprecipitation. CCH significantly decreased the protein expression of p62, CTSD, and LAMP1 and increased the protein expression of beclin-1, parkin, and BNIP3, the LC3-II to LC3-I ratio, and the release of cyt C from mitochondria to cytoplasm. Furthermore, CCH induced the accumulation of ubiquitinated proteins in PSDs. However, URB significantly reversed these results. Besides, URB significantly inhibited the beclin-1 from beclin-1/Bcl-2 complex to whole-cell lysates. The above results indicate that URB could inhibit impaired autophagy degradation and the disruption of beclin-1/Bcl-2 complex and subsequently cut off BNIP3-cyt C- and parkin-required mitophagy, finally preventing the abnormal excessive autophagy and mitophagy. These findings provide new insights that URB is a promising agent for therapeutic management of CCH.
Collapse
|
13
|
Rahman S, Archana A, Jan AT, Minakshi R. Dissecting Endoplasmic Reticulum Unfolded Protein Response (UPR ER) in Managing Clandestine Modus Operandi of Alzheimer's Disease. Front Aging Neurosci 2018; 10:30. [PMID: 29467648 PMCID: PMC5808164 DOI: 10.3389/fnagi.2018.00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/24/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is most common cause of dementia witnessed among aged people. The pathophysiology of AD develops as a consequence of neurofibrillary tangle formation which consists of hyperphosphorylated microtubule associated tau protein and senile plaques of amyloid-β (Aβ) peptide in specific brain regions that result in synaptic loss and neuronal death. The feeble buffering capacity of endoplasmic reticulum (ER) proteostasis in AD is evident through alteration in unfolded protein response (UPR), where UPR markers express invariably in AD patient's brain samples. Aging weakens UPRER causing neuropathology and memory loss in AD. This review highlights molecular signatures of UPRER and its key molecular alliance that are affected in aging leading to the development of intriguing neuropathologies in AD. We present a summary of recent studies reporting usage of small molecules as inhibitors or activators of UPRER sensors/effectors in AD that showcase avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway. Neurochem Int 2018; 112:239-254. [DOI: 10.1016/j.neuint.2017.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/15/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022]
|
15
|
Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Recent Progress in Vascular Aging: Mechanisms and Its Role in Age-related Diseases. Aging Dis 2017; 8:486-505. [PMID: 28840062 PMCID: PMC5524810 DOI: 10.14336/ad.2017.0507] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/07/2017] [Indexed: 01/13/2023] Open
Abstract
As with many age-related diseases including vascular dysfunction, age is considered an independent and crucial risk factor. Complicated alterations of structure and function in the vasculature are linked with aging hence, understanding the underlying mechanisms of age-induced vascular pathophysiological changes holds possibilities for developing clinical diagnostic methods and new therapeutic strategies. Here, we discuss the underlying molecular mediators that could be involved in vascular aging, e.g., the renin-angiotensin system and pro-inflammatory factors, metalloproteinases, calpain-1, monocyte chemoattractant protein-1 (MCP-1) and TGFβ-1 as well as the potential roles of testosterone and estrogen. We then relate all of these to clinical manifestations such as vascular dementia and stroke in addition to reviewing the existing clinical measurements and potential interventions for age-related vascular dysfunction.
Collapse
Affiliation(s)
- Xianglai Xu
- 1Zhongshan Hospital, Fudan University, Shanghai 200032, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Brian Wang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Changhong Ren
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.,4Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China
| | - Jiangnan Hu
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | | - Tianxiang Chen
- 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Xie
- 3Department of Urology, the First Affiliated Hospital, Zhejiang University, Zhejiang Province, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| |
Collapse
|
16
|
Ustyugov AA, Aliev GM. Cardiovascular drugs and triazole based kinase inhibitors as a new strategies for the treatment of Alzheimer disease. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1429-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Su SH, Wang YQ, Wu YF, Wang DP, Lin Q, Hai J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 may protect against cognitive impairment in rats of chronic cerebral hypoperfusion via PI3K/AKT signaling. Behav Brain Res 2016; 313:334-344. [DOI: 10.1016/j.bbr.2016.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
|
18
|
Pinazo-Durán MD, Zanón-Moreno V, Gallego-Pinazo R, García-Medina JJ. Oxidative stress and mitochondrial failure in the pathogenesis of glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2015; 220:127-53. [PMID: 26497788 DOI: 10.1016/bs.pbr.2015.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on oxidative stress and mitochondrial failure for understanding mechanisms of optic nerve damage in primary open-angle glaucoma. The chapter shows scientific evidence for the role of mitochondrial disbalance and reactive oxygen species in glaucoma neurodegeneration. Mitochondria regulate important cellular functions including reactive oxygen species generation and apoptosis. Mitochondrial alterations result from a wide variety of damaging sources. Reactive oxygen species formed by the mitochondria can act as signaling molecules, inducing lipid peroxidation and/or excitotoxicity with the result of cell lesion and death. Antioxidants may help to counteract oxidative stress and to promote neuroprotection. We provide information that may lead to a new way for diagnosing and treating glaucoma patients.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Surgery/Ophthalmology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Surgery/Ophthalmology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Roberto Gallego-Pinazo
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Ophthalmology, University and Polytechnic Hospital la Fe, Valencia, Spain
| | - José J García-Medina
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Ophthalmology, University Hospital Reina Sofia, Murcia, Spain; Department of Ophthalmology and Optometry, University of Murcia, Murcia, Spain
| |
Collapse
|
19
|
Di Marco LY, Venneri A, Farkas E, Evans PC, Marzo A, Frangi AF. Vascular dysfunction in the pathogenesis of Alzheimer's disease--A review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol Dis 2015; 82:593-606. [PMID: 26311408 DOI: 10.1016/j.nbd.2015.08.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
Late-onset dementia is a major health concern in the ageing population. Alzheimer's disease (AD) accounts for the largest proportion (65-70%) of dementia cases in the older population. Despite considerable research effort, the pathogenesis of late-onset AD remains unclear. Substantial evidence suggests that the neurodegenerative process is initiated by chronic cerebral hypoperfusion (CCH) caused by ageing and cardiovascular conditions. CCH causes reduced oxygen, glucose and other nutrient supply to the brain, with direct damage not only to the parenchymal cells, but also to the blood-brain barrier (BBB), a key mediator of cerebral homeostasis. BBB dysfunction mediates the indirect neurotoxic effects of CCH by promoting oxidative stress, inflammation, paracellular permeability, and dysregulation of nitric oxide, a key regulator of regional blood flow. As such, BBB dysfunction mediates a vicious circle in which cerebral perfusion is reduced further and the neurodegenerative process is accelerated. Endothelial interaction with pericytes and astrocytes could also play a role in the process. Reciprocal interactions between vascular dysfunction and neurodegeneration could further contribute to the development of the disease. A comprehensive overview of the complex scenario of interacting endothelium-mediated processes is currently lacking, and could prospectively contribute to the identification of adequate therapeutic interventions. This study reviews the current literature of in vitro and ex vivo studies on endothelium-mediated mechanisms underlying vascular dysfunction in AD pathogenesis, with the aim of presenting a comprehensive overview of the complex network of causative relationships. Particular emphasis is given to vicious circles which can accelerate the process of neurovascular degeneration.
Collapse
Affiliation(s)
- Luigi Yuri Di Marco
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK.
| | - Annalena Venneri
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK; IRCCS San Camillo Foundation Hospital, Venice, Italy
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Paul C Evans
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK
| | - Alberto Marzo
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
20
|
Su SH, Wu YF, Lin Q, Yu F, Hai J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 suppress chronic cerebral hypoperfusion-induced neuronal apoptosis by inhibiting c-Jun N-terminal kinase signaling. Neuroscience 2015; 301:563-75. [DOI: 10.1016/j.neuroscience.2015.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/13/2015] [Accepted: 03/11/2015] [Indexed: 11/15/2022]
|
21
|
Phillips NR, Sprouse ML, Roby RK. Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay. Sci Rep 2014; 4:3887. [PMID: 24463429 PMCID: PMC4894387 DOI: 10.1038/srep03887] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/24/2013] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction is implicated in a vast array of diseases and conditions, such as Alzheimer's disease, cancer, and aging. Alterations in mitochondrial DNA (mtDNA) may provide insight into the processes that either initiate or propagate this dysfunction. Here, we describe a unique multiplex assay which simultaneously provides assessments of mtDNA copy number and the proportion of genomes with common large deletions by targeting two mitochondrial sites and one nuclear locus. This probe-based, single-tube multiplex provides high specificity while eliminating well-to-well variability that results from assaying nuclear and mitochondrial targets individually.
Collapse
Affiliation(s)
- Nicole R. Phillips
- University of North Texas Health Science Center, Department of Molecular and Medical Genetics 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - Marc L. Sprouse
- University of North Texas Health Science Center, Department of Molecular and Medical Genetics 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - Rhonda K. Roby
- University of North Texas Health Science Center, Department of Molecular and Medical Genetics 3500 Camp Bowie Blvd, Fort Worth, TX 76107
- University of North Texas Health Science Center, Institute of Applied Genetics 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| |
Collapse
|
22
|
Aliev G, Ashraf GM, Kaminsky YG, Sheikh IA, Sudakov SK, Yakhno NN, Benberin VV, Bachurin SO. Implication of the nutritional and nonnutritional factors in the context of preservation of cognitive performance in patients with dementia/depression and Alzheimer disease. Am J Alzheimers Dis Other Demen 2013; 28:660-70. [PMID: 24085255 PMCID: PMC10852765 DOI: 10.1177/1533317513504614] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
It has been postulated that Alzheimer disease (AD) is a systemic process, which involves multiple pathophysiological factors. A combination of pharmacotherapy and nonpharmacological interventions has been proposed to treat AD and other dementia. The nonpharmacological interventions include but are not limited to increasing sensory input through physical and mental activities, in order to modify cerebral blood flow and implementing nutritional interventions such as diet modification and vitamins and nutraceuticals therapy to vitalize brain functioning. This article highlights the recent research findings regarding novel treatment strategies aimed at modifying natural course of the disease and delaying cognitive decline through simultaneous implementation of pharmacological and nonpharmacological modulators as standardized treatment protocols.
Collapse
Affiliation(s)
- Gjumrakch Aliev
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, USA
- School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yury G. Kaminsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation
| | - Ishfaq Ahmed Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sergey K. Sudakov
- P.K. Anokhin Research Institute of Neurological Disorders, Russian Academy of Medical Sciences (RAMS), Moscow, Russian Federation
| | - Nikolay N. Yakhno
- Department of Neurological Disorders, I.M. Sechenov Moscow State Medical University, Moscow, Russian Federation
| | - Valery V. Benberin
- Medical Center of the Administration of the President of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russian Federation
| |
Collapse
|
23
|
Kaminsky YG, Reddy VP, Ashraf GM, Ahmad A, Benberin VV, Kosenko EA, Aliev G. Age-related defects in erythrocyte 2,3-diphosphoglycerate metabolism in dementia. Aging Dis 2013; 4:244-55. [PMID: 24124630 DOI: 10.14336/ad.2013.0400244] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/18/2023] Open
Abstract
Alzheimer disease (AD) is the most common dementing illness. Metabolic defects in the brain with aging contribute to the pathogenesis of AD. These changes can be found systematically and thus can be used as potential biomarkers. Erythrocytes (RBCs) are passive "reporter cells" that are not well studied in AD. In the present study, we analyzed an array of glycolytic and related enzymes and intermediates in RBCs from patients with AD and non-Alzheimer dementia (NA), age-matched controls (AC) and young adult controls (YC). AD is characterized by higher activities of hexokinase, phosphofructokinase, and bisphosphoglycerate mutase and bisphosphoglycerate phosphatase in RBCs. In our study, we observed that glycolytic and related enzymes displayed significantly lower activities in AC. However, similar or significantly higher activities were observed in AD and NA groups as compared to YC group. 2,3-diphosphoglycerate (2,3-DPG) levels were significantly decreased in AD and NA patients. The pattern of changes between groups in the above indices strongly correlates with each other. Collectively, our data suggested that AD and NA patients are associated with chronic disturbance of 2,3-DPG metabolism in RBCs. These defects may play a pivotal role in physiological processes, which predispose elderly subjects to AD and NA.
Collapse
Affiliation(s)
- Yury G Kaminsky
- Russian Academy of Sciences, Institute of Theoretical and Experimental Biophysics, Pushchino, 142290, Russia
| | | | | | | | | | | | | |
Collapse
|
24
|
Dhillon VS, Fenech M. Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2013; 759:1-13. [PMID: 24055911 DOI: 10.1016/j.mrrev.2013.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/05/2013] [Accepted: 09/08/2013] [Indexed: 12/20/2022]
Abstract
Mitochondria are essential for mammalian and human cell function as they generate ATP via aerobic respiration. The proteins required in the electron transport chain are mainly encoded by the circular mitochondrial genome but other essential mitochondrial proteins such as DNA repair genes, are coded in the nuclear genome and require transport into the mitochondria. In this review we summarize current knowledge on the association of point mutations and deletions in the mitochondrial genome that are detrimental to mitochondrial function and are associated with accelerated ageing and neurological disorders including Alzheimer's, Parkinson's, Huntington's and Amyotrophic lateral sclerosis (ALS). Mutations in the nuclear encoded genes that disrupt mitochondrial functions are also discussed. It is evident that a greater understanding of the causes of mutations that adversely affect mitochondrial metabolism is required to develop preventive measures against accelerated ageing and neurological disorders caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Varinderpal S Dhillon
- Preventative-Health Flagship, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia; CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia.
| | - Michael Fenech
- Preventative-Health Flagship, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia; CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia
| |
Collapse
|
25
|
Jian H, Yi-Fang W, Qi L, Xiao-Song H, Gui-Yun Z. Cerebral blood flow and metabolic changes in hippocampal regions of a modified rat model with chronic cerebral hypoperfusion. Acta Neurol Belg 2013; 113:313-7. [PMID: 23111782 DOI: 10.1007/s13760-012-0154-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) causes neurodegeneration which contributes to the cognitive impairment. This study utilized a modified rat model with CCH to investigate cerebral blood flow (CBF) and hippocampal metabolic changes. CBF was measured by laser Doppler flowmetry. Various metabolic ratios were evaluated from selective volumes of interest (VOI) in left hippocampal regions using in vivo proton magnetic resonance spectroscopy ((1)H-MRS). The ultrastructural changes with special respect to ribosomes in rat hippocampal CA1 neurons were studied by electron microscopy. CBF decreased immediately after CCH and remained reduced significantly at 1 day and 3 months postoperatively. (1)H-MRS revealed that CCH led to a significant decrease of N-acetyl aspartate/creatine (NAA/Cr) ratio in the hippocampal VOI in the model rats compared with the sham-operated control rats. However, no changes of myo-inositol/Cr, choline/Cr and glutamate and glutamine/Cr ratios between the model and control groups were observed. Under electron microscopy, most rosette-shaped polyribosomes were relatively evenly distributed in the hippocampal CA1 neuronal cytoplasms of the control rats. After CCH, most ribosomes were clumped into large abnormal aggregates in the model rats. Our data suggests that both permanent decrease of CBF and reduction of NAA/Cr ratio in the hippocampal regions may be related to the cognitive deficits in rats with CCH.
Collapse
|
26
|
Phillips NR, Simpkins JW, Roby RK. Mitochondrial DNA deletions in Alzheimer's brains: a review. Alzheimers Dement 2013; 10:393-400. [PMID: 23850329 DOI: 10.1016/j.jalz.2013.04.508] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/02/2013] [Accepted: 04/30/2013] [Indexed: 11/29/2022]
Abstract
Mitochondrial dysfunction and increased oxidative stress have been associated with normal aging and are possibly implicated in the etiology of late-onset Alzheimer's disease (AD). DNA deletions, as well as other alterations, can result from oxidative damage to nucleic acids. Many studies during the past two decades have investigated the incidence of mitochondrial DNA deletions in postmortem brain tissues of late-onset AD patients compared with age-matched normal control subjects. Published studies are not entirely concordant, but their differences might shed light on the heterogeneity of AD itself. Our understanding of the role that mitochondrial DNA deletions play in disease progression may provide valuable information that could someday lead to a treatment.
Collapse
Affiliation(s)
- Nicole R Phillips
- Department of Forensic & Investigative Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - James W Simpkins
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, WV, USA; Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, USA
| | - Rhonda K Roby
- Department of Forensic & Investigative Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA; Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
27
|
CNF1 increases brain energy level, counteracts neuroinflammatory markers and rescues cognitive deficits in a murine model of Alzheimer's disease. PLoS One 2013; 8:e65898. [PMID: 23738020 PMCID: PMC3667817 DOI: 10.1371/journal.pone.0065898] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Overexpression of pro-inflammatory cytokines and cellular energy failure are associated with neuroinflammatory disorders, such as Alzheimer's disease. Transgenic mice homozygous for human ApoE4 gene, a well known AD and atherosclerosis animal model, show decreased levels of ATP, increased inflammatory cytokines level and accumulation of beta amyloid in the brain. All these findings are considered responsible for triggering cognitive decline. We have demonstrated that a single administration of the bacterial E. coli protein toxin CNF1 to aged apoE4 mice, beside inducing a strong amelioration of both spatial and emotional memory deficits, favored the cell energy restore through an increment of ATP content. This was accompanied by a modulation of cerebral Rho and Rac1 activity. Furthermore, CNF1 decreased the levels of beta amyloid accumulation and interleukin-1β expression in the hippocampus. Altogether, these data suggest that the pharmacological modulation of Rho GTPases by CNF1 can improve memory performances in an animal model of Alzheimer's disease via a control of neuroinflammation and a rescue of systemic energy homeostasis.
Collapse
|
28
|
Link between cancer and Alzheimer disease via oxidative stress induced by nitric oxide-dependent mitochondrial DNA overproliferation and deletion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:962984. [PMID: 23691268 PMCID: PMC3649749 DOI: 10.1155/2013/962984] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/01/2013] [Indexed: 01/19/2023]
Abstract
Nitric oxide- (NO-) dependent oxidative stress results in mitochondrial ultrastructural alterations and DNA damage in cases of Alzheimer disease (AD). However, little is known about these pathways in human cancers, especially during the development as well as the progression of primary brain tumors and metastatic colorectal cancer. One of the key features of tumors is the deficiency in tissue energy that accompanies mitochondrial lesions and formation of the hypoxic smaller sized mitochondria with ultrastructural abnormalities. We speculate that mitochondrial involvement may play a significant role in the etiopathogenesis of cancer. Recent studies also demonstrate a potential link between AD and cancer, and anticancer drugs are being explored for the inhibition of AD-like pathology in transgenic mice. Severity of the cancer growth, metastasis, and brain pathology in AD (in animal models that mimic human AD) correlate with the degree of mitochondrial ultrastructural abnormalities. Recent advances in the cell-cycle reentry of the terminally differentiated neuronal cells indicate that NO-dependent mitochondrial abnormal activities and mitotic cell division are not the only important pathogenic factors in pathogenesis of cancer and AD, but open a new window for the development of novel treatment strategies for these devastating diseases.
Collapse
|
29
|
Hai J, Lin Q, Wu YF, Huang XS, Zhang GY, Wang F. Effects of N-stearoyl-L-tyrosine on the hippocampal ubiquitin-proteasome system in rats with chronic cerebral hypoperfusion. Neurol Res 2013; 35:734-43. [PMID: 23562289 DOI: 10.1179/1743132812y.0000000154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Chronic cerebral hypoperfusion (CCH) leads to neurodegeneration and cognitive impairment. Ubiquitinated protein aggregates are commonly present in neurodegenerative disorders and are believed to cause neuronal degeneration. Here, we investigated the effects of N-stearoyl-L-tyrosine (NSTyr) on the hippocampal ubiquitin-proteasome system (UPS) in rats with CCH. METHODS After induction of CCH, NSTyr was intraperitoneally administered daily for 3 months. Protein aggregation was analyzed by ethanolic phosphotungstic acid (EPTA) electron microscopy (EM), immunogold EM, laser-scanning confocal microscopy, and Western blot. Proteasome peptidase activity was measured by peptidase activity assays. RESULTS By using EPTA EM, immunogold EM and high-resolution laser-scanning confocal microscopy, we found that CCH resulted in the accumulation of ubiquitinated protein aggregates in rat hippocampal CA1 neurons. Western blot revealed that the levels of free ubiquitin were significantly reduced and that the levels of ubiquitinated proteins were markedly increased in the hippocampus of CCH rats. Direct activity measurements demonstrated that proteasome peptidase activity in the hippocampal region of rats was decreased after CCH induction. In the hippocampal tissue of CCH rats treated with NSTyr, however, ubiquitinated protein aggregates decreased and proteasome peptidase activity increased. DISCUSSION These data indicate that NSTyr may exert protective effects on rat hippocampal UPS function via endogenous regulation.
Collapse
Affiliation(s)
- Jian Hai
- Tongji University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
30
|
Alzheimer disease as a vascular disorder: Where do mitochondria fit? Exp Gerontol 2012; 47:878-86. [DOI: 10.1016/j.exger.2012.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 12/26/2022]
|
31
|
Piaceri I, Rinnoci V, Bagnoli S, Failli Y, Sorbi S. Mitochondria and Alzheimer's disease. J Neurol Sci 2012; 322:31-4. [PMID: 22694975 DOI: 10.1016/j.jns.2012.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/07/2012] [Accepted: 05/12/2012] [Indexed: 01/24/2023]
Abstract
Reductions in cerebral metabolism sufficient to impair cognition in normal individuals also occur in Alzheimer's disease (AD). FDG PET studies have shown that decreased glucose metabolism in AD precedes clinical diagnosis and the degree of clinical disability in AD correlates closely to the magnitude of the reduction in brain metabolism. This suggests that the clinical deterioration and metabolic impairment in AD are related closely. Diminished metabolism can lead to the hyperphosphorylation of tau and increased production of amyloid beta peptide, hallmarks of AD. These observations suggest also that early mitochondrially therapeutic interventions may be an important target in delaying AD progression in elderly individuals and in treating AD patients.
Collapse
Affiliation(s)
- Irene Piaceri
- Department of Neurological and Psychiatric Sciences, DENOTHE Excellence Centre, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | | | | | | | | |
Collapse
|
32
|
Cechetti F, Worm PV, Lovatel G, Moysés F, Siqueira IR, Netto CA. Environmental enrichment prevents behavioral deficits and oxidative stress caused by chronic cerebral hypoperfusion in the rat. Life Sci 2012; 91:29-36. [PMID: 22683434 DOI: 10.1016/j.lfs.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 04/25/2012] [Accepted: 05/19/2012] [Indexed: 12/31/2022]
Abstract
AIMS The aim of the present study was to evaluate the neuroprotective effects of environmental enrichment (EE), assessed by cognitive activity in the Morris water maze, and on brain oxidative status, through measurement of macromolecules damage, lipid peroxidation levels, total cellular thiols and antioxidant enzymes in hippocampus, striatum and cerebral cortex. MAIN METHODS Adult male Wistar rats were submitted to the modified permanent bilateral occlusion of the common carotid arteries (2VO) method, with right common carotid artery being first occluded, and tested three months after the ischemic event. Cognitive and physical stimulation, named Environmental Enrichment, consisted of one-hour sessions run 3 times per week during 12weeks, following two different stimulation protocols: pre-ischemia and pre+post-ischemia. Rats were then tested for both reference and working spatial memory tasks in the water maze and later sacrificed for measurement of oxidative stress parameters. KEY FINDINGS A significant cognitive deficit was found in both spatial tasks after hypoperfusion; this effect was reversed in the 2VO enriched group. Moreover, hippocampal oxidative damage and antioxidant enzyme activity were decreased by environmental enrichment. SIGNIFICANCE These results suggest that both stimulation protocols exert a neuroprotective effect against the cognitive impairment and the reduction of biomarkers for oxidative damage caused by chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Fernanda Cechetti
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
The changes of signal transduction pathways in hippocampal regions and postsynaptic densities after chronic cerebral hypoperfusion in rats. Brain Res 2012; 1429:9-17. [DOI: 10.1016/j.brainres.2011.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 11/15/2022]
|
34
|
Grammas P, Tripathy D, Sanchez A, Yin X, Luo J. Brain microvasculature and hypoxia-related proteins in Alzheimer's disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2011; 4:616-627. [PMID: 21904637 PMCID: PMC3160613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/11/2011] [Indexed: 05/31/2023]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease of increasing incidence. The pathologic processes that underlie this disorder are incompletely understood, however, hypoperfusion/hypoxia is thought to contribute to disease pathogenesis. Hypoxia inducible factor 1-alpha (HIF-1α), a key regulator of cellular responses to hypoxia, is elevated in the microcirculation of AD patients. Cerebral hypoxia is a potent stimulus for vascular activation and angiogenesis. Microvessels isolated from the brains of AD patients express a large number of angiogenic proteins. Despite considerable data in human tissues regarding vascular expression of hypoxia-related angiogenic proteins, there is little information regarding these proteins in the brain vasculature of transgenic AD mice. The objectives of this study were to determine expression of HIF-1α, angiogenic proteins, angiopoietin-2 (Ang-2), and matrix metalloproteinase 2 (MMP2), and survival/apoptotic proteins (Bcl-xL, caspase 3) in the cerebromicrovasculature of AD transgenic mice and to determine the direct effect of hypoxia on cerebral endothelial expression of these proteins in vitro. Cultured brain endothelial cells were subjected to hypoxia for 4-6 h and analyzed by western blot and immunofluorescence. Our results demonstrated that HIF-1α is induced in cultured brain endothelial cells exposed to hypoxia and that expression of Ang-2, MMP2 and caspase 3 was elevated and the anti-apoptotic protein Bcl-xL decreased. Brain sections from AD and control mice showed that HIF-1α, Ang-2, MMP2 and caspase 3 are elevated and Bcl-xL decreased in the microvasculature of AD mice. These data suggest the cerebromicrovasculature is an important target for the effects of hypoxia in the AD brain.
Collapse
Affiliation(s)
- Paula Grammas
- Garrison Institute on Aging and Department of Neurology, Texas Tech University Health Sciences Center Lubbock, TX 79430, USA.
| | | | | | | | | |
Collapse
|
35
|
Escames G, López LC, García JA, García-Corzo L, Ortiz F, Acuña-Castroviejo D. Mitochondrial DNA and inflammatory diseases. Hum Genet 2011; 131:161-73. [DOI: 10.1007/s00439-011-1057-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/26/2011] [Indexed: 12/21/2022]
|
36
|
Vančová O, Bačiak L, Kašparová S, Kucharská J, Palacios HH, Horecký J, Aliev G. In vivo and in vitro assessment of brain bioenergetics in aging rats. J Cell Mol Med 2011; 14:2667-74. [PMID: 19906014 PMCID: PMC4373491 DOI: 10.1111/j.1582-4934.2009.00879.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Brain energy disorders can be present in aged men and animals. To this respect, the mitochondrial and free radical theory of aging postulates that age-associated brain energy disorders are caused by an imbalance between pro- and anti-oxidants that can result in oxidative stress. Our study was designed to investigate brain energy metabolism and the activity of endogenous antioxidants during their lifespan in male Wistar rats. In vivo brain bioenergetics were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and in vitro by polarographic analysis of mitochondrial oxidative phosphorylation. When compared to the young controls, a significant decrease of age-dependent mitochondrial respiration and adenosine-3-phosphate (ATP) production measured in vitro correlated with significant reduction of forward creatine kinase reaction (kfor) and with an increase in phosphocreatine (PCr)/ATP, PCr/Pi and PME/ATP ratio measured in vivo. The levels of enzymatic antioxidants catalase, GPx and GST significantly decreased in the brain tissue as well as in the peripheral blood of aged rats. We suppose that mitochondrial dysfunction and oxidative inactivation of endogenous enzymes may participate in age-related disorders of brain energy metabolism.
Collapse
Affiliation(s)
- Ol'ga Vančová
- Pharmacobiochemical Laboratory, Comenius University School of Medicine, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
37
|
Filosto M, Scarpelli M, Cotelli MS, Vielmi V, Todeschini A, Gregorelli V, Tonin P, Tomelleri G, Padovani A. The role of mitochondria in neurodegenerative diseases. J Neurol 2011; 258:1763-74. [PMID: 21604203 DOI: 10.1007/s00415-011-6104-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/07/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Mitochondria are implicated in several metabolic pathways including cell respiratory processes, apoptosis, and free radical production. Mitochondrial abnormalities have been documented in neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, and amyotrophic lateral sclerosis. Several studies have demonstrated that mitochondrial impairment plays an important role in the pathogenesis of this group of disorders. In this review, we discuss the role of mitochondria in the main neurodegenerative diseases and review the updated knowledge in this field.
Collapse
Affiliation(s)
- Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital Spedali Civili, Pz.le Spedali Civili 1, 25100, Brescia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hai J, Lin Q, Su SH, Zhang L, Wan JF, Lu Y. Chronic cerebral hypoperfusion in rats causes proteasome dysfunction and aggregation of ubiquitinated proteins. Brain Res 2010; 1374:73-81. [PMID: 21167821 DOI: 10.1016/j.brainres.2010.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022]
Abstract
The deposition of abnormal protein aggregates is a feature of several neurodegenerative diseases. We have employed a rat model to investigate whether chronic cerebral hypoperfusion (CCH) induces proteasome dysfunction and the accumulation of ubiquitinated proteins and aggregates in the CNS. Protein aggregation was analyzed by ethanolic phosphotungstic acid (EPTA) electron microscopy (EM), immunogold EM, laser-scanning confocal microscopy, and Western blotting. Proteasome peptidase activity was studied by peptidase activity assays. EPTA EM and immunogold EM revealed that CCH led to the accumulation of protein aggregates in rat hippocampal CA1 neurons. High-resolution confocal microscopy demonstrated the presence of ubiquitin-positive protein aggregates surrounding nuclei and along dendrites. Western blotting revealed that levels of free ubiquitin were significantly reduced and that levels of ubiquitinated proteins were markedly increased in the hippocampus of CCH rats. Direct activity measurements revealed that proteasome peptidase activity in the hippocampal region of rats was decreased after CCH induction. These data suggest that reduced proteasome activity following CCH could impair the removal of abnormally folded proteins via the ubiquitin-proteasome pathway, leading to the accumulation of potentially toxic protein aggregates that could contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University, Shanghai 200065, China.
| | | | | | | | | | | |
Collapse
|
39
|
Coskun PE, Wyrembak J, Derbereva O, Melkonian G, Doran E, Lott IT, Head E, Cotman CW, Wallace DC. Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and down syndrome dementia. J Alzheimers Dis 2010; 20 Suppl 2:S293-310. [PMID: 20463402 DOI: 10.3233/jad-2010-100351] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Increasing evidence is implicating mitochondrial dysfunction as a central factor in the etiology of Alzheimer's disease (AD). The most significant risk factor in AD is advanced age and an important neuropathological correlate of AD is the deposition of amyloid-beta peptide (Abeta40 and Abeta42) in the brain. An AD-like dementia is also common in older individuals with Down syndrome (DS), though with a much earlier onset. We have shown that somatic mitochondrial DNA (mtDNA) control region (CR) mutations accumulate with age in post-mitotic tissues including the brain and that the level of mtDNA mutations is markedly elevated in the brains of AD patients. The elevated mtDNA CR mutations in AD brains are associated with a reduction in the mtDNA copy number and in the mtDNA L-strand transcript levels. We now show that mtDNA CR mutations increase with age in control brains; that they are markedly elevated in the brains of AD and DS and dementia (DSAD) patients; and that the increased mtDNA CR mutation rate in DSAD brains is associated with reduced mtDNA copy number and L-strand transcripts. The increased mtDNA CR mutation rate is also seen in peripheral blood DNA and in lymphoblastoid cell DNAs of AD and DSAD patients, and distinctive somatic mtDNA mutations, often at high heteroplasmy levels, are seen in AD and DSAD brain and blood cells DNA. In aging, DS, and DSAD, the mtDNA mutation level is positively correlated with beta-secretase activity and mtDNA copy number is inversely correlated with insoluble Abeta40 and Abeta42 levels. Therefore, mtDNA alterations may be responsible for both age-related dementia and the associated neuropathological changes observed in AD and DSAD.
Collapse
Affiliation(s)
- Pinar E Coskun
- Mitochondrial and Molecular Medicine and Genetics, University of California Irvine, Irvine, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Weakley SM, Jiang J, Kougias P, Lin PH, Yao Q, Brunicardi FC, Gibbs RA, Chen C. Role of somatic mutations in vascular disease formation. Expert Rev Mol Diagn 2010; 10:173-85. [PMID: 20214536 DOI: 10.1586/erm.10.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coronary artery disease, cerebrovascular disease, pulmonary artery hypertension and Alzheimer's disease all lead to substantial morbidity and mortality, and we currently lack effective treatments for these vascular diseases. Since the discovery, decades ago, that atherosclerotic lesions display clonal growth, atherosclerosis and other vascular diseases have been postulated to be neoplastic processes, arising through a series of critical somatic mutations. There is conflicting evidence supporting this but studies of DNA damage and mutagenesis, both genomic and mitochondrial, in atherosclerotic and vascular lesions, have yielded evidence that somatic mutations are involved in atherogenesis and vascular disease development. The roles of mitochondrial DNA damage, oxidative stress and signaling by members of the TGF-beta receptor family are implicated. With the increasing convenience and cost-effectiveness of genome sequencing, it is feasible to continue to seek specific genetic targets in the pathogenesis of these devastating diseases, with the hope of developing personalized genomic medicine in the future.
Collapse
Affiliation(s)
- Sarah M Weakley
- Michael E DeBakey Department of Surgery, Molecular Surgeon Research Center, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM391, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The "mitochondrial cascade hypothesis" could explain many of the biochemical, genetic and pathological features of sporadic Alzheimer's disease (AD). Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress and accumulation of amyloid beta, which in a vicious cycle reinforces mtDNA damage and oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, and despite the cognitive impairment frequently reported in patients with mtDNA mutation, no causative mutation in the mtDNA have been linked to AD. Indeed, results of studies on the role of mtDNA polymorphisms or haplogroups in AD are controversial. In this minireview, we summarize the actual knowledge about the involvement of mtDNA in AD pathology.
Collapse
|
42
|
Lin Q, Hai J, Yao LY, Lu Y. Neuroprotective effects of NSTyr on cognitive function and neuronal plasticity in rats of chronic cerebral hypoperfusion. Brain Res 2010; 1325:183-90. [DOI: 10.1016/j.brainres.2010.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/07/2010] [Accepted: 02/08/2010] [Indexed: 02/01/2023]
|
43
|
Aliev G, Palacios HH, Gasimov E, Obrenovich ME, Morales L, Leszek J, Bragin V, Solís Herrera A, Gokhman D. Oxidative Stress Induced Mitochondrial Failure and Vascular Hypoperfusion as a Key Initiator for the Development of Alzheimer Disease. Pharmaceuticals (Basel) 2010; 3:158-187. [PMID: 27713247 PMCID: PMC3991025 DOI: 10.3390/ph3010158] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction may be a principal underlying event in aging, including age-associated brain degeneration. Mitochondria provide energy for basic metabolic processes. Their decay with age impairs cellular metabolism and leads to a decline of cellular function. Alzheimer disease (AD) and cerebrovascular accidents (CVAs) are two leading causes of age-related dementia. Increasing evidence strongly supports the theory that oxidative stress, largely due to reactive oxygen species (ROS), induces mitochondrial damage, which arises from chronic hypoperfusion and is primarily responsible for the pathogenesis that underlies both disease processes. Mitochondrial membrane potential, respiratory control ratios and cellular oxygen consumption decline with age and correlate with increased oxidant production. The sustained hypoperfusion and oxidative stress in brain tissues can stimulate the expression of nitric oxide synthases (NOSs) and brain endothelium probably increase the accumulation of oxidative stress products, which therefore contributes to blood brain barrier (BBB) breakdown and brain parenchymal cell damage. Determining the mechanisms behind these imbalances may provide crucial information in the development of new, more effective therapies for stroke and AD patients in the near future.
Collapse
Affiliation(s)
- Gjumrakch Aliev
- School of Health Science and Healthcare Administration, University of Atlanta, 6685 Peachtree Industrial Blvd., Atlanta, Georgia, 30360, USA.
- Department of Nutrition and Biochemistry, Faculty of Sciences, Javeriana University, Bogotà D.C., Colombia.
- Stress Relief and Memory Training Center, Brooklyn, New York, NY 11235, USA.
| | - Hector H Palacios
- Department of Biology, College of Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-1664, USA
| | - Eldar Gasimov
- Department of Cytology, Histology and Embryology, Azerbaijan Medical University, 25 Street Bakhikhanov, Baku AZ10 25, Azerbaijan
| | - Mark E Obrenovich
- Department of Pathology, School of Medicine, Case Western Reserve University, WRB 5301, Cleveland, Ohio, 44106, USA
| | - Ludis Morales
- Department of Nutrition and Biochemistry, Faculty of Sciences, Javeriana University, Bogotà D.C., Colombia
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, 25 St. Kraszewskiego, Wroclaw, 50-229, Poland
| | - Valentin Bragin
- Stress Relief and Memory Training Center, Brooklyn, New York, NY 11235, USA
| | - Arturo Solís Herrera
- Dirección de Investigación y desarrollo, Centro de Estudios de la Fotosíntesis Humana, S.C. López Velarde 108 y 109, Centro, Aguascalientes, Aguascalientes, 20000, México
| | - Dmitry Gokhman
- Department of Mathematics, College of Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
44
|
Aliev G, Palacios HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales L. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol 2009; 41:1989-2004. [DOI: 10.1016/j.biocel.2009.03.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/29/2009] [Accepted: 03/30/2009] [Indexed: 12/01/2022]
|
45
|
Cognitive dysfunction induced by chronic cerebral hypoperfusion in a rat model associated with arteriovenous malformations. Brain Res 2009; 1301:80-8. [PMID: 19761762 DOI: 10.1016/j.brainres.2009.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/27/2009] [Accepted: 09/02/2009] [Indexed: 11/23/2022]
Abstract
The relationship between chronic cerebral hypoperfusion and cognitive function has not been completely delineated. In the present studies, we developed an experimental model associated with arteriovenous malformation to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neuropathological changes. The rat model was established by creating a fistula through an end-to-side anastomosis between the right distal external jugular vein and the ipsilateral common carotid artery, followed by ligation of the left vein draining the transverse sinus and bilateral external carotid arteries. Age-matched rats comprised a control group. Three months after surgery, cognitive functions were evaluated by the Morris water maze and hippocampal long-term potentiation (LTP). Neuropathological changes were examined using light and electron microscopic techniques. We found that both learning capacity and spatial memory were significantly impaired in rats with chronic cerebral hypoperfusion concomitant with LTP inhibition and neurodegeneration in the hippocampal CA1 region of model rats compared with control rats. In addition, model rats showed a decrease at the protein level of cyclic AMP response element binding (CREB) phosphorylation in hippocampal tissues. Therefore, cognitive impairment caused by chronic cerebral hypoperfusion associated with arteriovenous malformations may be partially explained by the neurodegeneration and reduction of CREB phosphorylation in rat hippocampus.
Collapse
|
46
|
Mancuso M, Calsolaro V, Orsucci D, Carlesi C, Choub A, Piazza S, Siciliano G. Mitochondria, cognitive impairment, and Alzheimer's disease. Int J Alzheimers Dis 2009; 2009. [PMID: 20798880 PMCID: PMC2925259 DOI: 10.4061/2009/951548] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/22/2009] [Indexed: 01/05/2023] Open
Abstract
To date, the beta amyloid (Abeta) cascade hypothesis remains the main pathogenetic model of Alzheimer's disease (AD), but its role in the majority of sporadic AD cases is unclear. The "mitochondrial cascade hypothesis" could explain many of the biochemical, genetic, and pathological features of sporadic AD. Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress, and accumulation of Abeta, which in a vicious cycle reinforce the mtDNA damage and the oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, no causative mutations in the mtDNA have been detected so far. Indeed, results of studies on the role of mtDNA haplogroups in AD are controversial. In this review we discuss the role of the mitochondria, and especially of the mtDNA, in the cascade of events leading to neurodegeneration, dementia, and AD.
Collapse
Affiliation(s)
- M Mancuso
- Department of Neuroscience, Neurological Clinic, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|