1
|
Penlioglou T, Lambadiari V, Papanas N. The contribution of dietary glycemic index and glycemic load to the development of microvascular complications of diabetes. Nutrition 2021; 89:111234. [PMID: 33878554 DOI: 10.1016/j.nut.2021.111234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 01/19/2023]
Abstract
Lifestyle modification, including a healthy diet, is of paramount importance in the management of diabetes mellitus. To this end, diets have been proposed with low glycemic index (an index of carbohydrate food expressing how quickly this nutrient can increase blood glucose) and glycemic load (an index obtained by multiplying the glycemic index by the grams of carbohydrate, then dividing by 100). The aim of this review was to discuss the potential contribution of diets with low glycemic index and glycemic load in diabetic microvascular complications. Currently, their role to the prevention and delay of microvascular complications in diabetes mellitus remains unclear, and further knowledge is desirable.
Collapse
Affiliation(s)
- Theano Penlioglou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Research Institute and Diabetes Centre, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, Athens, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
2
|
Brown RB. Diabetes, Diabetic Complications, and Phosphate Toxicity: A Scoping Review. Curr Diabetes Rev 2020; 16:674-689. [PMID: 31686640 DOI: 10.2174/1573399815666191104113236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
This article presents a scoping review and synthesis of research findings investigating the toxic cellular accumulation of dysregulated inorganic phosphate-phosphate toxicity-as a pathophysiological determinant of diabetes and diabetic complications. Phosphorus, an essential micronutrient, is closely linked to the cellular metabolism of glucose for energy production, and serum inorganic phosphate is often transported into cells along with glucose during insulin therapy. Mitochondrial dysfunction and apoptosis, endoplasmic reticulum stress, neuronal degeneration, and pancreatic cancer are associated with dysregulated levels of phosphate in diabetes. Ectopic calcification involving deposition of calcium-phosphate crystals is prevalent throughout diabetic complications, including vascular calcification, nephropathy, retinopathy, and bone disorders. A low-glycemic, low-phosphate dietary intervention is proposed for further investigations in the treatment and prevention of diabetes and related diabetic pathologies.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Hassan NK, Gillani SW, Kaoje AA, Fari FM, Elashmouny HM, Sulayman NM, Mohammadi NA. A Clinical Review on Nutritional Requirements and Assessment for Type 2 Diabetes Mellitus with Chronic Renal Disease. Curr Diabetes Rev 2020; 16:922-930. [PMID: 32072916 DOI: 10.2174/1573399816666200211120402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND A significant correlation exists between type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD), where up to 40% of diabetic patients suffer from CKD as a direct result of diabetic complications. The management of diabetes in CKD patients can be challenging due to their need for disease-specific diets, as well as increased risks of complications due to malnutrition, which is why their dietary needs and nutritional requirements require attention to detail, and have to be assessed and tailored according to the patient's needs. OBJECTIVES This systematic review aimed to assess nutritional requirements for type 2 diabetes mellitus patients with chronic renal failure. METHODS In this review, 85 articles were screened, and 22 articles were then analyzed and selected as per the study criteria. PRISMA guidelines were used to select and screen the articles. Data search included a PubMed search using MeSH terms, and a literature review through the Cochrane library and the British Medical Journal. RESULTS The study highlighted the important nutrients and minerals needed to be maintained within a specified range in accordance with the patient's needs and conditions. In addition, dietary restrictions must be set to prevent disease progression and deterioration. Dietary intake in hemodialysis patients must be carefully calculated based on their needs, with tight monitoring of their blood glucose. Protein intake in hemodialysis patients should be determined based on risk-to-benefit ratios. CONCLUSION Dietary requirements should be individualized based on the patient's disease severity and progression. Assessment of the patient's previous and current diet, as well as matching it with their dietary requirements and preferences is crucial.
Collapse
Affiliation(s)
| | - Syed Wasif Gillani
- Department of Pharmacy Practice, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
4
|
Behera R, Kaur A, Webster MR, Kim S, Ndoye A, Kugel CH, Alicea GM, Wang J, Ghosh K, Cheng P, Lisanti S, Marchbank K, Dang V, Levesque M, Dummer R, Xu X, Herlyn M, Aplin AE, Roesch A, Caino C, Altieri DC, Weeraratna AT. Inhibition of Age-Related Therapy Resistance in Melanoma by Rosiglitazone-Mediated Induction of Klotho. Clin Cancer Res 2017; 23:3181-3190. [PMID: 28232477 PMCID: PMC5474161 DOI: 10.1158/1078-0432.ccr-17-0201] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 01/21/2023]
Abstract
Purpose: Aging is a poor prognostic factor for melanoma. We have shown that melanoma cells in an aged microenvironment are more resistant to targeted therapy than identical cells in a young microenvironment. This is dependent on age-related secreted factors. Klotho is an age-related protein whose serum levels decrease dramatically by age 40. Most studies on klotho in cancer have focused on the expression of klotho in the tumor cell. We have shown that exogenous klotho inhibits internalization and signaling of Wnt5A, which drives melanoma metastasis and resistance to targeted therapy. We investigate here whether increasing klotho in the aged microenvironment could be an effective strategy for the treatment of melanoma.Experimental Design: PPARγ increases klotho levels and is increased by glitazones. Using rosiglitazone, we queried the effects of rosiglitazone on Klotho/Wnt5A cross-talk, in vitro and in vivo, and the implications of that for targeted therapy in young versus aged animals.Results: We show that rosiglitazone increases klotho and decreases Wnt5A in tumor cells, reducing the burden of both BRAF inhibitor-sensitive and BRAF inhibitor-resistant tumors in aged, but not young mice. However, when used in combination with PLX4720, tumor burden was reduced in both young and aged mice, even in resistant tumors.Conclusions: Using glitazones as adjuvant therapy for melanoma may provide a new treatment strategy for older melanoma patients who have developed resistance to vemurafenib. As klotho has been shown to play a role in other cancers too, our results may have wide relevance for multiple tumor types. Clin Cancer Res; 23(12); 3181-90. ©2017 AACR.
Collapse
Affiliation(s)
- Reeti Behera
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Amanpreet Kaur
- The Wistar Institute, Philadelphia, Pennsylvania
- University of the Sciences, Philadelphia, Pennsylvania
| | | | - Suyeon Kim
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Abibatou Ndoye
- The Wistar Institute, Philadelphia, Pennsylvania
- University of the Sciences, Philadelphia, Pennsylvania
| | | | - Gretchen M Alicea
- The Wistar Institute, Philadelphia, Pennsylvania
- University of the Sciences, Philadelphia, Pennsylvania
| | - Joshua Wang
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Kanad Ghosh
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Phil Cheng
- University of Zurich, Zurich, Switzerland
| | | | | | - Vanessa Dang
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Andrew E Aplin
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alexander Roesch
- Department of Dermatology, University Hospital, West German Cancer Center, University Duesburg-Essen, Essen, Germany
| | | | | | | |
Collapse
|
5
|
Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation. Mech Ageing Dev 2015; 152:43-55. [PMID: 26467393 DOI: 10.1016/j.mad.2015.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon. Human aortic smooth muscle cells treated with β-Glycerophosphate (BGP, 10mM) suffered cellular senescence by increasing p53, p21 and p16 expression and the senescence associated β-galactosidase activity. In parallel, BGP induced ILK overexpression, dependent on the IGF-1 receptor activation, and oxidative stress. Down-regulating ILK expression prevented BGP-induced senescence and oxidative stress. Aortic rings from young rats treated with 10mM BGP for 48h, showed increased p53, p16 and ILK expression and SA-β-gal activity. Seven/eight nephrectomized rats feeding a hyperphosphatemic diet and fifteenth- month old mice showed hyperphosphatemia and aortic ILK, p53 and p16 expression. In conclusion, we demonstrated that high extracellular concentration of phosphate induced senescence in cultured smooth muscle through the activation of IGF-1 receptor and ILK overexpression and provided solid evidences for the in vivo relevance of these results since aged animals showed high levels of serum phosphate linked to increased expression of ILK and senescence genes.
Collapse
|
6
|
Nakahashi O, Yamamoto H, Tanaka S, Kozai M, Takei Y, Masuda M, Kaneko I, Taketani Y, Iwano M, Miyamoto KI, Takeda E. Short-term dietary phosphate restriction up-regulates ileal fibroblast growth factor 15 gene expression in mice. J Clin Biochem Nutr 2014; 54:102-8. [PMID: 24688219 PMCID: PMC3947966 DOI: 10.3164/jcbn.13-109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/25/2013] [Indexed: 12/15/2022] Open
Abstract
Members of the fibroblast growth factor (FGF) 19 subfamily, including FGF23, FGF15/19, and FGF21, have a role as endocrine factors which influence the metabolism of inorganic phosphate (Pi) and vitamin D, bile acid, and energy. It has been reported that dietary Pi regulates circulating FGF23. In this study, the short-term effects of dietary Pi restriction on the expression of FGF19 subfamily members in mice were analyzed. An initial analysis confirmed plasma FGF23 levels positively correlated with the amount of dietary Pi. On the other hand, ileal Fgf15 gene expression, but not hepatic Fgf21 gene expression, was up-regulated by dietary Pi restriction. In addition, we observed the increase of plasma 1,25-dihydroxyvitamin D [1,25(OH)2D] levels by dietary Pi restriction, and the up-regulation of ileal Fgf15 mRNA expression by 1,25(OH)2D3 and vitamin D receptor (VDR). Importantly, dietary Pi restriction-induced Fgf15 gene expression was prevented in VDR-knockout mice. Furthermore, diurnal variations of plasma triglyceride concentrations and hepatic mRNA expression of the bile acid synthesis enzyme Cyp7a1 as one of Fgf15 negative target genes was influenced by dietary Pi restriction. These results suggest that dietary Pi restriction up-regulates ileal Fgf15 gene expression through 1,25(OH)2D3 and VDR, and may affect hepatic bile acid homeostasis.
Collapse
Affiliation(s)
- Otoki Nakahashi
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hironori Yamamoto
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan ; Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, 3-1-1 Ohde-cho, Echizen-shi, Fukui 915-8586, Japan ; Division of Nephrology, Department of General Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Sarasa Tanaka
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mina Kozai
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuichiro Takei
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masayuki Iwano
- Division of Nephrology, Department of General Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Eiji Takeda
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
van Schothorst EM, Bunschoten A, Schrauwen P, Mensink RP, Keijer J. Effects of a high-fat, low- versus high-glycemic index diet: retardation of insulin resistance involves adipose tissue modulation. FASEB J 2008; 23:1092-101. [PMID: 19029198 DOI: 10.1096/fj.08-117119] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Beneficial effects of low glycemic index (GI) diets in rodents have been studied using healthy low-fat diets, while the effects might be different on high-fat diets inducing progression of insulin resistance. We fed C57BL/6J male mice high-fat low/high-GI (LGI/HGI) diets for 13 wk. Glucose and insulin tolerance and serum substrates, including adipokines, were measured longitudinally. The LGI group showed a significantly higher glucose tolerance from wk 2 onwards, which was supported by lower serum insulin and free fatty acids levels at 8 wk, and a tendency for lower leptin levels, while resistin levels remained similar. At 11 wk, when differences in serum resistin started to increase, differences in serum insulin were diminished. Although food intake was similar throughout the study, body weights and epididymal adipose tissue mass became significantly lower in the LGI group at necropsy. Several serum substrates and adipose tissue leptin mRNA levels, as analyzed by Q-PCR, were, again, significantly lower, whereas adiponectin mRNA levels were higher. Taken together, an LGI high-fat diet maintains higher glucose tolerance and insulin sensitivity via adipose tissue modulation solely because of a difference in the type of carbohydrate, supporting a nutritional approach in the fight against insulin resistance.
Collapse
|