In Vitro Neutrophil Migration Requires Protein Kinase C-Delta (δ-PKC)-Mediated Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Phosphorylation.
Inflammation 2016;
38:1126-41. [PMID:
25515270 DOI:
10.1007/s10753-014-0078-9]
[Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dysregulated release of neutrophil reactive oxygen species and proteolytic enzymes contributes to both acute and chronic inflammatory diseases. Therefore, molecular regulators of these processes are potential targets for new anti-inflammatory therapies. We have shown previously that myristoylated alanine-rich C-kinase substrate (MARCKS), a well-known actin binding protein and protein kinase C (PKC) substrate, is a key regulator of neutrophil functions. In the current study, we investigate the role of PKC-mediated MARCKS phosphorylation in neutrophil migration and adhesion in vitro. We report that treatment of human neutrophils with the δ-PKC inhibitor rottlerin significantly attenuates f-Met-Leu-Phe (fMLF)-induced MARCKS phosphorylation (IC50=5.709 μM), adhesion (IC50=8.4 μM), and migration (IC50=6.7 μM), while α-, β-, and ζ-PKC inhibitors had no significant effect. We conclude that δ-PKC-mediated MARCKS phosphorylation is essential for human neutrophil migration and adhesion in vitro. These results implicate δ-PKC-mediated MARCKS phosphorylation as a key step in the inflammatory response of neutrophils.
Collapse