1
|
Thippeshappa R, Polacino P, Chandrasekar SS, Truong K, Misra A, Aulicino PC, Hu SL, Kaushal D, Kimata JT. In vivo Serial Passaging of Human-Simian Immunodeficiency Virus Clones Identifies Characteristics for Persistent Viral Replication. Front Microbiol 2021; 12:779460. [PMID: 34867922 PMCID: PMC8636705 DOI: 10.3389/fmicb.2021.779460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
We previously reported that a human immunodeficiency virus type 1 with a simian immunodeficiency virus vif substitution (HSIV-vifNL4-3) could replicate in pigtailed macaques (PTMs), demonstrating that Vif is a species-specific tropism factor of primate lentiviruses. However, infections did not result in high-peak viremia or setpoint plasma viral loads, as observed during simian immunodeficiency virus (SIV) infection of PTMs. Here, we characterized variants isolated from one of the original infected animals with CD4 depletion after nearly 4years of infection to identify determinants of increased replication fitness. In our studies, we found that the HSIV-vif clones did not express the HIV-1 Vpr protein due to interference from the vpx open reading frame (ORF) in singly spliced vpr mRNA. To examine whether these viral genes contribute to persistent viral replication, we generated infectious HSIV-vif clones expressing either the HIV-1 Vpr or SIV Vpx protein. And then to determine viral fitness determinants of HSIV-vif, we conducted three rounds of serial in vivo passaging in PTMs, starting with an initial inoculum containing a mixture of CXCR4-tropic [Vpr-HSIV-vifNL4-3 isolated at 196 (C/196) and 200 (C/200) weeks post-infection from a PTM with depressed CD4 counts] and CCR5-tropic HSIV (Vpr+ HSIV-vif derivatives based NL-AD8 and Bru-Yu2 and a Vpx expressing HSIV-vifYu2). Interestingly, all infected PTMs showed peak plasma viremia close to or above 105 copies/ml and persistent viral replication for more than 20weeks. Infectious molecular clones (IMCs) recovered from the passage 3 PTM (HSIV-P3 IMCs) included mutations required for HIV-1 Vpr expression and those mutations encoded by the CXCR4-tropic HSIV-vifNL4-3 isolate C/196. The data indicate that the viruses selected during long-term infection acquired HIV-1 Vpr expression, suggesting the importance of Vpr for in vivo pathogenesis. Further passaging of HSIV-P3 IMCs in vivo may generate pathogenic variants with higher replication capacity, which will be a valuable resource as challenge virus in vaccine and cure studies.
Collapse
Affiliation(s)
- Rajesh Thippeshappa
- Disease Intervention and Prevention Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Shaswath S Chandrasekar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Khanghy Truong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Anisha Misra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Paula C Aulicino
- Laboratorio de Biología Celular y Retrovirus, Hospital de Pediatría "Juan P. Garrahan"-CONICET, Buenos Aires, Argentina
| | - Shiu-Lok Hu
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| | - Deepak Kaushal
- Host-Pathogen Interactions Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Species-Specific Valid Ternary Interactions of HIV-1 Env-gp120, CD4, and CCR5 as Revealed by an Adaptive Single-Amino Acid Substitution at the V3 Loop Tip. J Virol 2021; 95:e0217720. [PMID: 33883222 DOI: 10.1128/jvi.02177-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Molecular interactions of the variable envelope gp120 subunit of HIV-1 with two cellular receptors are the first step of viral infection, thereby playing pivotal roles in determining viral infectivity and cell tropism. However, the underlying regulatory mechanisms for interactions under gp120 spontaneous variations largely remain unknown. Here, we show an allosteric mechanism in which a single gp120 mutation remotely controls the ternary interactions between gp120 and its receptors for the switch of viral cell tropism. Virological analyses showed that a G310R substitution at the tip of the gp120 V3 loop selectively abolished the viral replication ability in human cells, despite evoking enhancement of viral replication in macaque cells. Molecular dynamics (MD) simulations predicted that the G310R substitution at a site away from the CD4 interaction site selectively impeded the binding ability of gp120 to human CD4. Consistently, virions with the G310R substitution exhibited a reduced binding ability to human lymphocyte cells. Furthermore, the G310R substitution influenced the gp120-CCR5 interaction in a CCR5-type dependent manner as assessed by MD simulations and an infectivity assay using exogenously expressed CCR5s. Interestingly, an I198M mutation in human CCR5 restored the infectivity of the G310R virus in human cells. Finally, MD simulation predicted amino acid interplays that physically connect the V3 loop and gp120 elements for the CD4 and CCR5 interactions. Collectively, these results suggest that the V3 loop tip is a cis-allosteric regulator that remotely controls intra- and intermolecular interactions of HIV-1 gp120 for balancing ternary interactions with CD4 and CCR5. IMPORTANCE Understanding the molecular bases for viral entry into cells will lead to the elucidation of one of the major viral survival strategies, and thus to the development of new effective antiviral measures. As shown recently, HIV-1 is highly mutable and adaptable in growth-restrictive cells, such as those of macaque origin. HIV-1 initiates its infection by sequential interactions of Env-gp120 with two cell surface receptors, CD4 and CCR5. A recent epoch-making structural study has disclosed that CD4-induced conformation of gp120 is stabilized upon binding of CCR5 to the CD4-gp120 complex, whereas the biological significance of this remains totally unknown. Here, from a series of mutations found in our extensive studies, we identified a single-amino acid adaptive mutation at the V3 loop tip of Env-gp120 critical for its interaction with both CD4 and CCR5 in a host cell species-specific way. This remarkable finding could certainly provoke and accelerate studies to precisely clarify the HIV-1 entry mechanism.
Collapse
|
3
|
Thippeshappa R, Kimata JT, Kaushal D. Toward a Macaque Model of HIV-1 Infection: Roadblocks, Progress, and Future Strategies. Front Microbiol 2020; 11:882. [PMID: 32477302 PMCID: PMC7237640 DOI: 10.3389/fmicb.2020.00882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The human-specific tropism of Human Immunodeficiency Virus Type 1 (HIV-1) has complicated the development of a macaque model of HIV-1 infection/AIDS that is suitable for preclinical evaluation of vaccines and novel treatment strategies. Several innate retroviral restriction factors, such as APOBEC3 family of proteins, TRIM5α, BST2, and SAMHD1, that prevent HIV-1 replication have been identified in macaque cells. Accessory proteins expressed by Simian Immunodeficiency virus (SIV) such as viral infectivity factor (Vif), viral protein X (Vpx), viral protein R (Vpr), and negative factor (Nef) have been shown to play key roles in overcoming these restriction factors in macaque cells. Thus, substituting HIV-1 accessory genes with those from SIV may enable HIV-1 replication in macaques. We and others have constructed macaque-tropic HIV-1 derivatives [also called simian-tropic HIV-1 (stHIV-1) or Human-Simian Immunodeficiency Virus (HSIV)] carrying SIV vif to overcome APOBEC3 family proteins. Additional modifications to HIV-1 gag in some of the macaque-tropic HIV-1 have also been done to overcome TRIM5α restriction in rhesus and cynomolgus macaques. Although these viruses replicate persistently in macaque species, they do not result in CD4 depletion. Thus, these studies suggest that additional blocks to HIV-1 replication exist in macaques that prevent high-level viral replication. Furthermore, serial animal-to-animal passaging of macaque-tropic HIV-1 in vivo has not resulted in pathogenic variants that cause AIDS in immunocompetent macaques. In this review, we discuss recent developments made toward developing macaque model of HIV-1 infection.
Collapse
Affiliation(s)
- Rajesh Thippeshappa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
4
|
Doi N, Miura T, Mori H, Sakawaki H, Koma T, Adachi A, Nomaguchi M. CXCR4- and CCR5-Tropic HIV-1 Clones Are Both Tractable to Grow in Rhesus Macaques. Front Microbiol 2018; 9:2510. [PMID: 30405570 PMCID: PMC6200915 DOI: 10.3389/fmicb.2018.02510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
A major issue for present HIV-1 research is to establish model systems that reflect or mimic viral replication and pathogenesis actually observed in infected humans. To this end, various strategies using macaques as infection targets have long been pursued. In particular, experimental infections of rhesus macaques by HIV-1 derivatives have been believed to be best suited, if practicable, for studies on interaction of HIV-1 and humans under various circumstances. Recently, through in vitro genetic manipulations and viral cell-adaptations, we have successfully generated a series of HIV-1 derivatives with CXCR4-tropism or CCR5-tropism that grow in macaque cells to various degrees. Of these viruses, those with best replicative potentials can grow comparably with a pathogenic SIVmac in macaque cells by counteracting major restriction factors TRIM5, APOBEC3, and tetherin proteins. In this study, rhesus macaques were challenged with CXCR4-tropic (MN4/LSDQgtu) or CCR5-tropic (gtu + A4CI1) virus. The two viruses were found to productively infect rhesus macaques, being rhesus macaque-tropic HIV-1 (HIV-1rmt). However, plasma viral RNA was reduced to be an undetectable level in infected macaques at 5–6 weeks post-infection and thereafter. While replicated similarly well in rhesus peripheral blood mononuclear cells, MN4/LSDQgtu grew much better than gtu + A4CI1 in the animals. To the best of our knowledge, this is the first report demonstrating that HIV-1 derivatives (variants) grow in rhesus macaques. These viruses certainly constitute firm bases for generating HIV-1rmt clones pathogenic for rhesus monkeys, albeit they grow more poorly than pathogenic SIVmac and SHIV clones reported to date.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Mori
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Sakawaki
- Non-human Primate Experimental Facility, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|