1
|
Zhao H, Wang Y, Sun X, He X, Di L, Yang Z. Oviductus Ranae Promotes Follicle Growth Through the PI3K/AKT Signaling Pathway In Vivo and In Vitro in Rat. Food Sci Nutr 2024; 12:10946-10961. [PMID: 39723099 PMCID: PMC11666840 DOI: 10.1002/fsn3.4621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
The development status of follicles determines the menstrual cycle and estrogen levels, which is crucial to women's health. Oviductus Ranae is a natural product for both medicine and food, which has "estrogenic effect". However, few studies have systematically elaborated its mechanism of action. Hence, we hypothesize the "estrogen-like effects" of OR may stem from its positive influence on the growth and development of growing follicles in the ovaries. In this study, the effect of Oviductus Ranae (OR) on the growth and development of rat follicles and follicles cultured in vitro was investigated. The content of estrogen in rat serum and follicular culture medium in vitro was determined by radioimmunoassay, and the levels of PI3K-Akt signal pathway and FSHR expression in rat ovary and cultured follicles were detected by RT-PCR and Western Blot. The follicles at different developmental stages in rat ovaries were analyzed by H&E and TUNEL staining. Follicles cultured in a medium containing OR displayed a significant increase in diameter, and the E2 content in the medium was significantly increased. Moreover, Rats treated with OR showed significant increases in estradiol and progesterone levels. The number of antral follicles in the ovaries displayed a significant increase, while the percentage of atretic antral follicles and the total atretic follicles showed significant decreases. The relative expression levels of PI3K, Akt, and FSHR were significantly increased, while significantly decreased in that of PTEN In Vivo and In Vitro. OR may promote follicle growth through PI3K/ Akt pathway, exhibiting "estrogen-like effects".
Collapse
Affiliation(s)
- Hongyu Zhao
- Key Laboratory of TCM PharmacologyJilin Academy of Chinese Medicine SciencesChangchunJilinP.R. China
| | - Yu Wang
- Key Laboratory of TCM PharmacologyJilin Academy of Chinese Medicine SciencesChangchunJilinP.R. China
| | - Xueyuan Sun
- Key Laboratory of TCM PharmacologyJilin Academy of Chinese Medicine SciencesChangchunJilinP.R. China
- College of Chemistry and Life SciencesChangchun University of TechnologyChangchunJilinP.R. China
| | - Xingyao He
- Key Laboratory of TCM PharmacologyJilin Academy of Chinese Medicine SciencesChangchunJilinP.R. China
- College of Chemistry and Life SciencesChangchun University of TechnologyChangchunJilinP.R. China
| | - Lin Di
- Key Laboratory of TCM PharmacologyJilin Academy of Chinese Medicine SciencesChangchunJilinP.R. China
| | - Zhen Yang
- Key Laboratory of TCM PharmacologyJilin Academy of Chinese Medicine SciencesChangchunJilinP.R. China
| |
Collapse
|
2
|
Yang Y, Feng W, Zhou J, Zhang R, Lin X, Sooranna SR, Deng Y, Shi D. Epigenetic modifications of gonadotropin receptors can regulate follicular development. Anim Reprod Sci 2024; 268:107534. [PMID: 39047429 DOI: 10.1016/j.anireprosci.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The spatiotemporal transcription of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR) are crucial events for follicular development. However, their regulatory mechanisms are unclear. DNA methylation and histone acetylation are the main epigenetic modifications, and play important roles in transcriptional expression, which regulate cell responses including cell proliferation, senescence and apoptosis. This review will discuss the dynamic epigenetic modifications of FSHR and LHCGR that occur during the process of follicular development and their response to gonadotropins. In addition, some alteration patterns that occur during these epigenetic modifications, as well as their retrospect retrotransposons, which regulate the gene expression levels of FSHR and LHCGR will be discussed.
Collapse
Affiliation(s)
- Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wanyou Feng
- School of Environmental and Life Sciences, Nanning Normal University, Nanning 530023, China
| | - Jinhua Zhou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Lin
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Alarcón R, Alegre AL, Rivera O, Dioguardi G, Zenclussen ML, Muñoz-de-Toro M, Luque EH, Ingaramo PI. Altered ovarian reserve in Ewe lambs exposed to a glyphosate-based herbicide. CHEMOSPHERE 2024; 363:142895. [PMID: 39067823 DOI: 10.1016/j.chemosphere.2024.142895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Glyphosate-based herbicides (GBHs) are considered endocrine disruptors that affect the female reproductive tract of rats and ewe lambs. The present study aimed to investigate the impact of neonatal exposure to a low dose of a GBH on the ovarian follicular reserve of ewe lambs and the response to a gonadotropic stimulus with porcine FSH (pFSH). To this end, ewe lambs were orally exposed to an environmentally relevant GBH dose (1 mg/kg/day) or vehicle (Control) from postnatal day (PND) 1 to PND14, and then some received pFSH (50 mg/day) between PND41 and 43. The ovaries were dissected, and follicular types and gene expression were assessed via RT-PCR. The treatments did not affect the body weight of animals, but pFSH increased ovarian weight, not observed in GBH-exposed lambs. GBH-exposed lambs showed decreased Estrogen receptor-alpha (56%), Progesterone receptor (75%), Activin receptor II (ACVRII) (85%), and Bone morphogenetic protein 15 (BMP15) (88%) mRNA levels. Control lambs treated with pFSH exhibited downregulation of Follistatin (81%), ACVRII (77%), BMP15 (93%), and FSH receptor (FSHr) (72%). GBH-exposed lambs treated with pFSH displayed reduced ACVRII (68%), BMP15 (81%), and FSHr (50%). GBH-exposed lambs also exhibited decreased Anti-Müllerian hormone expression in primordial and antral follicles (27%) and (54%) respectively) and reduced Bone morphogenetic protein 4 (31%) expression in primordial follicles. Results suggest that GBH disrupts key follicular development molecules and interferes with pFSH action in ovarian receptors, decreasing the ovarian reserve. Future studies should explore whether this decreased ovarian reserve impairs adult ovarian function and its response to superovulation stimuli.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana Laura Alegre
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Gisela Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - María Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
4
|
Di Berardino C, Peserico A, Camerano Spelta Rapini C, Liverani L, Capacchietti G, Russo V, Berardinelli P, Unalan I, Damian-Buda AI, Boccaccini AR, Barboni B. Bioengineered 3D ovarian model for long-term multiple development of preantral follicle: bridging the gap for poly(ε-caprolactone) (PCL)-based scaffold reproductive applications. Reprod Biol Endocrinol 2024; 22:95. [PMID: 39095895 PMCID: PMC11295475 DOI: 10.1186/s12958-024-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
- DGS SpA, Via Paolo di Dono 73, 00142, Rome, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
5
|
Nascimento DR, Barbalho EC, Gondim Barrozo L, de Assis EIT, Costa FC, Silva JRV. The mechanisms that control the preantral to early antral follicle transition and the strategies to have efficient culture systems to promote their growth in vitro. ZYGOTE 2023:1-11. [PMID: 37221099 DOI: 10.1017/s0967199423000254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Preantral to early antral follicles transition is a complex process regulated by endocrine and paracrine factors, as well as by a precise interaction among oocyte, granulosa cells and theca cells. Understanding the mechanisms that regulate this step of folliculogenesis is important to improve in vitro culture systems, and opens new perspectives to use oocytes from preantral follicles for assisted reproductive technologies. Therefore, this review aims to discuss the endocrine and paracrine mechanisms that control granulosa cell proliferation and differentiation, formation of the antral cavity, estradiol production, atresia, and follicular fluid production during the transition from preantral to early antral follicles. The strategies that promote in vitro growth of preantral follicles are also discussed.
Collapse
Affiliation(s)
- D R Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - L Gondim Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - E I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - F C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| |
Collapse
|
6
|
Liu N, Wang S, Yao Q, Li Y, Hu H, Xiaorong T, Ran H, Price CA, Jiang Z. Activin A attenuates apoptosis of granulosa cells in atretic follicles through ERβ-induced autophagy. Reprod Domest Anim 2022; 57:625-634. [PMID: 35244300 DOI: 10.1111/rda.14103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
It is well known that about 99% of ovarian follicles in mammals suffer from a degenerative process known as atresia, which is a huge waste of genetic resource in female animals. Studies have shown that activin A (ACT-A) is located in ovarian granulosa cells and has different effects in granulosa cell depending on species. Although granulosa cells play a critical role during follicular atresia, the mechanism of action of ACT-A in bovine ovarian granulosa cells (BGC) is poorly understood. In this study, we firstly determined the apoptosis of BGCs isolated from growth follicles and atretic follicles, respectively. Then, BGC isolated from atretic follicles were used as a model to elucidate the role of ACT-A in cattle ovary. The results showed that apoptosis occurred in both growing follicles and atretic follicles, and the percentage of apoptotic cells in atretic follicles was higher than that in growing follicles. The current results indicated that ACT-A can attenuate apoptosis of BGC through maintaining the function of BGC in atretic follicles. Increased ERβ induced by ACT-A promoted BGC autophagy but had no effect on apoptosis. In summary, this study suggests that ACT-A attenuates BGC apoptosis in atretic follicles by ERβ-mediated autophagy signaling.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Shiyou Wang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Qichun Yao
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Yuanyou Li
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Hai Hu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Tang Xiaorong
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Haohan Ran
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Jintong Road, Xiqing District, 300380, Tianjin, China
| | - Christopher A Price
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Zhongliang Jiang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Picton HM. Therapeutic Potential of In Vitro-Derived Oocytes for the Restoration and Treatment of Female Fertility. Annu Rev Anim Biosci 2022; 10:281-301. [PMID: 34843385 DOI: 10.1146/annurev-animal-020420-030319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considerable progress has been made with the development of culture systems for the in vitro growth and maturation (IVGM) of oocytes from the earliest-staged primordial follicles and from the more advanced secondary follicles in rodents, ruminants, nonhuman primates, and humans. Successful oocyte production in vitro depends on the development of a dynamic culture strategy that replicates the follicular microenvironment required for oocyte activation and to support oocyte growth and maturation in vivo while enabling the coordinated and timely acquisition of oocyte developmental competence. Significant heterogeneity exists between the culture protocols used for different stages of follicle development and for different species. To date, the fertile potential of IVGM oocytes derived from primordial follicles has been realized only in mice. Although many technical challenges remain, significant advances have been made, and there is an increasing consensus that complete IVGM will require a dynamic, multiphase culture approach. The production of healthy offspring from in vitro-produced oocytes in a secondary large animal species is a vital next step before IVGM can be tested for therapeutic use in humans.
Collapse
Affiliation(s)
- Helen M Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
8
|
Wang X, Wang L, Sun Y, Wu D, Li J, Zhu L, Jiang S, Pan X. The optimized research of the in vitro culture of preantral follicles in mice. J Clin Lab Anal 2020; 34:e23498. [PMID: 33463764 PMCID: PMC7676217 DOI: 10.1002/jcla.23498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Efficiency of preantral follicle culture in vitro is low and is dependent on species, development stage, and follicle-stimulating hormone (FSH) concentration. Here, we optimized the preantral follicle in vitro culture system in mice. METHODS The primary follicles (PM follicles, 80-100 μm diameter ) and early secondary follicles (ES follicles, 110-130 μm diameter) isolated from 14-day female mice were cultured in mediums containing 10 mIU/mL or 100 mIU/mL r-FSH. The follicle growth and oocyte maturation were observed. Estradiol (E2) was detected by ELISA. FSH receptor (FSHR), Ki-67, 3β-HSD, CYP17, and CYP19 levels were detected by immunofluorescence and Western blot. RESULTS The antrum formation and oocyte maturation rates of ES follicles were significantly higher than those of PM follicles (P < .05). They were also significantly higher in ES follicles with 100 mIU/mL r-FSH than with 10 mIU/mL r-FSH (P < .05). A higher FSHR level was found in ES follicles. Meanwhile, with 10 mIU/mL r-FSH, the ES follicles exhibited a pattern of flat growth, whereas a pattern of stereoscopic spatial growth was observed with 100 mIU/mL r-FSH. The 100 mIU/mL r-FSH stimulated granulosa cell proliferation more significantly than 10 mIU/mL r-FSH. Moreover, FSH significantly promoted ES follicle granulosa cell proliferation compared to PM follicular granulosa cells. The secretion of E2 and the expressions of 3β-HSD, CYP 17, and CYP 19 in ES follicles with 100 mIU/mL r-FSH were significantly higher than those with 10 mIU/mL r-FSH. CONCLUSIONS The 100 mIU/mL r-FSH ideally promotes the development of ES follicles, whose growth pattern can more reasonably simulate the growth of follicles in vivo.
Collapse
Affiliation(s)
- Xiyan Wang
- Center for Reproductive MedicineJilin Medical UniversityJilinChina
| | - Liguo Wang
- Department of UrologyAffiliated Hospital of Jilin Medical UniversityJilinChina
| | - Yanmei Sun
- Center for Reproductive MedicineJilin Medical UniversityJilinChina
| | - Di Wu
- Center for Reproductive MedicineJilin Medical UniversityJilinChina
| | - Jiao Li
- Center for Reproductive MedicineJilin Medical UniversityJilinChina
| | - Lin Zhu
- Center for Reproductive MedicineJilin Medical UniversityJilinChina
| | - Shiwen Jiang
- Center for Reproductive MedicineWuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical UniversityWuxiChina
| | - Xiaoyan Pan
- Center for Reproductive MedicineJilin Medical UniversityJilinChina
| |
Collapse
|
9
|
Liu G, Li S, Ren J, Wang C, Zhang Y, Su X, Dai Y. Effect of animal-sourced bioactive peptides on the in vitro development of mouse preantral follicles. J Ovarian Res 2020; 13:108. [PMID: 32933578 PMCID: PMC7491131 DOI: 10.1186/s13048-020-00695-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to investigate the effect of bioactive peptides (BAPT) from animal sources on the development of mouse preantral follicles in vitro. Preantral follicles were isolated and randomly divided into the following groups: an untreated group (control) and three groups supplemented with 20, 40 and 60 μg/mL BAPT, respectively. After establishing the in vitro follicle culture, the gene expression levels and hormone levels were quantified. After in vitro maturation, the developmental rates, reactive oxygen species (ROS) production levels and mitochondrial distributions of MII oocytes were investigated, followed by the analyses of embryonic developmental rates after in vitro fertilization.The results showed that BAPT promoted the growth of mouse preantral follicles. Notably, after 14 d of in vitro culture, the levels of 17 β-estradiol and progesterone were up-regulated with BAPT treatments. Moreover, the expression levels of Oct4, Bmp15, GDF9, FOXO3, Zp3, FOXL2, Inhibin alpha, SOD2, Catalase, GPx and Bcl-2 in the developing follicles were significantly up-regulated after BAPT treatments (P < 0.05), while BAPT significantly inhibited the expression levels of BAX (P < 0.05). Following BAPT treatments, the ROS production levels of MII oocytes were decreased while the mitochondrial distributions were significantly enhanced. Furthermore, increased maturation rates, fertilization and embryonic developmental rates were found in these BAPT-treated groups (P < 0.05).These results demonstrated that BAPT significantly improved the development of preantral follicles in vitro by reducing ROS-dependent cellular damages and by enhancing mitochondrial distributions, thereby promoting the further applications of animal-derived BAPT in biomedical research.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical College, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Shubin Li
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Jinyu Ren
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Chunyu Wang
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Yaxuan Zhang
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Xiulan Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical College, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
10
|
Zhang JQ, Gao BW, Guo HX, Ren QL, Wang XW, Chen JF, Wang J, Zhang ZJ, Ma Q, Xing BS. miR-181a promotes porcine granulosa cell apoptosis by targeting TGFBR1 via the activin signaling pathway. Mol Cell Endocrinol 2020; 499:110603. [PMID: 31574295 DOI: 10.1016/j.mce.2019.110603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
Activin/Smad3 signaling plays a pivotal role in follicle development and atresia. However, the precise mechanisms underlying this process are not yet fully understood. Herein, we identified miR-181a as a central component of activin/Smad3-mediated follicle atresia. miR-181a was strikingly upregulated in porcine atretic follicles, which induced the apoptosis of porcine granulosa cells (GCs) in vitro. Furthermore, the transforming growth factor-β type 1 receptor (TGFBR1) was confirmed as a direct target of miR-181a by bioinformatics analysis and luciferase assays. Transfection with an miR-181a agomir repressed the TGFBR1 mRNA and protein levels. In addition, TGFBR1 overexpression repressed GC apoptosis, whereas TGFBR1 inhibition promoted GC apoptosis. miR-181a overexpression downregulated the phosphorylation of Smad3 and blocked the activation of TGF-β signaling. Moreover, activin A downregulated miR-181a expression and upregulated the TGFBR1 and p-Smad3 protein levels. Collectively, these data suggest that miR-181a regulates porcine GC apoptosis by targeting TGFBR1 via the activin signaling pathway.
Collapse
Affiliation(s)
- Jia-Qing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Bin-Wen Gao
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Hong-Xia Guo
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Qiao-Ling Ren
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Xian-Wei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, 450008, China.
| | - Jun-Feng Chen
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Zi-Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Qiang Ma
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Bao-Song Xing
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| |
Collapse
|