1
|
Klis SA, Stienstra Y, Abass KM, Abottsi J, Mireku SO, Alffenaar JW, van der Werf TS. Pharmacokinetics of extended-release clarithromycin in patients with Mycobacterium ulcerans infection. Sci Rep 2024; 14:19963. [PMID: 39198495 PMCID: PMC11358409 DOI: 10.1038/s41598-024-70890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Clarithromycin extended-release (CLA-ER) was used as companion drug to rifampicin (RIF) for Mycobacterium ulcerans infection in the intervention arm of a WHO drug trial. RIF enhances CYP3A4 metabolism, thereby reducing CLA serum concentrations, and RIF concentrations might be increased by CLA co-administration. We studied the pharmacokinetics of CLA-ER at a daily dose of 15 mg/kg combined with RIF at a dose of 10 mg/kg in a subset of trial participants, and compared these to previously obtained pharmacokinetic data. Serial dried blood spot samples were obtained over a period of ten hours, and analyzed by LC-MS/MS in 30 study participants-20 in the RIF-CLA study arm, and 10 in the RIF-streptomycin study arm. Median CLA Cmax was 0.4 mg/L-and median AUC 3.9 mg*h/L, following 15 mg/kg CLA-ER. Compared to standard CLA dosed at 7.5 mg/kg previously, CLA-ER resulted in a non-significant 58% decrease in Cmax and a non-significant 30% increase in AUC. CLA co-administration did not alter RIF Cmax or AUC. Treatment was successful in all study participants. No effect of CLA co-administration on RIF pharmacokinetics was observed. Based on our serum concentration studies, the benefits CLA-ER over CLA immediate release are unclear.
Collapse
Affiliation(s)
- Sandor-Adrian Klis
- Department of Internal Medicine-Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ymkje Stienstra
- Department of Internal Medicine-Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | | - Jan-Willem Alffenaar
- The University of Sydney Institute for Infectious Diseases, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Sydney, NSW, Australia
| | - Tjip S van der Werf
- Department of Internal Medicine-Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Department of Pulmonary Diseases & Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Lenard A, Hermann SA, Stoll F, Burhenne J, Foerster KI, Mikus G, Meid AD, Haefeli WE, Blank A. Effect of Clarithromycin, a Strong CYP3A and P-glycoprotein Inhibitor, on the Pharmacokinetics of Edoxaban in Healthy Volunteers and the Evaluation of the Drug Interaction with Other Oral Factor Xa Inhibitors by a Microdose Cocktail Approach. Cardiovasc Drugs Ther 2024; 38:747-756. [PMID: 36870039 PMCID: PMC11266212 DOI: 10.1007/s10557-023-07443-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
PURPOSE We assessed the differential effect of clarithromycin, a strong inhibitor of cytochrome P450 (CYP) 3A4 and P-glycoprotein, on the pharmacokinetics of a regular dose of edoxaban and on a microdose cocktail of factor Xa inhibitors (FXaI). Concurrently, CYP3A activity was determined with a midazolam microdose. METHODS In an open-label fixed-sequence trial in 12 healthy volunteers, the pharmacokinetics of a microdosed FXaI cocktail (μ-FXaI; 25 μg apixaban, 50 μg edoxaban, and 25 μg rivaroxaban) and of 60 mg edoxaban before and during clarithromycin (2 x 500 mg/d) dosed to steady-state was evaluated. Plasma concentrations of study drugs were quantified using validated ultra-performance liquid chromatography-tandem mass spectrometry methods. RESULTS Therapeutic clarithromycin doses increased the exposure of a therapeutic 60 mg dose of edoxaban with a geometric mean ratio (GMR) of the area under the plasma concentration-time curve (AUC) of 1.53 (90 % CI: 1.37-1.70; p < 0.0001). Clarithromycin also increased the GMR (90% CI) of the exposure of microdosed FXaI apixaban to 1.38 (1.26-1.51), edoxaban to 2.03 (1.84-2.24), and rivaroxaban to 1.44 (1.27-1.63). AUC changes observed for the therapeutic edoxaban dose were significantly smaller than those observed with the microdose (p < 0.001). CONCLUSION Clarithromycin increases FXaI exposure. However, the magnitude of this drug interaction is not expected to be clinically relevant. The edoxaban microdose overestimates the extent of the drug interaction with the therapeutic dose, whereas AUC ratios for apixaban and rivaroxaban were comparable to the interaction with therapeutic doses as reported in the literature. TRIAL REGISTRATION EudraCT Number: 2018-002490-22.
Collapse
Affiliation(s)
- Alexander Lenard
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Simon A Hermann
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Felicitas Stoll
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Juergen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany.
| |
Collapse
|
3
|
Xu Q, Sang Y, Gao A, Li L. The effects of drug-drug interaction on linezolid pharmacokinetics: A systematic review. Eur J Clin Pharmacol 2024; 80:785-795. [PMID: 38421436 DOI: 10.1007/s00228-024-03652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES Linezolid is a commonly used antibiotic in the clinical treatment of gram-positive bacterial infections. The impacts of drug interactions on the pharmacokinetics of linezolid are often overlooked. This manuscript aims to review the medications that affect the pharmacokinetics of linezolid. METHODS In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we queried the PubMed, Embase, and Cochrane Library for publications from database establishment to November 3, 2023, using the search terms: "Linezolid" and "interaction," or "interact," or "drug-drug interaction," or "co-treatment," or "cotreatment," or "combined," or "combination." RESULTS A total of 24 articles were included. Among the reported medication interactions, rifampicin, levothyroxine, venlafaxine, and phenobarbital could reduce the concentration of linezolid; clarithromycin, digoxin, cyclosporine, proton pump inhibitors, and amiodarone could increase the concentration of linezolid, while aztreonam, phenylpropanolamine, dextromethorphan, antioxidant vitamins, and magnesium-containing antacids had no significant effects on linezolid pharmacokinetics. The ratio of mean (ROM) of linezolid AUC in co-treatment with rifampicin to monotherapy was 0.67 (95%CI 0.58-0.77) and 0.63 (95%CI 0.43-0.91), respectively, in 2 studies, and co-treatment with 500 mg clarithromycin to monotherapy was 1.81 (95%CI 1.49-2.13). CONCLUSIONS This systematic review found that numerous drugs have an impact on the pharmacokinetics of linezolid, and the purported main mechanism may be that linezolid is the substrate of P-glycoprotein. In clinical practice, it is prudent to pay attention to the changes in linezolid pharmacokinetics caused by interactions. Conducting therapeutic drug monitoring (TDM) is beneficial to improve efficacy and reduce adverse reactions of linezolid.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Hangzhou, China
| | - Yanlei Sang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anna Gao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Hangzhou, China.
| |
Collapse
|
4
|
Kiyomiya K, Tomabechi R, Saito N, Watai K, Takada T, Shirasaka Y, Kishimoto H, Higuchi K, Inoue K. Macrolide and Ketolide Antibiotics Inhibit the Cytotoxic Effect of Trastuzumab Emtansine in HER2-Positive Breast Cancer Cells: Implication of a Potential Drug-ADC Interaction in Cancer Chemotherapy. Mol Pharm 2023; 20:6130-6139. [PMID: 37971309 DOI: 10.1021/acs.molpharmaceut.3c00490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Macrolides are widely used for the long-term treatment of infections and chronic inflammatory diseases. The pharmacokinetic features of macrolides include extensive tissue distribution because of favorable membrane permeability and accumulation within lysosomes. Trastuzumab emtansine (T-DM1), a HER2-targeting antibody-drug conjugate (ADC), is catabolized in the lysosomes, where Lys-SMCC-DM1, a potent cytotoxic agent, is processed by proteinase degradation and subsequently released from the lysosomes to the cytoplasm through the lysosomal membrane transporter SLC46A3, resulting in an antitumor effect. We recently demonstrated that erythromycin and clarithromycin inhibit SLC46A3 and attenuate the cytotoxicity of T-DM1; however, the effect of other macrolides and ketolides has not been determined. In this study, we evaluated the effect of macrolide and ketolide antibiotics on T-DM1 cytotoxicity in a human breast cancer cell line, KPL-4. Macrolides used in the clinic, such as roxithromycin, azithromycin, and josamycin, as well as solithromycin, a ketolide under clinical development, significantly attenuated T-DM1 cytotoxicity in addition to erythromycin and clarithromycin. Of these, azithromycin was the most potent inhibitor of T-DM1 efficacy. These antibiotics significantly inhibited the transport function of SLC46A3 in a concentration-dependent manner. Moreover, these compounds extensively accumulated in the lysosomes at the levels estimated to be 0.41-13.6 mM when cells were incubated with them at a 2 μM concentration. The immunofluorescence staining of trastuzumab revealed that azithromycin and solithromycin inhibit the degradation of T-DM1 in the lysosomes. These results suggest that the attenuation of T-DM1 cytotoxicity by macrolide and ketolide antibiotics involves their lysosomal accumulation and results in their greater lysosomal concentrations to inhibit the SLC46A3 function and T-DM1 degradation. This suggests a potential drug-ADC interaction during cancer chemotherapy.
Collapse
Affiliation(s)
- Keisuke Kiyomiya
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naoki Saito
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenta Watai
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8655, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
5
|
Farhani S, Hayaatul Najaa M, Hu SE. An eight-year old girl with fever and rash: What is the possible diagnosis? MALAYSIAN FAMILY PHYSICIAN : THE OFFICIAL JOURNAL OF THE ACADEMY OF FAMILY PHYSICIANS OF MALAYSIA 2023; 18:55. [PMID: 38026578 PMCID: PMC10664757 DOI: 10.51866/tyk.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In this clinical challenge, we describe the case of a previously healthy 8-year-old girl who presented to a primary care clinic with fever, reduced oral intake and malaise on day 3 of her illness. Clinical examination revealed that she was tachypnoeic and tachycardic. An erythematous rash was found across the bridge of her nose and cheeks, and several painless ulcers were noted in the oral cavity. Blood investigation showed thrombocytopenia, while urinalysis revealed microscopic haematuria and proteinuria. Useful initial diagnostic imaging studies were discussed, including bedside ultrasound in the ambulatory care setting. It is imperative that primary care providers be vigilant when encountering cases like this.
Collapse
Affiliation(s)
- Samat Farhani
- MD, MMed, Tanjung Karang Health Clinic, Kuala Selangor, Selangor, Malaysia.
| | - Miptah Hayaatul Najaa
- MBBCh BAO, MMed, Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selayang Campus, Jalan Prima Selayang 7, Batu Caves, Selangor, Malaysia
| | - Su Eng Hu
- MBBS, Lanang Health Clinic, Lor Lanang Barat 7, Pekan Sibu, Sibu, Sarawak, Malaysia
| |
Collapse
|
6
|
Grañana-Castillo S, Williams A, Pham T, Khoo S, Hodge D, Akpan A, Bearon R, Siccardi M. General Framework to Quantitatively Predict Pharmacokinetic Induction Drug-Drug Interactions Using In Vitro Data. Clin Pharmacokinet 2023; 62:737-748. [PMID: 36991285 DOI: 10.1007/s40262-023-01229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Metabolic inducers can expose people with polypharmacy to adverse health outcomes. A limited fraction of potential drug-drug interactions (DDIs) have been or can ethically be studied in clinical trials, leaving the vast majority unexplored. In the present study, an algorithm has been developed to predict the induction DDI magnitude, integrating data related to drug-metabolising enzymes. METHODS The area under the curve ratio (AUCratio) resulting from the DDI with a victim drug in the presence and absence of an inducer (rifampicin, rifabutin, efavirenz, or carbamazepine) was predicted from various in vitro parameters and then correlated with the clinical AUCratio (N = 319). In vitro data including fraction unbound in plasma, substrate specificity and induction potential for cytochrome P450s, phase II enzymes and uptake, and efflux transporters were integrated. To represent the interaction potential, the in vitro metabolic metric (IVMM) was generated by combining the fraction of substrate metabolised by each hepatic enzyme of interest with the corresponding in vitro fold increase in enzyme activity (E) value for the inducer. RESULTS Two independent variables were deemed significant and included in the algorithm: IVMM and fraction unbound in plasma. The observed and predicted magnitudes of the DDIs were categorised accordingly: no induction, mild, moderate, and strong induction. DDIs were assumed to be well classified if the predictions were in the same category as the observations, or if the ratio between these two was < 1.5-fold. This algorithm correctly classified 70.5% of the DDIs. CONCLUSION This research presents a rapid screening tool to identify the magnitude of potential DDIs utilising in vitro data which can be highly advantageous in early drug development.
Collapse
Affiliation(s)
| | - Angharad Williams
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Thao Pham
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Saye Khoo
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Daryl Hodge
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Asangaedem Akpan
- Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospitals NHS FT, Liverpool, UK
- NIHR Clinical Research Network, Northwest Coast, Liverpool, UK
| | - Rachel Bearon
- Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - Marco Siccardi
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK.
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 3rd Floor, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
7
|
Acute Liver Failure Secondary to Remdesivir in the Treatment of COVID-19. ACG Case Rep J 2022; 9:e00866. [PMID: 36212242 PMCID: PMC9534366 DOI: 10.14309/crj.0000000000000866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022] Open
Abstract
Remdesivir has been the mainstay of coronavirus disease 2019 treatment since the start of the severe acute respiratory syndrome coronavirus 2 pandemic. Despite its growing use, safety data are limited. We present the case of an elderly man with obesity and coronavirus disease 2019 who developed acute liver failure after initiation of remdesivir. This report broadens our knowledge of the side effect profile of remdesivir and discusses potential risk factors and an approach to remdesivir-induced liver failure. Our case also highlights the importance of monitoring hepatic function after initiation of therapy with remdesivir.
Collapse
|
8
|
Pilla SJ, Pitts SI, Maruthur NM. High Concurrent Use of Sulfonylureas and Antimicrobials With Drug Interactions Causing Hypoglycemia. J Patient Saf 2022; 18:e217-e224. [PMID: 32569099 DOI: 10.1097/pts.0000000000000739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Sulfonylureas, the second most common oral diabetes treatment, have interactions with antimicrobials that substantially increase the risk of hypoglycemia. The objectives of this study are to quantify the concurrent use of sulfonylureas and interacting antimicrobial in U.S. ambulatory care and to examine whether interacting antimicrobials are used for an appropriate indication. METHODS We analyzed the 2006-2016 National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey, annual probability samples of visits to U.S. office-based physicians. We determined nationally representative estimates of visits for adults with concurrent use of sulfonylureas and 7 antimicrobials with established interactions. We examined whether visit diagnoses included appropriate indications for antibiotics according to national guidelines. RESULTS There were 2.5 million visits per year (95% confidence interval [CI] 2.2-2.9) in which sulfonylureas were used with systemic antimicrobials, of which 1 million (95% CI, 0.8-1.2) or 38.0% (95% CI, 32.3%-44.0%) were interacting antimicrobials. Sulfonylurea users had similar odds of interacting antimicrobial use as patients using diabetes medications without antimicrobial interactions (adjusted odds ratio, 1.07; 95% CI, 0.82-1.40). The most common interacting antimicrobials used with sulfonylureas were fluoroquinolones, accounting for 59.9% (95% CI, 50.7%-68.2%) of antimicrobials, and sulfamethoxazole-trimethoprim, accounting for 21.1% (95% CI, 14.8%-29.2%). There was no appropriate antibiotic indication in 69.7% (95% CI, 55.2%-81.1) of visits with interacting antibiotic use. CONCLUSIONS Sulfonylureas and antimicrobials with potentially hazardous interactions are frequently used together. To reduce resultant hypoglycemic events, there is a need for interventions to increase physician awareness and promote antibiotic stewardship.
Collapse
|
9
|
Molenaar-Kuijsten L, Braal CL, Groenland SL, de Vries N, Rosing H, Beijnen JH, Koolen SLW, Vulink AJE, van Dongen MGJ, Mathijssen RHJ, Huitema ADR, Steeghs N. Effects of the Moderate CYP3A4 Inhibitor Erythromycin on the Pharmacokinetics of Palbociclib: A Randomized Crossover Trial in Patients With Breast Cancer. Clin Pharmacol Ther 2021; 111:477-484. [PMID: 34674222 DOI: 10.1002/cpt.2455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
Palbociclib is an oral inhibitor of cyclin-dependent kinases 4 and 6 used in the treatment of locally advanced and metastatic breast cancer, and is extensively metabolized by cytochrome P450 enzyme 3A4 (CYP3A4). A pharmacokinetic/pharmacodynamic relationship between palbociclib exposure and neutropenia is well known. This study aimed to investigate the effects of the moderate CYP3A4 inhibitor erythromycin on the pharmacokinetics of palbociclib. We performed a randomized crossover trial comparing the pharmacokinetics of palbociclib monotherapy 125 mg once daily (q.d.) with palbociclib 125 mg q.d. plus oral erythromycin 500 mg three times daily for seven days. Pharmacokinetic sampling was performed at steady-state for both dosing schedules. Eleven evaluable patients have been enrolled. For palbociclib monotherapy, geometric mean area under the plasma concentration-time curve from zero to infinity (AUC0-24h ), maximum plasma concentration (Cmax ), and minimum plasma concentration (Cmin ) were 1.46 × 103 ng•h/mL (coefficient of variation (CV) 45.0%), 80.5 ng/mL (CV 48.5%), and 48.4 ng/mL (CV 38.8%), respectively, compared with 2.09 × 103 ng•h/mL (CV 49.3%, P = 0.000977), 115 ng/mL (CV 53.7%, P = 0.00562), and 70.7 ng/mL (CV 47.5%, P = 0.000488) when palbociclib was administered concomitantly with erythromycin. Geometric mean ratios (90% confidence intervals) of AUC0-24h , Cmax , and Cmin for palbociclib plus erythromycin vs. palbociclib monotherapy were 1.43 (1.24-1.66), 1.43 (1.20-1.69), and 1.46 (1.30-1.63). Minor differences in adverse events were observed, and only one grade ≥ 3 toxicity was observed in this short period of time. To conclude, concomitant intake of palbociclib with the moderate CYP3A4 inhibitor erythromycin resulted in an increase in palbociclib AUC0-24h and Cmax of both 43%. Therefore, a dose reduction of palbociclib to 75 mg q.d. is rational, when palbociclib and moderate CYP3A4 inhibitors are used concomitantly.
Collapse
Affiliation(s)
- Laura Molenaar-Kuijsten
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - C Louwrens Braal
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Niels de Vries
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annelie J E Vulink
- Department of Medical Oncology, Reinier de Graaf Gasthuis, Delft, The Netherlands
| | - Marloes G J van Dongen
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center, Utrecht University, Utrecht, The Netherlands.,Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Classification of drugs for evaluating drug interaction in drug development and clinical management. Drug Metab Pharmacokinet 2021; 41:100414. [PMID: 34666290 DOI: 10.1016/j.dmpk.2021.100414] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022]
Abstract
During new drug development, clinical drug interaction studies are carried out in accordance with the mechanism of potential drug interactions evaluated by in vitro studies. The obtained information should be provided efficiently to medical experts through package inserts and various information materials after the drug's launch. A recently updated Japanese guideline presents general procedures that are considered scientifically valid at the present moment. In this review, we aim to highlight the viewpoints of the Japanese guideline and enumerate drugs that were involved or are anticipated to be involved in evident pharmacokinetic drug interactions and classify them by their clearance pathway and potential intensity based on systematic reviews of the literature. The classification would be informative for designing clinical studies during the development stage, and the appropriate management of drug interactions in clinical practice.
Collapse
|
11
|
Investigating Intestinal Transporter Involvement in Rivaroxaban Disposition through Examination of Changes in Absorption. Pharm Res 2021; 38:795-801. [PMID: 33847849 DOI: 10.1007/s11095-021-03039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE The involvement of the intestinally expressed xenobiotic transporters P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) have been implicated in rivaroxaban disposition based on in vitro studies, similar to what had previously been proposed for apixaban. We recently showed that these efflux transporters were not clinically relevant for apixaban disposition and examine here their relevance for this second Factor Xa inhibitor. METHODS Using recently published methodologies to discern metabolic- from transporter- mediated drug interactions, a critical evaluation was undertaken of 9 rivaroxaban studies reporting 12 DDIs, one study of food effects and one study of hepatic function. RESULTS Rationale examination of these clinical studies using basic pharmacokinetic theory finds little support for the clinical significance of intestinal efflux transporters in rivaroxaban disposition. Drug-drug interactions are most likely adequately predicted based on the level of CYP 3A metabolism. CONCLUSION These analyses indicate that inhibition of efflux transporters appears to have negligible, clinically insignificant effects on the rivaroxaban absorption process, which is consistent with the concern that predictions based on in vitro measures may not translate to a clinically relevant interaction in vivo. We emphasize the need to evaluate gastric emptying, dissolution and other processes related to absorption when using MAT changes to indicate efflux transporter inhibition.
Collapse
|
12
|
Lee S, Kim AH, Yoon S, Lee J, Lee Y, Ji SC, Yoon SH, Lee S, Yu KS, Jang IJ, Cho JY. The utility of CYP3A activity endogenous markers for evaluating drug-drug interaction between sildenafil and CYP3A inhibitors in healthy subjects. Drug Metab Pharmacokinet 2020; 36:100368. [PMID: 33348240 DOI: 10.1016/j.dmpk.2020.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 (CYP) 3A-related drug-drug interaction (DDI) studies are needed during drug development to determine clinical interaction effects. We aimed to evaluate DDI between sildenafil and two CYP3A inhibitors, clarithromycin and itraconazole, regarding the changes in pharmacokinetics and endogenous markers. An open-label, one-sequence, one-period, two-treatment parallel study was conducted in 32 healthy Korean subjects. Each of 16 subjects were randomly assigned to the clarithromycin and itraconazole groups. Both groups received a single dose of sildenafil 25 mg as a control, and either clarithromycin 250 mg or itraconazole 100 mg was administered four times to inhibit CYP3A activity. Pharmacokinetics of sildenafil showed the similar magnitude of inhibitory effects of the two inhibitors on total CYP3A activity; both inhibitors similarly increased systemic exposure of sildenafil by 2-fold. Urinary 6β-OH-cortisone/cortisone and plasma 4β-OH-cholesterol were significantly decreased after clarithromycin administration but not after itraconazole. A significant correlation between sildenafil CL/F and metabolic markers of CYP3A activity was observed after clarithromycin administration. We confirmed that sildenafil has moderate pharmacokinetic interaction with clarithromycin and itraconazole. Endogenous markers well reflected the CYP3A inhibition of clarithromycin, suggesting possible utility in DDI study with moderate to strong CYP3A inhibition; however, there are limitations in predicting intestinal CYP3A mediated DDI.
Collapse
Affiliation(s)
- Soyoung Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Andrew HyoungJin Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Sumin Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Jieon Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Sang Chun Ji
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Seo Hyun Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Rosa B. Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics 2020; 12:pharmaceutics12111064. [PMID: 33171593 PMCID: PMC7695171 DOI: 10.3390/pharmaceutics12111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Xenobiotic transport proteins play an important role in determining drug disposition and pharmacokinetics. Our understanding of the role of these important proteins in humans and pre-clinical animal species has increased substantially over the past few decades, and has had an important impact on human medicine; however, veterinary medicine has not benefitted from the same quantity of research into drug transporters in species of veterinary interest. Differences in transporter expression cause difficulties in extrapolation of drug pharmacokinetic parameters between species, and lack of knowledge of species-specific transporter distribution and function can lead to drug–drug interactions and adverse effects. Horses are one species in which little is known about drug transport and transporter protein expression. The purpose of this mini-review is to stimulate interest in equine drug transport proteins and comparative transporter physiology.
Collapse
Affiliation(s)
- Brielle Rosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, TRW 2D01, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
14
|
O'Connor A, Furuta T, Gisbert JP, O'Morain C. Review - Treatment of Helicobacter pylori infection 2020. Helicobacter 2020; 25 Suppl 1:e12743. [PMID: 32918350 DOI: 10.1111/hel.12743] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes important studies regarding Helicobacter pylori therapy published from April 2019 to April 2020. The main themes that emerge involve studies assessing antibiotic resistance, and there is also growing momentum behind the utility of vonoprazan as an alternative to proton pump inhibitor (PPI) therapy and also bismuth-based regimens as a first-line regimen. Antibiotic resistance is rising wherever it is being assessed, and clarithromycin resistance in particular has reached a point where it may no longer be a viable therapy without previous testing in many regions of the world. The evidence for the efficacy of a bismuth-based quadruple therapy as a first-line therapy is now very clearly established, and there is substantial evidence that it is the best performing first-line therapy. The utility of vonoprazan as an alternative to PPI therapy, especially in resistant and difficult-to-treat groups, has also been considered in great detail this year, and it may offer an opportunity in the near future to reduce the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Anthony O'Connor
- Department of Gastroenterology, Tallaght University Hospital/Trinity College, Dublin, Ireland
| | - Takahisa Furuta
- The Center for Clinical Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Colm O'Morain
- Department of Gastroenterology, Tallaght University Hospital/Trinity College, Dublin, Ireland
| |
Collapse
|
15
|
Impact of SLCO4C1 Genotypes, Creatinine, and Spironolactone on Digoxin Population Pharmacokinetic Variables in Patients With Cardiac Insufficiency. Clin Ther 2020; 42:1799-1810.e3. [DOI: 10.1016/j.clinthera.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023]
|
16
|
Guo C, Brouwer KR, Stewart PW, Mosley C, Brouwer KLR. Probe Cocktail to Assess Transporter Function in Sandwich-Cultured Human Hepatocytes. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2020; 22:567-575. [PMID: 31804919 DOI: 10.18433/jpps30706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Probe substrates are used routinely to assess transporter function in vitro. Administration of multiple probe substrates together as a "cocktail" in sandwich-cultured human hepatocytes (SCHH) could increase the throughput of transporter function assessment in a physiologically-relevant in vitro system. This study was designed to compare transporter function between cocktail and single agent administration in SCHH. METHODS Rosuvastatin, digoxin, and metformin were selected as probe substrates of hepatic transporters OATP1B1, OATP1B3, BCRP, P-gp, and OCT1. Total accumulation (Cells+Bile) and biliary excretion index (BEI) values derived from administration of the cocktail were compared to values obtained after administration of single agents in the absence and presence of a model inhibitor, erythromycin estolate. RESULTS For rosuvastatin and metformin accumulation, the ratio of means [90% confidence interval (CI)] for cocktail to single agent administration was 100% [94%, 106%] and 90% [82%, 99%], respectively. Therefore, the cocktail and single-agent mode of administration were deemed equivalent per standard equivalence criterion of 80-120% for rosuvastatin and metformin accumulation, but not for digoxin accumulation (77% [62%, 92%]). The ratio of means [90% CI] for rosuvastatin BEI values between the two administration modes (105% [97%, 114%]) also was deemed equivalent. The ratio for digoxin BEI values between the two administration modes was 99% [78%, 120%]. In the presence of erythromycin estolate, the two administration modes were deemed equivalent for evaluation of rosuvastatin, digoxin, and metformin accumulation; the ratio of means [90% CI] was 104% [94%, 115%], 94% [82%, 105%], and 100% [88%, 111%], respectively. However, rosuvastatin and digoxin BEI values were low and quite variable in the presence of the inhibitor, so the BEI results were inconclusive. CONCLUSIONS These data suggest that rosuvastatin and metformin can be administered as a cocktail to evaluate the function of OATP1B1, OATP1B3, BCRP, and OCT1 in SCHH, and that digoxin may not be an ideal component of such a cocktail.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | | |
Collapse
|
17
|
Chan TS, Scaringella YS, Raymond K, Taub ME. Evaluation of Erythromycin as a Tool to Assess CYP3A Contribution of Low Clearance Compounds in a Long-Term Hepatocyte Culture. Drug Metab Dispos 2020; 48:690-697. [PMID: 32503882 DOI: 10.1124/dmd.120.090951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Long-term hepatocyte culture systems such as HepatoPac are well suited to evaluate the metabolic turnover of low clearance (CL) drugs because of their sustained metabolic capacity and longer-term viability. Erythromycin (ERY), a moderate, mechanism-based inhibitor of CYP3A, was evaluated as a tool in the HepatoPac model to assess contribution of CYP3A to the clearance of drug candidates. ERY inhibited CYP3A activity by 58% and 80% at 3 and 10 μM, respectively, for up to 72 hours. At 30 µM, ERY inhibited midazolam hydroxylation by >85% for the entire 144-hour duration of the incubation. Alprazolam CLint was inhibited 58% by 3 μM of ERY, 75% by 15 μM of ERY, 89% by 30 μM of ERY, and 94% by 60 μM of ERY. ERY (30 μM) did not markedly affect CLint of substrates for several other major cytochrome P450 isoforms evaluated and did not markedly inhibit uridine diphosphoglucuronosyl transferase (UGT) isoforms 1A1, 1A3, 1A4, 1A6, 1A9, 2B7, or 2B15 as assessed using recombinant UGTs. ERY only mildly increased CYP3A4 gene expression by 2.1-fold (14% of rifampicin induction) at 120 µM, indicating that at effective concentrations for inhibition of CYP3A activity (30-60 µM), arylhydrocarbon receptor, constitutive androstane receptor, and pregnane-X-receptor activation are not likely to markedly increase levels of other drug-metabolizing enzymes or transporters. ERY at concentrations up to 60 µM was not toxic for up to 6 days of incubation. Use of ERY to selectively inhibit CYP3A in high-functioning, long-term hepatocyte models such as HepatoPac can be a valuable strategy to evaluate the contribution of CYP3A metabolism to the overall clearance of slowly metabolized drug candidates. SIGNIFICANCE STATEMENT: This work describes the use of erythromycin as a selective inhibitor of CYP3A to assess the contribution of CYP3A in the metabolism of compounds using long-term hepatocyte cultures.
Collapse
Affiliation(s)
- Tom S Chan
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Young-Sun Scaringella
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Klairynne Raymond
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Mitchell E Taub
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| |
Collapse
|
18
|
Djohan AH, Sia CH, Singh D, Lin W, Kong WKF, Poh KK. A myriad of electrocardiographic findings associated with digoxin use. Singapore Med J 2020; 61:9-14. [PMID: 32043160 PMCID: PMC7900815 DOI: 10.11622/smedj.2020005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Digoxin is a commonly prescribed drug in the management of heart failure and atrial fibrillation. Despite its widespread use, most clinicians have little experience with recognising clinical signs and symptoms that might suggest a potentially lethal drug toxicity. We herein describe two cases with specific reference to the electrocardiographic changes induced by digoxin and discuss the predisposing factors for toxicity, recognition of possible toxicity and treatment approaches.
Collapse
Affiliation(s)
| | - Ching-Hui Sia
- Department of Cardiology, National University Heart Centre Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Devinder Singh
- Department of Cardiology, National University Heart Centre Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Weiqin Lin
- Department of Cardiology, National University Heart Centre Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - William Kok-Fai Kong
- Department of Cardiology, National University Heart Centre Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
19
|
Kennedy KE, Teng C, Patek TM, Frei CR. Hypoglycemia Associated with Antibiotics Alone and in Combination with Sulfonylureas and Meglitinides: An Epidemiologic Surveillance Study of the FDA Adverse Event Reporting System (FAERS). Drug Saf 2019; 43:363-369. [PMID: 31863282 DOI: 10.1007/s40264-019-00901-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Fluoroquinolones, clarithromycin, linezolid, tigecycline, cefditoren, doxycycline, and trimethoprim-sulfamethoxazole are known to be associated with hypoglycemia, but few studies have considered concomitant glucose-lowering medications. OBJECTIVE The objective of this study was to evaluate the association between hypoglycemia and antibiotics using the US Food and Drug Administration Adverse Event Reporting System (FAERS), while accounting for concomitant glucose-lowering medications including sulfonylureas and meglitinides. METHODS FAERS reports from 1 January 2004 to 31 December 2017 were included in the study. Reporting odds ratios (RORs) and corresponding 95% confidence intervals (CIs) for the association between antibiotics and hypoglycemia were calculated. An association was considered to be statistically significant when the lower limit of the 95% CI was > 1.0. RESULTS A total of 2,334,959 reports (including 18,466 hypoglycemia reports) were considered, after inclusion criteria were applied. Statistically significant hypoglycemia RORs (95% CI) for antibiotics were: cefditoren 14.03 (8.93-22.03), tigecycline 3.32 (1.95-5.65), clarithromycin 2.41 (1.89-3.08), ertapenem 2.07 (1.14-3.75), moxifloxacin 2.06 (1.59-2.65), levofloxacin 1.66 (1.37-2.01), and linezolid 1.54 (1.07-2.20). After adjusting for concomitant sulfonylureas and meglitinides, the following antibiotics were still significantly associated with hypoglycemia: cefditoren 14.25 (9.08-22.39), tigecycline 3.34 (1.96-5.68), ertapenem 1.93 (1.03-3.60), and clarithromycin 1.56 (1.15-2.11). CONCLUSION In many patients, antibiotics, including fluoroquinolones, are associated with hypoglycemia when they are also taking sulfonylureas or meglitinides. Cefditoren, tigecycline, ertapenem, and clarithromycin are associated with hypoglycemia even if not taken with sulfonylureas or meglitinides. The association between ertapenem and hypoglycemia has not been previously reported.
Collapse
Affiliation(s)
- Kaitlin E Kennedy
- Pharmacotherapy Division, College of Pharmacy, The University of Texas at Austin, San Antonio, TX, USA
- Pharmacotherapy Education and Research Center, Long School of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., MSC-6220, San Antonio, TX, 78229, USA
| | - Chengwen Teng
- Pharmacotherapy Division, College of Pharmacy, The University of Texas at Austin, San Antonio, TX, USA
- Pharmacotherapy Education and Research Center, Long School of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., MSC-6220, San Antonio, TX, 78229, USA
| | - Taylor M Patek
- Pharmacotherapy Division, College of Pharmacy, The University of Texas at Austin, San Antonio, TX, USA
- Pharmacotherapy Education and Research Center, Long School of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., MSC-6220, San Antonio, TX, 78229, USA
| | - Christopher R Frei
- Pharmacotherapy Division, College of Pharmacy, The University of Texas at Austin, San Antonio, TX, USA.
- Pharmacotherapy Education and Research Center, Long School of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., MSC-6220, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, USA.
- University Health System, San Antonio, TX, USA.
| |
Collapse
|
20
|
Al-Dmour NS, Abu-Dahab RMN, Evstigneev MP, Kostjukov VV, El-Sabawi D, Hamdan II. Interaction of pseudoephedrine and azithromycin with losartan: Spectroscopic, dissolution and permeation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117194. [PMID: 31170609 DOI: 10.1016/j.saa.2019.117194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
This study aims at investigating the potential effect of selected cationic drugs (azithromycin (AZN) and pseudoephedrine sulfate (PSD) on the dissolution profile and intestinal permeation of losartan potassium (LOS) that might occur due to ion pair salt formation. DSC, FT-IR and 1H NMR indicated the formation of ion pair salts between LOS and each of AZN and PSD. Based on NMR chemical shifts calculations, utilizing specialized software, the most likely structures of the salt were proposed and revealed interesting structural features. The obtained ion pair products were shown to have lower aqueous solubilities (water and phosphate buffer pH 6.8) and higher apparent partition coefficient values compared to the parent compound. Neither of the cations affected the dissolution of LOS tablet (Cozaar® 100 mg) in the studied media (HCl pH 1.2 and phosphate buffer pH 6.8). Interestingly, AZN significantly increased the dissolution of LOS in phosphate buffer pH 4.5 (f2 = 33), and an explanation based on distinguished association pattern between AZN and LOS (CH/π) was offered. Employing permeation test across Caco-2 cells monolayer, the apparent permeability coefficient (Papp) of LOS increased significantly (from 0.9 × 10-5 cm/s to 1.8 × 10-5 cm/s) in the presence of the selected cations. Therefore, while the employed cationic drugs were not shown to form ion pair salts under the in-vitro dissolution conditions, they may still participate in significant in-vivo interaction with LOS.
Collapse
Affiliation(s)
| | | | - Maxim P Evstigneev
- Department of Physics, Sevastopol State University, Sevastopol, 299053, Russian Federation
| | - Victor V Kostjukov
- Department of Physics, Sevastopol State University, Sevastopol, 299053, Russian Federation
| | - Dina El-Sabawi
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Imad I Hamdan
- School of Pharmacy, The University of Jordan, Amman, Jordan.
| |
Collapse
|
21
|
Ramsden D, Fung C, Hariparsad N, Kenny JR, Mohutsky M, Parrott NJ, Robertson S, Tweedie DJ. Perspectives from the Innovation and Quality Consortium Induction Working Group on Factors Impacting Clinical Drug-Drug Interactions Resulting from Induction: Focus on Cytochrome 3A Substrates. Drug Metab Dispos 2019; 47:1206-1221. [PMID: 31439574 DOI: 10.1124/dmd.119.087270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
A recent publication from the Innovation and Quality Consortium Induction Working Group collated a large clinical data set with the goal of evaluating the accuracy of drug-drug interaction (DDI) prediction from in vitro data. Somewhat surprisingly, comparison across studies of the mean- or median-reported area under the curve ratio showed appreciable variability in the magnitude of outcome. This commentary explores the possible drivers of this range of outcomes observed in clinical induction studies. While recommendations on clinical study design are not being proposed, some key observations were informative during the aggregate analysis of clinical data. Although DDI data are often presented using median data, individual data would enable evaluation of how differences in study design, baseline expression, and the number of subjects contribute. Since variability in perpetrator pharmacokinetics (PK) could impact the overall DDI interpretation, should this be routinely captured? Maximal induction was typically observed after 5-7 days of dosing. Thus, when the half-life of the inducer is less than 30 hours, are there benefits to a more standardized study design? A large proportion of CYP3A4 inducers were also CYP3A4 inhibitors and/or inactivators based on in vitro data. In these cases, using CYP3A selective substrates has limitations. More intensive monitoring of changes in area under the curve over time is warranted. With selective CYP3A substrates, the net effect was often inhibition, whereas less selective substrates could discern induction through mechanisms not susceptible to inhibition. The latter included oral contraceptives, which raise concerns of reduced efficacy following induction. Alternative approaches for modeling induction, such as applying biomarkers and physiologically based pharmacokinetic modeling (PBPK), are also considered. SIGNIFICANCE STATEMENT: The goal of this commentary is to stimulate discussion on whether there are opportunities to optimize clinical drug-drug interaction study design. The overall aim is to reduce, understand and contextualize the variability observed in the magnitude of induction across reported clinical studies. A large clinical CYP3A induction dataset was collected and further analyzed to identify trends and gaps. Reporting individual victim PK data, characterizing perpetrator PK and including additional PK assessments for mixed-mechanism perpetrators may provide insights into how these factors impact differences observed in clinical outcomes. The potential utility of biomarkers and PBPK modeling are discussed in considering future directions.
Collapse
Affiliation(s)
- Diane Ramsden
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Conrad Fung
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Niresh Hariparsad
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Jane R Kenny
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Michael Mohutsky
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Neil J Parrott
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Sarah Robertson
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Donald J Tweedie
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| |
Collapse
|
22
|
Rotimi SO, Rotimi OA, Salako AA, Jibrin P, Oyelade J, Iweala EEJ. Gene Expression Profiling Analysis Reveals Putative Phytochemotherapeutic Target for Castration-Resistant Prostate Cancer. Front Oncol 2019; 9:714. [PMID: 31428582 PMCID: PMC6687853 DOI: 10.3389/fonc.2019.00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer is the leading cause of cancer death among men globally, with castration development resistant contributing significantly to treatment failure and death. By analyzing the differentially expressed genes between castration-induced regression nadir and castration-resistant regrowth of the prostate, we identified soluble guanylate cyclase 1 subunit alpha as biologically significant to driving castration-resistant prostate cancer. A virtual screening of the modeled protein against 242 experimentally-validated anti-prostate cancer phytochemicals revealed potential drug inhibitors. Although, the identified four non-synonymous somatic point mutations of the human soluble guanylate cyclase 1 gene could alter its form and ligand binding ability, our analysis identified compounds that could effectively inhibit the mutants together with wild-type. Of the identified phytochemicals, (8′R)-neochrome and (8′S)-neochrome derived from the Spinach (Spinacia oleracea) showed the highest binding energies against the wild and mutant proteins. Our results identified the neochromes and other phytochemicals as leads in pharmacotherapy and as nutraceuticals in management and prevention of castration-resistance prostate cancers.
Collapse
Affiliation(s)
- Solomon Oladapo Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | | | | | - Paul Jibrin
- Department of Pathology, National Hospital, Abuja, Nigeria
| | - Jelili Oyelade
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
| | - Emeka E J Iweala
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| |
Collapse
|
23
|
Visual Hallucinations Induced by Clarithromycin in a Child: A Case Report and Literature Review. Clin Neuropharmacol 2019; 42:142-144. [PMID: 31232747 DOI: 10.1097/wnf.0000000000000351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Our aim was to present a child with visual hallucinations possibly associated with oral clarithromycin administration. CASE REPORT A 4-year-old child was admitted to our hospital with an onset of visual hallucinations after taking the second dose of clarithromycin by mouth. The symptoms gradually disappeared in a week once the clarithromycin therapy had been discontinued. She was observed for a month without any symptoms or further treatment. She was suspected of having Hoigne syndrome (also called as antibiomania) induced by clarithromycin syndrome. CONCLUSION This report highlights neuropsychological adverse effects due to therapeutic doses of clarithromycin therapy as a possible adverse effect in children.
Collapse
|
24
|
Callus R, Felice T, Balzan D, Delicata L. Digoxin toxicity precipitated by Helicobacter pylori eradication therapy. Br J Hosp Med (Lond) 2019; 80:228-229. [DOI: 10.12968/hmed.2019.80.4.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roberta Callus
- Locum Consultant, Department of Medicine, Mater Dei Hospital, Msida MSD 2090 Malta
| | - Tiziana Felice
- Resident Specialist, Department of Cardiology, Mater Dei Hospital, Malta
| | - Deborah Balzan
- Basic Specialist Trainee, Department of Medicine, Mater Dei Hospital, Malta
| | - Lara Delicata
- Resident Specialist, Department of Medicine, Mater Dei Hospital, Malta
| |
Collapse
|
25
|
Gessner A, König J, Fromm MF. Clinical Aspects of Transporter-Mediated Drug-Drug Interactions. Clin Pharmacol Ther 2019; 105:1386-1394. [PMID: 30648735 DOI: 10.1002/cpt.1360] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
Drug transporters play an essential role in disposition and effects of multiple drugs. Plasma concentrations of the victim drug can be modified by drug-drug interactions occurring in enterocytes (e.g., P-glycoprotein), hepatocytes (e.g., organic anion-transporting polypeptide 1B1 (OATP1B1)), and/or renal proximal tubular cells (e.g., organic cation transporter 2 (OCT2)/multidrug and toxin extrusion 1 and 2-K (MATE1/MATE2-K)). In addition, transporter-mediated drug-drug interactions can cause altered local tissue concentrations and possibly altered effects/toxicity (e.g., in liver and kidneys). During drug development, there is now an intensive in vitro screening of new molecular entities as transporter substrates and inhibitors, followed if necessary by drug-drug interaction studies in healthy volunteers. Nevertheless, there are still unresolved issues, which will also be discussed in this review article (e.g., the clinical significance of transporter-mediated drug-drug interactions of particular relevance to the elderly who are prescribed multiple drugs, with additional impaired liver or kidney function, and the extent to which medication safety in real life could be improved by a reduction of those interactions).
Collapse
Affiliation(s)
- Arne Gessner
- 1Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg König
- 1Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- 1Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Quinn KL, Macdonald EM, Gomes T, Mamdani MM, Huang A, Juurlink DN. Macrolides, Digoxin Toxicity and the Risk of Sudden Death: A Population-Based Study. Drug Saf 2018; 40:835-840. [PMID: 28421551 DOI: 10.1007/s40264-017-0539-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Digoxin is commonly prescribed to elderly patients with heart failure and atrial fibrillation, and macrolide antibiotics markedly increase the risk of digoxin toxicity. OBJECTIVE The aim was to determine whether, in older patients receiving digoxin, macrolide antibiotics are associated with sudden death. METHODS We used a population-based, nested, case-control design from January 1, 1994 to December 31, 2012 in a cohort of Ontario residents aged 66 years or older prescribed digoxin. The primary outcome was the risk of sudden death within 14 days of exposure to one of three antibiotics (erythromycin, clarithromycin, or azithromycin), relative to cefuroxime. RESULTS Among 39,072 Ontarians who died suddenly while receiving digoxin, 586 died within 14 days of receiving a study antibiotic. Relative to cefuroxime, we found no statistically significant increase in the risk of sudden death following treatment with erythromycin [adjusted odds ratio (aOR) 0.98; 95% confidence interval (CI) 0.65-1.48], clarithromycin (aOR 1.25; 95% CI 0.94-1.65), or azithromycin (aOR 1.07; 95% CI 0.75-1.53). CONCLUSION This finding reinforces the cardiovascular safety of macrolide antibiotics in a high-risk population.
Collapse
Affiliation(s)
- Kieran L Quinn
- Department of Internal Medicine, University of Toronto, Toronto, ON, Canada. .,Sunnybrook Health Sciences Centre, 2075 Bayview Avenue G106, Toronto, ON, M4N 3M5, Canada.
| | | | - Tara Gomes
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Muhammad M Mamdani
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,King Saud University, Riyadh, Saudi Arabia.,Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anjie Huang
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - David N Juurlink
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Sunnybrook Health Sciences Centre, 2075 Bayview Avenue G106, Toronto, ON, M4N 3M5, Canada
| | | |
Collapse
|
27
|
Abstract
Drug-drug interactions (DDIs) occur commonly and may lead to severe adverse drug reactions if not handled appropriately. Considerable information to support clinical decision making regarding potential DDIs is available in the literature and through various systems providing electronic decision support for healthcare providers. The challenge for the prescribing physician lies in sorting out the evidence and identifying those drugs for which potential interactions are likely to become clinically manifest. P-glycoprotein (P-gp) is a drug transporting protein that is found in the plasma membranes in cells of barrier and elimination organs, and plays a role in drug absorption and excretion. Increasingly, P-gp has been acknowledged as an important player in potential DDIs and a growing body of information on the role of this transporter in DDIs has become available from research and from the drug approval process. This has led to a clear need for a comprehensive review of P-gp-mediated DDIs with a focus on highlighting the drugs that are likely to lead to clinically relevant DDIs. The objective of this review is to provide information for identifying and interpreting evidence of P-gp-mediated DDIs and to suggest a classification for individual drugs based on both in vitro and in vivo evidence (substrates, inhibitors and inducers). Further, various ways of handling potential DDIs in clinical practice are described and exemplified in relation to drugs interfering with P-gp.
Collapse
|
28
|
Prueksaritanont T, Tatosian DA, Chu X, Railkar R, Evers R, Chavez-Eng C, Lutz R, Zeng W, Yabut J, Chan GH, Cai X, Latham AH, Hehman J, Stypinski D, Brejda J, Zhou C, Thornton B, Bateman KP, Fraser I, Stoch SA. Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A. Clin Pharmacol Ther 2016; 101:519-530. [DOI: 10.1002/cpt.525] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/27/2022]
Affiliation(s)
- T Prueksaritanont
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
- Faculty of Pharmaceutical Sciences; Chulalongkorn University; Bangkok Thailand
| | - DA Tatosian
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - X Chu
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - R Railkar
- Department of Biostatistics and Research Decision Sciences; Merck & Co; Kenilworth New Jersey USA
| | - R Evers
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - C Chavez-Eng
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - R Lutz
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - W Zeng
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - J Yabut
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - GH Chan
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - X Cai
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - AH Latham
- Department of Pharmaceutical Sciences and Clinical Supply; Merck & Co; Kenilworth New Jersey USA
| | - J Hehman
- Department of Pharmaceutical Sciences and Clinical Supply; Merck & Co; Kenilworth New Jersey USA
| | - D Stypinski
- Data Management and Biometrics; Celerion; Lincoln Nebraska USA
| | - J Brejda
- Data Management and Biometrics; Celerion; Lincoln Nebraska USA
| | - C Zhou
- Data Management and Biometrics; Celerion; Lincoln Nebraska USA
| | - B Thornton
- Department of Translational Pharmacology Clinical Operations; Merck & Co; Kenilworth New Jersey USA
| | - KP Bateman
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
| | - I Fraser
- Department of Pharmacokinetics; Pharmacodynamics, and Drug Metabolism, Merck & Co; Kenilworth New Jersey USA
- Abide Therapeutics; San Diego California USA
| | - SA Stoch
- Department of Translational Pharmacology; Merck & Co; Kenilworth New Jersey USA
| |
Collapse
|
29
|
Moj D, Hanke N, Britz H, Frechen S, Kanacher T, Wendl T, Haefeli WE, Lehr T. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug–Drug Interactions and Co-medication Regimens. AAPS JOURNAL 2016; 19:298-312. [DOI: 10.1208/s12248-016-0009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/25/2016] [Indexed: 12/26/2022]
|
30
|
Marchitti SA, Mazur CS, Dillingham CM, Rawat S, Sharma A, Zastre J, Kenneke JF. Inhibition of the Human ABC Efflux Transporters P-gp and BCRP by the BDE-47 Hydroxylated Metabolite 6-OH-BDE-47: Considerations for Human Exposure. Toxicol Sci 2016; 155:270-282. [PMID: 28031414 DOI: 10.1093/toxsci/kfw209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity. These findings suggest that some effects previously attributed to BDE-47 in biological systems may actually be due to 6-OH-BDE-47. Considerations for human exposure are discussed.
Collapse
Affiliation(s)
- Satori A Marchitti
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605
| | - Christopher S Mazur
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605
| | - Caleb M Dillingham
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605
| | - Swati Rawat
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605
| | - Anshika Sharma
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - Jason Zastre
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - John F Kenneke
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605;
| |
Collapse
|
31
|
Ngo TD, Tran TD, Le MT, Thai KM. Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:747-780. [PMID: 27667641 DOI: 10.1080/1062936x.2016.1233137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria.
Collapse
Affiliation(s)
- T-D Ngo
- a Department of Medicinal Chemistry, Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Viet Nam
| | - T-D Tran
- a Department of Medicinal Chemistry, Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Viet Nam
| | - M-T Le
- a Department of Medicinal Chemistry, Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Viet Nam
| | - K-M Thai
- a Department of Medicinal Chemistry, Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Viet Nam
| |
Collapse
|
32
|
Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S. Effect of Intestinal Flora on Protein Expression of Drug-Metabolizing Enzymes and Transporters in the Liver and Kidney of Germ-Free and Antibiotics-Treated Mice. Mol Pharm 2016; 13:2691-701. [PMID: 27376980 DOI: 10.1021/acs.molpharmaceut.6b00259] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Takuya Kuno
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Drug Metabolism and Pharmacokinetics, Drug Safety Research Center,
Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, Tokushima 771-0192, Japan
| | - Mio Hirayama-Kurogi
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- AMED-CREST, Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Shingo Ito
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- AMED-CREST, Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Sumio Ohtsuki
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- AMED-CREST, Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| |
Collapse
|
33
|
Zhou D, Bui K, Sostek M, Al‐Huniti N. Simulation and Prediction of the Drug-Drug Interaction Potential of Naloxegol by Physiologically Based Pharmacokinetic Modeling. CPT Pharmacometrics Syst Pharmacol 2016; 5:250-7. [PMID: 27299937 PMCID: PMC4879473 DOI: 10.1002/psp4.12070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
Naloxegol, a peripherally acting μ-opioid receptor antagonist for the treatment of opioid-induced constipation, is a substrate for cytochrome P450 (CYP) 3A4/3A5 and the P-glycoprotein (P-gp) transporter. By integrating in silico, preclinical, and clinical pharmacokinetic (PK) findings, minimal and full physiologically based pharmacokinetic (PBPK) models were developed to predict the drug-drug interaction (DDI) potential for naloxegol. The models reasonably predicted the observed changes in naloxegol exposure with ketoconazole (increase of 13.1-fold predicted vs. 12.9-fold observed), diltiazem (increase of 2.8-fold predicted vs. 3.4-fold observed), rifampin (reduction of 76% predicted vs. 89% observed), and quinidine (increase of 1.2-fold predicted vs. 1.4-fold observed). The moderate CYP3A4 inducer efavirenz was predicted to reduce naloxegol exposure by ∼50%, whereas weak CYP3A inhibitors were predicted to minimally affect exposure. In summary, the PBPK models reasonably estimated interactions with various CYP3A modulators and can be used to guide dosing in clinical practice when naloxegol is coadministered with such agents.
Collapse
Affiliation(s)
- D Zhou
- AstraZeneca PharmaceuticalsWalthamMassachusettsUSA
| | - K Bui
- AstraZeneca PharmaceuticalsWalthamMassachusettsUSA
| | - M Sostek
- AstraZeneca PharmaceuticalsGaithersburgMarylandUSA
| | - N Al‐Huniti
- AstraZeneca PharmaceuticalsWalthamMassachusettsUSA
| |
Collapse
|
34
|
Pea F. Antimicrobial treatment of bacterial infections in frail elderly patients: the difficult balance between efficacy, safety and tolerability. Curr Opin Pharmacol 2015; 24:18-22. [DOI: 10.1016/j.coph.2015.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/05/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
|
35
|
Li AP. Evaluation of Adverse Drug Properties with Cryopreserved Human Hepatocytes and the Integrated Discrete Multiple Organ Co-culture (IdMOC(TM)) System. Toxicol Res 2015; 31:137-49. [PMID: 26191380 PMCID: PMC4505344 DOI: 10.5487/tr.2015.31.2.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/26/2022] Open
Abstract
Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent the gold standard for in vitro evaluation of drug metabolism, drug-drug interactions, and hepatotoxicity. Successful cryopreservation of human hepatocytes enables this experimental system to be used routinely. The use of human hepatocytes to evaluate two major adverse drug properties: drug-drug interactions and hepatotoxicity, are summarized in this review. The application of human hepatocytes in metabolism-based drug-drug interaction includes metabolite profiling, pathway identification, P450 inhibition, P450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. A novel system, the Integrated Discrete Multiple Organ Co-culture (IdMOC) which allows the evaluation of nonhepatic toxicity in the presence of hepatic metabolism, is described.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories LLC, 9221 Rumsey Road Suite 8, Columbia, MD 21045
| |
Collapse
|
36
|
Mazur CS, Marchitti SA, Zastre J. P-glycoprotein inhibition by the agricultural pesticide propiconazole and its hydroxylated metabolites: Implications for pesticide–drug interactions. Toxicol Lett 2015; 232:37-45. [DOI: 10.1016/j.toxlet.2014.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
|
37
|
Shi JG, Fraczkiewicz G, Williams WV, Yeleswaram S. Predicting drug-drug interactions involving multiple mechanisms using physiologically based pharmacokinetic modeling: a case study with ruxolitinib. Clin Pharmacol Ther 2014; 97:177-85. [PMID: 25670523 DOI: 10.1002/cpt.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/04/2014] [Indexed: 11/07/2022]
Abstract
Physiologically based pharmacokinetic modeling was applied to characterize the potential drug-drug interactions for ruxolitinib. A ruxolitinib physiologically based pharmacokinetic model was constructed using all baseline PK data in healthy subjects, and verified by retrospective predictions of observed drug-drug interactions with rifampin (a potent CYP3A4 inducer), ketoconazole (a potent CYP3A4 reversible inhibitor) and erythromycin (a moderate time-dependent inhibitor of CYP3A4). The model prospectively predicts that 100-200 mg daily dose of fluconazole, a dual inhibitor of CYP3A4 and 2C9, would increase ruxolitinib plasma concentration area under the curve by ∼two-fold, and that as a perpetrator, ruxolitinib is highly unlikely to have any discernible effect on digoxin, a sensitive P-glycoprotein substrate. The analysis described here illustrates the capability of physiologically based pharmacokinetic modeling to predict drug-drug interactions involving several commonly encountered interaction mechanisms and makes the case for routine use of model-based prediction for clinical drug-drug interactions. A model verification checklist was explored to harmonize the methodology and use of physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- J G Shi
- Incyte Corporation, Wilmington, Delaware, USA
| | | | | | | |
Collapse
|
38
|
Parekh TM, Raji M, Lin YL, Tan A, Kuo YF, Goodwin JS. Hypoglycemia after antimicrobial drug prescription for older patients using sulfonylureas. JAMA Intern Med 2014; 174:1605-12. [PMID: 25179404 PMCID: PMC4878670 DOI: 10.1001/jamainternmed.2014.3293] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE Certain antimicrobial drugs interact with sulfonylureas to increase the risk of hypoglycemia. OBJECTIVE To determine the risk of hypoglycemia and associated costs in older patients prescribed glipizide or glyburide who fill a prescription for an antimicrobial drug. DESIGN, SETTING, AND PARTICIPANTS This was a retrospective cohort study of Texas Medicare claims from 2006 to 2009 for patients 66 years or older who were prescribed glipizide or glyburide and who also filled a prescription for 1 of the 16 antimicrobials most commonly prescribed for this population. METHODS We assessed hypoglycemia events and associated Medicare costs in patients prescribed 1 of 7 antimicrobial agents thought to interact with sulfonylureas, using noninteracting antimicrobials as a comparison. We used a repeated measure logistic regression, controlling for age, sex, ethnicity, Medicaid eligibility, comorbidity, prior emergency department visits for hypoglycemia, prior hospitalizations for any cause, nursing home residence, and indication for the antimicrobial. We estimated odds of hypoglycemia, number needed to harm, deaths during hospitalization for hypoglycemia, and Medicare costs for hypoglycemia treatment. MAIN OUTCOMES AND MEASURES Any hospitalization or emergency department visit owing to hypoglycemia within 14 days of antimicrobial exposure. RESULTS In multivariable analyses controlling for patient characteristics and indication for antimicrobial drug use, clarithromycin (odds ratio [OR], 3.96 [95% CI, 2.42-6.49]), levofloxacin (OR, 2.60 [95% CI, 2.18-3.10]), sulfamethoxazole-trimethoprim (OR, 2.56 [95% CI, 2.12-3.10]), metronidazole (OR, 2.11 [95% CI, 1.28-3.47]), and ciprofloxacin (OR, 1.62 [95% CI, 1.33-1.97]) were associated with higher rates of hypoglycemia compared with a panel of noninteracting antimicrobials. The number needed to harm ranged from 71 for clarithromycin to 334 for ciprofloxacin. Patient factors associated with hypoglycemia included older age, female sex, black or Hispanic race/ethnicity, higher comorbidity, and prior hypoglycemic episode. In 2009, 28.3% of patients prescribed a sulfonylurea filled a prescription for 1 of these 5 antimicrobials, which were associated with 13.2% of all hypoglycemia events in patients taking sulfonylureas. The treatment of subsequent hypoglycemia adds $30.54 in additional Medicare costs to each prescription of 1 of those 5 antimicrobials given to patients taking sulfonylureas. CONCLUSIONS AND RELEVANCE Prescription of interacting antimicrobial drugs to patients on sulfonylureas is very common, and is associated with substantial morbidity and increased costs.
Collapse
Affiliation(s)
- Trisha M Parekh
- Sealy Center on Aging, University of Texas Medical Branch, Galveston2Department of Internal Medicine, University of Texas Medical Branch, Galveston3Department of Preventive Medicine, University of Texas Medical Branch, Galveston4Department of Community He
| | - Mukaila Raji
- Sealy Center on Aging, University of Texas Medical Branch, Galveston2Department of Internal Medicine, University of Texas Medical Branch, Galveston3Department of Preventive Medicine, University of Texas Medical Branch, Galveston4Department of Community He
| | - Yu-Li Lin
- Sealy Center on Aging, University of Texas Medical Branch, Galveston2Department of Internal Medicine, University of Texas Medical Branch, Galveston3Department of Preventive Medicine, University of Texas Medical Branch, Galveston4Department of Community He
| | - Alai Tan
- Sealy Center on Aging, University of Texas Medical Branch, Galveston2Department of Internal Medicine, University of Texas Medical Branch, Galveston3Department of Preventive Medicine, University of Texas Medical Branch, Galveston4Department of Community He
| | - Yong-Fang Kuo
- Sealy Center on Aging, University of Texas Medical Branch, Galveston2Department of Internal Medicine, University of Texas Medical Branch, Galveston3Department of Preventive Medicine, University of Texas Medical Branch, Galveston4Department of Community He
| | - James S Goodwin
- Sealy Center on Aging, University of Texas Medical Branch, Galveston2Department of Internal Medicine, University of Texas Medical Branch, Galveston3Department of Preventive Medicine, University of Texas Medical Branch, Galveston4Department of Community He
| |
Collapse
|
39
|
Ma TKW, Chow KM, Choy ASM, Kwan BCH, Szeto CC, Li PKT. Clinical manifestation of macrolide antibiotic toxicity in CKD and dialysis patients. Clin Kidney J 2014; 7:507-12. [PMID: 25859365 PMCID: PMC4389137 DOI: 10.1093/ckj/sfu098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022] Open
Abstract
Macrolide antibiotics, erythromycin, clarithromycin and azithromycin are commonly prescribed for upper respiratory infection, and their use has recently been further linked to immunomodulatory effects. With the widespread and expanded use of macrolides, special attention should be paid to their potential adverse effects. We reported two cases of end-stage renal disease (ESRD) patients who developed hallucinations such as vivid images of worms after taking clarithromycin. Similar to previous case reports of clarithromycin neurotoxicity, the visual hallucination resolved upon cessation of clarithromycin. Furthermore, we discussed the pharmacokinetic properties and other toxicities of macrolide antibiotics in patients with chronic kidney disease and ESRD.
Collapse
Affiliation(s)
- Terry King-Wing Ma
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin, Hong Kong , China
| | - Kai-Ming Chow
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin, Hong Kong , China
| | - Agnes Shin Man Choy
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin, Hong Kong , China
| | - Bonnie Ching-Ha Kwan
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin, Hong Kong , China
| | - Cheuk-Chun Szeto
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin, Hong Kong , China
| | - Philip Kam-Tao Li
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin, Hong Kong , China
| |
Collapse
|
40
|
Pharmacokinetic drug interactions between apigenin, rutin and paclitaxel mediated by P-glycoprotein in rats. Eur J Drug Metab Pharmacokinet 2014; 40:267-76. [PMID: 24871039 DOI: 10.1007/s13318-014-0203-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 05/20/2014] [Indexed: 01/08/2023]
Abstract
The aim of present study was to investigate the effects of apigenin and rutin on the pharmacokinetics of paclitaxel after oral administration of paclitaxel with apigenin and rutin to rats. Paclitaxel (40 mg/kg) was administered orally alone and in combination with apigenin and rutin (10, 20, and 40 mg/kg) for 15 consecutive days. In the single-dose pharmacokinetic study (SDS), blood samples were collected on 1st day whereas on 15th day in the multiple-dose pharmacokinetic study (MDS). The plasma concentrations of paclitaxel were increased dose-dependently in the combination of apigenin and rutin compared to that of paclitaxel control in SDS and MDS (p < 0.01). The areas under the plasma concentration-time curve (AUC) and the plasma peak concentrations (C max) of paclitaxel with apigenin and rutin were significantly higher (p < 0.01) than that of the control. The AUCs and C max of paclitaxel were increased with apigenin and rutin in the dose-dependent manner. The half-life (t 1/2) was significantly longer than that of the control. Non-everted sacs were filled with paclitaxel 100 μM in the presence and absence of verapamil (50 μM), apigenin, and rutin (50, 100 μM) and incubated at 37 ºC for 60 min. The absorption of paclitaxel was increased in the presence of apigenin, rutin, and verapamil, a typical P-glycoprotein and Cyp3A4 inhibitor. If these results are confirmed in humans in a clinical setting, the paclitaxel dose should be adjusted when it is given concomitantly with apigenin and rutin.
Collapse
|
41
|
Abstract
The accuracy of preclinical safety evaluation to predict human toxicity is hindered by species difference in drug metabolism and toxic mechanism between human and nonhuman animals. In vitro human-based experimental systems allowing the assessment of human-specific drug properties represent a logical and practical approach to provide human-specific information. An advantage of in vitro approaches is that they require only limited amounts of time and resources, and, most importantly, do not invoke harm to human patients. Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent a practical and useful experimental system to assess drug metabolism. The use of human hepatocytes to evaluate two major adverse drug properties, drug–drug interactions and hepatotoxicity, are reviewed. The application of human hepatocytes in metabolism-based drug–drug interactions includes metabolite profiling, pathway identification, CYP450 inhibition, CYP450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. Correlation of drug toxicity with proteomics and genomics data may allow the discovery of clinical biomarkers for early detection of liver toxicity.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories LLC, 9221 Rumsey Road Suite 8, Columbia, MD 21045, USA
| |
Collapse
|
42
|
Kishimoto W, Ishiguro N, Ludwig-Schwellinger E, Ebner T, Schaefer O. In vitro predictability of drug-drug interaction likelihood of P-glycoprotein-mediated efflux of dabigatran etexilate based on [I]2/IC50 threshold. Drug Metab Dispos 2014; 42:257-63. [PMID: 24212378 DOI: 10.1124/dmd.113.053769] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dabigatran etexilate, an oral, reversible, competitive, and direct thrombin inhibitor, is an in vitro and in vivo substrate of P-glycoprotein (P-gp). Dabigatran etexilate was proposed as an in vivo probe substrate for intestinal P-gp inhibition in a recent guidance on drug-drug interactions (DDI) from the European Medicines Agency (EMA) and the Food and Drug Administration (FDA). We conducted transcellular transport studies across Caco-2 cell monolayers with dabigatran etexilate in the presence of various P-gp inhibitors to examine how well in vitro IC50 data, in combination with mathematical equations provided by regulatory guidances, predict DDI likelihood. From a set of potential P-gp inhibitors, clarithromycin, cyclosporin A, itraconazole, ketoconazole, quinidine, and ritonavir inhibited P-gp-mediated transport of dabigatran etexilate over a concentration range that may hypothetically occur in the intestine. IC50 values of P-gp inhibitors for dabigatran etexilate transport were comparable to those of digoxin, a well established in vitro and in vivo P-gp substrate. However, IC50 values varied depending whether they were calculated from efflux ratios or permeability coefficients. Prediction of DDI likelihood of P-gp inhibitors using IC50 values, the hypothetical concentration of P-gp inhibitors, and the cut-off value recommended by both the FDA and EMA were in line with the DDI occurrence in clinical studies with dabigatran etexilate. However, it has to be kept in mind that validity of the cut-off criteria proposed by the FDA and EMA depends on in vitro experimental systems and the IC50-calculation methods that are employed, as IC50 values are substantially influenced by these factors.
Collapse
Affiliation(s)
- Wataru Kishimoto
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan (W.K., N.I., and O.S.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (E.L. and T.E.)
| | | | | | | | | |
Collapse
|
43
|
Volpe DA, Hamed SS, Zhang LK. Use of different parameters and equations for calculation of IC₅₀ values in efflux assays: potential sources of variability in IC₅₀ determination. AAPS JOURNAL 2013; 16:172-80. [PMID: 24338112 DOI: 10.1208/s12248-013-9554-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/25/2013] [Indexed: 01/07/2023]
Abstract
Drug interactions due to efflux transporters may result in one drug increasing or decreasing the systemic exposure of a second drug. The potential for in vivo drug interactions is estimated through in vitro cell assays. Variability in in vitro parameter determination (e.g., IC₅₀ values) among laboratories may lead to different conclusions in in vivo interaction predictions. The objective of this study was to investigate variability in in vitro inhibition potency determination that may be due to calculation methods. In a Caco-2 cell assay, the absorptive and secretive permeability of digoxin was measured in the presence of spironolactone, itraconazole and vardenafil. From the permeability data, the efflux ratio and net secretory flux where calculated for each inhibitor. IC₅₀ values were then calculated using a variety of equations and software programs. All three drugs decreased the secretory transport of digoxin in a concentration-dependent manner while increasing digoxin's absorption to a lesser extent. The resulting IC₅₀ values varied according to the parameter evaluated, whether percent inhibition or percent control was applied, and the computational IC₅₀ equation. This study has shown that multiple methods used to quantitate the inhibition of drug efflux in a cell assay can result in different IC₅₀ values. The variability in the results in this study points to a need to standardize any transporter assay and calculation methods within a laboratory and to validate the assay with a set of known inhibitors and non-inhibitors against a clinically relevant substrate.
Collapse
Affiliation(s)
- Donna A Volpe
- Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993-0002, USA,
| | | | | |
Collapse
|
44
|
König J, Müller F, Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev 2013; 65:944-66. [PMID: 23686349 DOI: 10.1124/pr.113.007518] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Uptake and efflux transporters determine plasma and tissue concentrations of a broad variety of drugs. They are localized in organs such as small intestine, liver, and kidney, which are critical for drug absorption and elimination. Moreover, they can be found in important blood-tissue barriers such as the blood-brain barrier. Inhibition or induction of drug transporters by coadministered drugs can alter pharmacokinetics and pharmacodynamics of the victim drugs. This review will summarize in particular clinically observed drug-drug interactions attributable to inhibition or induction of intestinal export transporters [P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)], to inhibition of hepatic uptake transporters [organic anion transporting polypeptides (OATPs)], or to inhibition of transporter-mediated [organic anion transporters (OATs), organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATEs), P-gp] renal secretion of xenobiotics. Available data on the impact of nutrition on transport processes as well as genotype-dependent, transporter-mediated drug-drug interactions will be discussed. We will also present and discuss data on the variable extent to which information on the impact of transporters on drug disposition is included in summaries of product characteristics of selected countries (SPCs). Further work is required regarding a better understanding of the role of the drug metabolism-drug transport interplay for drug-drug interactions and on the extrapolation of in vitro findings to the in vivo (human) situation.
Collapse
Affiliation(s)
- Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Clinical Pharmacology and Clinical Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
45
|
Matsson EM, Eriksson UG, Knutson L, Hoffmann KJ, Logren U, Fridblom P, Petri N, Lennernäs H. Biliary Excretion of Ximelagatran and Its Metabolites and the Influence of Erythromycin Following Intraintestinal Administration to Healthy Volunteers. J Clin Pharmacol 2013; 51:770-83. [DOI: 10.1177/0091270010370975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Abstract
Efflux pump mechanisms perform important physiological functions such as prevention of toxin absorption from the gastrointestinal tract, elimination of bile from the hepatocytes, effective functioning of the blood-brain barrier and placental barrier, and renal excretion of drugs. They exist in all living cells, but those in the bacterial and mammalian cells are more important to the clinician and pharmacologist, as they constitute an important cause of antimicrobial drug resistance, which contributes to treatment failure, high medical bills, and increased mortality / morbidity. This review was aimed at highlighting the role of efflux pump mechanisms in microbial resistance to chemotherapeutic agents. It was also aimed to elucidate their structure and mechanisms of action so as to integrate the efflux pump mechanisms in the design and development of novel antimicrobial agents. Findings from previous studies and research on this subject assessed through Google search, Pubmed, Hinari websites, as well as standard textbooks on chemotherapy, provided the needed information in the process of this review. Efflux pump inhibitors are promising strategies for preventing and reverting efflux-mediated resistance to chemotherapeutic agents. They are usually employed as adjuncts in antimicrobial and cancer chemotherapy. Toxicity, more common with the older-generation inhibitors such as verapamil and reserpine, constitutes the greatest impediment to their clinical applications. No efflux pump inhibitor has been approved for routine clinical use, as a result of doubtful clinical efficacy and unacceptably high incidence of adverse effects, particularly inhibition of the P-450 drug metabolizing enzyme. At present, their applications are mainly restricted to epidemiological studies. Nonetheless, the search for efficacious and tolerable efflux pump inhibitors continues because of the potential benefits. There is a need to consider efflux pump substrate selectivity in the design and development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Po Ughachukwu
- Department of Pharmacology and Therapeutics, College of Medicine, Anambra State University, Awka Campus, Anambra, Nigeria
| | | |
Collapse
|
47
|
Alreja G, Inayatullah S, Goel S, Braden G. Rhabdomyolysis caused by an unusual interaction between azithromycin and simvastatin. J Cardiovasc Dis Res 2012; 3:319-22. [PMID: 23233778 PMCID: PMC3516014 DOI: 10.4103/0975-3583.102720] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Rhabdomyolysis is an uncommon but life-threatening adverse effect of simvastatin therapy. A 73-year-old male on chronic simvastatin therapy received azithromycin for acute bronchitis. He presented with weakness of all extremities with a significant increase in creatinine phosphokinase levels and acute kidney injury. Simvastatin was stopped and supportive therapy with intravenous saline and bicarbonate was initiated. The serum creatinine and creatine phosphokinase returned to baseline in the next 7 days. Two months later, simvastatin was resumed without any recurrence of symptoms. Our case report highlights the rare description of rhabdomyolysis caused by a drug interaction between simvastatin with azithromycin.
Collapse
Affiliation(s)
- Gaurav Alreja
- Department of Medicine, Baystate Medical Center, Tufts University School of Medicine, Springfield, MA, USA
| | | | | | | |
Collapse
|
48
|
Pharmacokinetics of the Direct Factor Xa Inhibitor Edoxaban and Digoxin Administered Alone and in Combination. J Cardiovasc Pharmacol 2012. [DOI: 10.1097/fjc.0b013e31826265b6.] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
49
|
Pharmacokinetics of the Direct Factor Xa Inhibitor Edoxaban and Digoxin Administered Alone and in Combination. J Cardiovasc Pharmacol 2012; 60:335-41. [DOI: 10.1097/fjc.0b013e31826265b6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
[Clinically relevant pharmacokinetic drug interactions in the intensive care unit: an overview]. Med Klin Intensivmed Notfmed 2012; 107:128-40. [PMID: 22437193 DOI: 10.1007/s00063-012-0099-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/12/2011] [Accepted: 03/21/2011] [Indexed: 01/09/2023]
Abstract
Critically ill patients in the intensive care unit (ICU) are predisposed to pharmacokinetic drug interactions because of the complexity of the drug regimens received in the intensive care setting. Drugs may affect the absorption, distribution, metabolism and/or elimination of an object drug and consequently alter the intended pharmacologic response and potentially lead to an adverse event. The paper presents an overview of pharmacokinetic drug-drug interactions which can occur with commonly used drugs in the ICU and outlines the underlying types and mechanisms.
Collapse
|