1
|
Fan S, Zhao Z, Wang H, Wang H, Niu W. Efficacy and safety of oxaliplatin-based chemotherapy as first-line treatment in elderly patients with metastatic colorectal cancer: a meta-analysis. Front Oncol 2025; 15:1567732. [PMID: 40260292 PMCID: PMC12009691 DOI: 10.3389/fonc.2025.1567732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Purpose The global burden of colorectal cancer (CRC) continues to rise, with elderly populations disproportionately affected. Despite oxaliplatin's established role in first-line metastatic CRC (mCRC) therapy, its clinical utility in older adults remains debated due to concerns over efficacy, toxicity, and survival outcomes. This meta-analysis evaluates the therapeutic benefits and risks of oxaliplatin-based regimens in elderly patients with mCRC, with emphasis on tumor response, survival endpoints, and treatment-related toxicities. Methods We systematically reviewed PubMed, Web of Science, Cochrane Library, and Chinese databases (CNKI, Wan Fang) through November 2024 for randomized controlled trials (RCTs) comparing oxaliplatin-based chemotherapy to non-oxaliplatin regimens in patients aged ≥65 with mCRC. Outcomes included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), complete response (CR), partial response (PR), disease control rate (DCR), and grade 3-4 adverse events. Data were pooled using random- or fixed-effects models in STATA 14.0 based on heterogeneity (I² statistic). Subgroup analyses explored heterogeneity sources, including chemotherapy combinations (e.g., bevacizumab, panitumumab). Results Seven RCTs (1,839 patients) met inclusion criteria. Oxaliplatin significantly improved tumor response rates versus control regimens: ORR (OR 2.18, 95% CI 1.75-2.72; P<0.001), CR (OR 2.57, 1.11-5.97; P=0.028), and PR (OR 1.69, 1.28-2.22; P<0.001). No significant survival benefit was observed for OS (HR 0.97, 0.86-1.08; P=0.58) or PFS (HR 0.90, 0.79-1.01; P=0.07), though trends favored oxaliplatin. Grade 3-4 neutropenia (RR 1.84, 1.32-2.57), diarrhea (RR 2.01, 1.45-2.78), and sensory neuropathy (RR 3.12, 1.98-4.91) were more frequent with oxaliplatin. Subgroup analysis attributed DCR heterogeneity (I²=66%) to regimen differences, with reduced variability in bevacizumab/pantiumumab-combined subgroups. Discussion This analysis demonstrates oxaliplatin's capacity to enhance tumor response in elderly mCRC patients, potentially alleviating symptoms and improving quality of life. However, the absence of significant survival gains underscores the complex interplay between tumor biology and therapeutic resistance. Mechanistically, chemotherapy-driven clonal selection may favor residual resistant subpopulations, as evidenced by liquid biopsy studies linking tumor evolution to disease progression. While toxicity profiles were manageable, the elevated risk of neurotoxicity and myelosuppression necessitates vigilant monitoring in this vulnerable cohort. Conclusion Oxaliplatin-based first-line therapy provides clinically meaningful tumor response improvements in elderly mCRC patients, though survival advantages remain elusive. Treatment decisions should balance response benefits against toxicity risks, prioritizing individualized strategies informed by geriatric assessments and molecular profiling. Future trials must integrate biomarker-driven approaches (e.g., ctDNA monitoring, RAS/RAF stratification) to optimize therapeutic precision in aging populations.
Collapse
Affiliation(s)
- Shaoqing Fan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zeming Zhao
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haiqian Wang
- Department of Nursing, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Handong Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenbo Niu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Cui R, Zhou J, Yang W, Chen Y, Chen L, Tan L, Zhang F, Liu G, Yu J. Ultrasound-Triggered Nanogel Boosts Chemotherapy and Immunomodulation in Colorectal Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:211-221. [PMID: 39660733 PMCID: PMC11783521 DOI: 10.1021/acsami.4c13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Chemotherapy is the primary therapy for colorectal cancer. However, its efficacy has been limited by chemoresistance, which is mainly caused by inadequate intratumoral drug accumulation and immunosuppressive microenvironments. To address these limitations, we developed a low-intensity ultrasound (LIU)-controlled and charge-reversible nanogel (R-NG), utilizing conjugated chitosan-polypyrrole polymers linked via thioketal bonds, with TiO2 absorbed onto its surface. Following the loading of oxaliplatin, the Oxa-R-NGs were ultimately synthesized. In the acidic tumor environment, the protonation of the pyrrole ring triggered the conversion of Oxa-R-NG into a positively charged form, thereby enhancing tumor penetration and cellular internalization. Based on the charge conversion, intratumoral accumulating Oxa-R-NG was triggered by LIU to continuously generate reactive oxygen species (ROS), which not only disrupted thioketal bonds to liberate oxaliplatin but also regulated tumor-associated macrophage polarization. Consequently, Oxa-R-NG boosted the chemotherapy for colorectal cancer by improving intratumoral drug accumulation and reversing the local immunosuppressive microenvironment synergistically.
Collapse
Affiliation(s)
- Rui Cui
- Department
of Ultrasonography, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
- Biomedical
Innovation Center, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Jingwen Zhou
- Department
of Ultrasonography, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
- Biomedical
Innovation Center, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Wei Yang
- National
Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yao Chen
- Department
of Ultrasonography, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
- Biomedical
Innovation Center, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Limei Chen
- Department
of Ultrasonography, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
- Biomedical
Innovation Center, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Lei Tan
- Department
of Medical Ultrasonic, Third Affiliated
Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, China
| | - Feng Zhang
- Department
of Ultrasonography, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
- Biomedical
Innovation Center, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Guangjian Liu
- Department
of Ultrasonography, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
- Biomedical
Innovation Center, The Sixth Affiliated
Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Jie Yu
- Department
of Interventional Ultrasound, PLA General
Hospital, Beijing 100853, China
| |
Collapse
|
3
|
Peyerl H, Kreye G, Pecherstorfer M, Singer J. Treatment of stage IV colorectal cancer: A retrospective cohort study assessing whether failure of first‑line treatment indicates failure of second‑line treatment. Mol Clin Oncol 2025; 22:10. [PMID: 39640913 PMCID: PMC11618034 DOI: 10.3892/mco.2024.2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent malignancies and, despite screening programs, it is often diagnosed at late stages. Although current first- and second-line therapies stratify for KRAS/NRAS/BRAF mutations, microsatellite instability, tumour location and co-morbidities, the therapeutic mainstay for the first- and second-line treatment of the majority of patients consists of 5-fluorouracil (5-FU)-based chemo-immunotherapy. The present study evaluated the responses of patients with stage IV CRC, treated at the University Hospital Krems between January 1, 2015 and December 31, 2021, who received at least two therapy lines (n=49), with the aim of investigating whether the response to first-line therapy could predict the response to second-line therapy. All patients with first-line complete response (CR) had at least stable disease in response to second-line treatment [overall response rate (ORR)=66.6%]. On the other hand, all patients with progressive disease (PD) in response to first-line treatment (n=7) did not respond to second-line therapy (ORR=0%). These findings also translated to overall survival (OS): Patients with first-line CR had a median OS time of 80 months, whereas patients with PD had a median OS time of 12 months (P<0.001). Furthermore, different parameters were analysed for their impact on OS; the results revealed that BRAF alterations were associated with poor prognosis. Other factors (sex, tumor sidedness, KRAS and MSS/MSI status) had in this cohort no significant effect on OS. In conclusion, the present study demonstrated that, with current treatment strategies applying 5-FU-based chemo-immunotherapy as first- and second-line treatment for patients with metastatic CRC, response to first-line therapy may be a strong predictor for the response to second-line therapy and OS. By exchanging the chemotherapeutic combination partner from oxaliplatin to irinotecan or vice versa, plus the additive anti-epidermal growth factor receptor/anti-vascular endothelial growth factor antibody, the negative factor of non-response to first-line therapy could not be overcome by second-line treatment in this study population. These findings must be confirmed in larger studies, but indicate the need for novel treatment options, especially for patients not responding to first-line 5-FU-based chemo-immunotherapy.
Collapse
Affiliation(s)
- Hanna Peyerl
- Karl Landsteiner University of Health Sciences, A-3500 Krems, Austria
| | - Gudrun Kreye
- Karl Landsteiner University of Health Sciences, A-3500 Krems, Austria
- Department of Internal Medicine II, University Hospital Krems, A-3500 Krems, Austria
| | - Martin Pecherstorfer
- Karl Landsteiner University of Health Sciences, A-3500 Krems, Austria
- Department of Internal Medicine II, University Hospital Krems, A-3500 Krems, Austria
| | - Josef Singer
- Karl Landsteiner University of Health Sciences, A-3500 Krems, Austria
- Department of Internal Medicine II, University Hospital Krems, A-3500 Krems, Austria
| |
Collapse
|
4
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
6
|
Ma ZY, Ding XJ, Zhu ZZ, Chen Q, Wang DB, Qiao X, Xu JY. Pt(iv) derivatives of cisplatin and oxaliplatin bearing an EMT-related TMEM16A/COX-2-selective dual inhibitor against colorectal cancer cells HCT116. RSC Med Chem 2024:d4md00327f. [PMID: 39185449 PMCID: PMC11342162 DOI: 10.1039/d4md00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer represents the over-expression of TMEM16A and COX-2, offering a promising therapeutic strategy. Two Pt(iv) conjugates derived from Pt(ii) drug (cisplatin or oxaliplatin) and niflumic acid, complexes 1 and 2, were designed and prepared to exert the positive impact of multiple biological targets of DNA/TMEM16A/COX-2 against colorectal cancer. Complex 2 afforded higher cytotoxicity than 1 and the combination of an intermediate of oxidized oxaliplatin and NFA against cancer cells A549, HeLa, MCF-7, and HCT116. Especially for colorectal cancer cells HCT116, 2 was significantly more toxic (22-fold) and selective to cancer cells against normal HUVEC cells (4-fold) than first-line oxaliplatin. The outstanding anticancer activity of 2 is partly attributed to its dramatic increase in cellular uptake, DNA damage, and apoptosis. Mechanistic studies indicated that 2 inhibited HCT116 cell metastasis by triggering TMEM16A, COX-2, and their downstream signaling pathways, including EGFR, STAT3, E-cadherin and N-cadherin.
Collapse
Affiliation(s)
- Zhong-Ying Ma
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Xiao-Jing Ding
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Zhen-Zhen Zhu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Qian Chen
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Dong-Bo Wang
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University Tianjin 300070 China
| |
Collapse
|
7
|
Lee DW, Park HC, Kim DH. Protective effect of alpha-lipoic acid and epalrestat on oxaliplatin-induced peripheral neuropathy in zebrafish. Muscle Nerve 2024; 69:498-503. [PMID: 38294129 DOI: 10.1002/mus.28047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION/AIMS Oxaliplatin is a platinum-based anti-cancer drug widely used in colorectal cancer patients, but it may cause peripheral neuropathy. As one of the main causes of oxaliplatin-induced peripheral neuropathy (OPN) is oxidative stress, which is also a key factor causing diabetic peripheral neuropathy (DPN), the aim of this study was to evaluate the preventive effects of alpha-lipoic acid (ALA) and epalrestat (EP), which are used for the treatment of DPN, in an OPN zebrafish model. METHODS Tg(nbt:dsred) transgenic zebrafish, with sensory nerves in the peripheral lateral line, were treated with oxaliplatin, oxaliplatin/EP, and oxaliplatin/ALA for 4 days. A confocal microscope was used to visualize and quantify the number of axon bifurcations in the distal nerve ending. To analyze the formation of synapses on sensory nerve terminals, quantification of membrane-associated guanylate kinase (MAGUK) puncta was performed using immunohistochemistry. RESULTS The number of axon bifurcations and intensity of MAGUK puncta were significantly reduced in the oxaliplatin-treated group compared with those in the embryo medium-treated group. In both the oxaliplatin/EP and oxaliplatin/ALA-treated groups, the number of axon bifurcations and intensity of MAGUK puncta were greater than those in the oxaliplatin-treated group (p < .0001), and no significant difference was observed between larvae treated with oxaliplatin/ALA 1 μM and oxaliplatin/EP 1 μM (p = .4292). DISCUSSION ALA and EP have protective effects against OPN in zebrafish. Our findings show that ALA and EP can facilitate more beneficial treatment for OPN.
Collapse
Affiliation(s)
- Dong-Won Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Dong Hwee Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Korea University, Ansan, Republic of Korea
| |
Collapse
|
8
|
Zhao M, Guo Z, Zou YH, Li X, Yan ZP, Chen MS, Fan WJ, Li HL, Yang JJ, Chen XM, Xu LF, Zhang YW, Zhu KS, Sun JH, Li JP, Jin Y, Yu HP, Duan F, Xiong B, Yin GW, Lin HL, Ma YL, Wang HM, Gu SZ, Si TG, Wang XD, Zhao C, Yu WC, Guo JH, Zhai J, Huang YH, Wang WY, Lin HF, Gu YK, Chen JZ, Wang JP, Zhang YM, Yi JZ, Lyu N. Arterial chemotherapy for hepatocellular carcinoma in China: consensus recommendations. Hepatol Int 2024; 18:4-31. [PMID: 37864725 DOI: 10.1007/s12072-023-10599-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/17/2023] [Indexed: 10/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and the third leading cause of cancer-related deaths globally. Hepatic arterial infusion chemotherapy (HAIC) treatment is widely accepted as one of the alternative therapeutic modalities for HCC owing to its local control effect and low systemic toxicity. Nevertheless, although accumulating high-quality evidence has displayed the superior survival advantages of HAIC of oxaliplatin, fluorouracil, and leucovorin (HAIC-FOLFOX) compared with standard first-line treatment in different scenarios, the lack of standardization for HAIC procedure and remained controversy limited the proper and safe performance of HAIC treatment in HCC. Therefore, an expert consensus conference was held on March 2023 in Guangzhou, China to review current practices regarding HAIC treatment in patients with HCC and develop widely accepted statements and recommendations. In this article, the latest evidence of HAIC was systematically summarized and the final 22 expert recommendations were proposed, which incorporate the assessment of candidates for HAIC treatment, procedural technique details, therapeutic outcomes, the HAIC-related complications and corresponding treatments, and therapeutic scheme management.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.
| | - Zhi Guo
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ying-Hua Zou
- Department of Interventional and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Ping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min-Shan Chen
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei-Jun Fan
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Li
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ji-Jin Yang
- Department of Interventional Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Ming Chen
- Department of Interventional Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lin-Feng Xu
- Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue-Wei Zhang
- Hepatopancreatbiliary Center, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Kang-Shun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Hui Sun
- Division of Hepatobiliary and Pancreatic Surgery, Hepatobiliary and Pancreatic Interventional Treatment Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Ping Li
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Jin
- The Interventional Therapy Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Peng Yu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Feng Duan
- Department of Interventional Radiology, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Bin Xiong
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guo-Wen Yin
- Department of Interventional Radiology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Lan Lin
- Department of Interventional Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yi-Long Ma
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Ming Wang
- Department of Interventional Therapy, The Fifth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Shan-Zhi Gu
- Department of Interventional Therapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tong-Guo Si
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiao-Dong Wang
- Departments of Interventional Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chang Zhao
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Chang Yu
- Department of Interventional Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jian-Hai Guo
- Departments of Interventional Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Zhai
- Department of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yong-Hui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Yu Wang
- Department of Interventional Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Feng Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yang-Kui Gu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jin-Zhang Chen
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Peng Wang
- Department of Oncology, First People's Hospital of Foshan, Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Yi-Min Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Zhe Yi
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ning Lyu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| |
Collapse
|
9
|
Abdellatif AAH, Alshubrumi AS, Younis MA. Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech 2024; 25:23. [PMID: 38267656 DOI: 10.1208/s12249-024-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Colorectal cancer (CRC) is a widespread cancer that starts in the digestive tract. It is the third most common cause of cancer deaths around the world. The World Health Organization (WHO) estimates an expected death toll of over 1 million cases annually. The limited therapeutic options as well as the drawbacks of the existing therapies necessitate the development of non-classic treatment approaches. Nanotechnology has led the evolution of valuable drug delivery systems thanks to their ability to control drug release and precisely target a wide variety of cancers. This has also been extended to the treatment of CRC. Herein, we shed light on the pertinent research that has been performed on the potential applications of nanoparticles in the treatment of CRC. The various types of nanoparticles in addition to their properties, applications, targeting approaches, merits, and demerits are discussed. Furthermore, innovative therapies for CRC, including gene therapies and immunotherapies, are also highlighted. Eventually, the research gaps, the clinical potential of such delivery systems, and a future outlook on their development are inspired.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452, Buraydah, Al Qassim, Saudi Arabia.
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | | | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
10
|
Schmäche T, Fohgrub J, Klimova A, Laaber K, Drukewitz S, Merboth F, Hennig A, Seidlitz T, Herbst F, Baenke F, Ada AM, Groß T, Wenzel C, Ball CR, Praetorius C, Schmidt T, Ringelband-Schilling B, Koschny R, Stenzinger A, Roeder I, Jaeger D, Zeissig S, Welsch T, Aust D, Glimm H, Folprecht G, Weitz J, Haag GM, Stange DE. Stratifying esophago-gastric cancer treatment using a patient-derived organoid-based threshold. Mol Cancer 2024; 23:10. [PMID: 38200602 PMCID: PMC10777586 DOI: 10.1186/s12943-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND AND AIMS This study sought to determine the value of patient-derived organoids (PDOs) from esophago-gastric adenocarcinoma (EGC) for response prediction to neoadjuvant chemotherapy (neoCTx). METHODS Endoscopic biopsies of patients with locally advanced EGC (n = 120) were taken into culture and PDOs expanded. PDOs' response towards the single substances of the FLOT regimen and the combination treatment were correlated to patients' pathological response using tumor regression grading. A classifier based on FLOT response of PDOs was established in an exploratory cohort (n = 13) and subsequently confirmed in an independent validation cohort (n = 13). RESULTS EGC PDOs reflected patients' diverse responses to single chemotherapeutics and the combination regimen FLOT. In the exploratory cohort, PDOs response to single 5-FU and FLOT combination treatment correlated with the patients' pathological response (5-FU: Kendall's τ = 0.411, P = 0.001; FLOT: Kendall's τ = 0.694, P = 2.541e-08). For FLOT testing, a high diagnostic precision in receiver operating characteristic (ROC) analysis was reached with an AUCROC of 0.994 (CI 0.980 to 1.000). The discriminative ability of PDO-based FLOT testing allowed the definition of a threshold, which classified in an independent validation cohort FLOT responders from non-responders with high sensitivity (90%), specificity (100%) and accuracy (92%). CONCLUSION In vitro drug testing of EGC PDOs has a high predictive accuracy in classifying patients' histological response to neoadjuvant FLOT treatment. Taking into account the high rate of successful PDO expansion from biopsies, the definition of a threshold that allows treatment stratification paves the way for an interventional trial exploring PDO-guided treatment of EGC patients.
Collapse
Affiliation(s)
- Tim Schmäche
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Juliane Fohgrub
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Karin Laaber
- German Cancer Research Center (DKFZ) Heidelberg, Translational Functional Cancer Genomics, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Stephan Drukewitz
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), Technical University Dresden, Dresden, Germany
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Felix Merboth
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
| | - Alexander Hennig
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
| | - Friederike Herbst
- German Cancer Research Center (DKFZ) Heidelberg, Translational Functional Cancer Genomics, Heidelberg, Germany
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Franziska Baenke
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
| | - Anne-Marlen Ada
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
| | - Thomas Groß
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), Technical University Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Carina Wenzel
- Institute of Pathology, University Hospital Carl Gustav CarusTechnische Universität Dresden, Dresden, Germany
| | - Claudia R Ball
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner side Dresden, Dresden, Germany
- TUD Dresden University of Technology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Christian Praetorius
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Barbara Ringelband-Schilling
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
| | - Ronald Koschny
- Department of Gastroenterology and Hepatology, University Hospital of Heidelberg, Heidelberg, Germany
| | | | - Ingo Roeder
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor-Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Thilo Welsch
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Aust
- Institute of Pathology, University Hospital Carl Gustav CarusTechnische Universität Dresden, Dresden, Germany
- Tumour- and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Hanno Glimm
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Translational Functional Cancer Genomics, Heidelberg, Germany
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner side Dresden, Dresden, Germany
| | - Gunnar Folprecht
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Georg M Haag
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor-Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, 01307, Germany.
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
| |
Collapse
|
11
|
Sahadevan M, Sundaram M, Subramanian K. Quantum mechanical approaches and molecular docking studies of metal based anticancer drugs cis-Diammine glycolato platinum and Diaminocyclohexane oxalatoplatinum structures. Comput Biol Chem 2023; 106:107940. [PMID: 37619423 DOI: 10.1016/j.compbiolchem.2023.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
The optimized structures and theoretical studies of metal based anticancer drugs Nedaplatin (cis-Diammine glycolato platinum) (CDGP) and Oxaliplatin (Diaminocyclohexane oxalatoplatinum) (DCOP) structures by Density Functional Theory (DFT) method at the B3LYP level with LANL2DZ was applied to investigate the spectroscopic, structural optical properties, conducting properties for the chosen materials, Band Gap was predicted with the help of HOMO-LUMO values. From the calculated parameters of the title compounds CDGP and DCOP shows DCOP found to be highly reactive metal complexed anticancer drug over CDGP. On calculating the site of the lowest binding energy a receptor active site with ligand is done by Ligand-protein docking process. In this study, the difference in the coordinates of ligands and the binding (intermolecular) energy called as Root Mean Square Deviation (RMSD) estimated to estimate the drug-DNA interactions. Molecular docking is the broadly used screening studies in the visualizing of Drug-DNA interaction at an level of atom and drug designing based on structure. Chosen anticancer drugs with their binding affinities to the selected DNA and Drugs potential anticancer behavior were examined, Out of 2 drug compounds screened, CDGP and DCOP, DCOP have shown least binding energies as -6.88 kcal/mol than CDGP as -5.64 kcal/mol and the interactive studies of drug compounds conformations with RMSD values in accordance to crystal structures is less than or equal to 2.00 Å in focusing on the complete DNA structure (large grid box) done using the Autodock software.The compound with most least binding energy value with low inhibition constant found to have good binding affinity towards the DNA structure and the structural properties studied using DFT also shows good chemical reactivity in accordance with the Docking studies.From the results obtained DCOP found to have good chemical descriptors with Good binding affinity than CDGP.Thus DCOP is the best suited for biological molecular target.
Collapse
Affiliation(s)
- Madhavi Sahadevan
- PG and Research Department of Physics, Thiru Vi Ka Government Arts College Affiliated to Bharathidasan university, Thiruvarur 610 003, Tamil Nadu, India
| | - Mullainathan Sundaram
- PG and Research Department of Physics, Thiru Vi Ka Government Arts College Affiliated to Bharathidasan university, Thiruvarur 610 003, Tamil Nadu, India.
| | - Karunagaran Subramanian
- Central Institute of Plastic Engineering and Technology, Guindy, Chennai 600032, Tamil Nadu, India
| |
Collapse
|
12
|
Cheng F, Zhang R, Sun C, Ran Q, Zhang C, Shen C, Yao Z, Wang M, Song L, Peng C. Oxaliplatin-induced peripheral neurotoxicity in colorectal cancer patients: mechanisms, pharmacokinetics and strategies. Front Pharmacol 2023; 14:1231401. [PMID: 37593174 PMCID: PMC10427877 DOI: 10.3389/fphar.2023.1231401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Oxaliplatin-based chemotherapy is a standard treatment approach for colorectal cancer (CRC). However, oxaliplatin-induced peripheral neurotoxicity (OIPN) is a severe dose-limiting clinical problem that might lead to treatment interruption. This neuropathy may be reversible after treatment discontinuation. Its complicated mechanisms are related to DNA damage, dysfunction of voltage-gated ion channels, neuroinflammation, transporters, oxidative stress, and mitochondrial dysfunction, etc. Several strategies have been proposed to diminish OIPN without compromising the efficacy of adjuvant therapy, namely, combination with chemoprotectants (such as glutathione, Ca/Mg, ibudilast, duloxetine, etc.), chronomodulated infusion, dose reduction, reintroduction of oxaliplatin and topical administration [hepatic arterial infusion chemotherapy (HAIC), pressurized intraperitoneal aerosol chemotherapy (PIPAC), and hyperthermic intraperitoneal chemotherapy (HIPEC)]. This article provides recent updates related to the potential mechanisms, therapeutic strategies in treatment of OIPN, and pharmacokinetics of several methods of oxaliplatin administration in clinical trials.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cuihan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changhong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqing Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Song
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Huang MY, Huang YJ, Cheng TL, Jhang WY, Ke CC, Chen YT, Kuo SH, Lin IL, Huang YH, Chuang CH. XPF-ERCC1 Blocker Improves the Therapeutic Efficacy of 5-FU- and Oxaliplatin-Based Chemoradiotherapy in Colorectal Cancer. Cells 2023; 12:1475. [PMID: 37296596 PMCID: PMC10252687 DOI: 10.3390/cells12111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
5-FU-based chemoradiotherapy (CRT) and oxaliplatin-based CRT are commonly used therapies for advanced colorectal cancer (CRC). However, patients with a high expression of ERCC1 have a worse prognosis than those with a low expression. In this study, we investigated the effect of XPF-ERCC1 blockers on chemotherapy and 5-FU-based CRT and oxaliplatin (OXA)-based CRT in colorectal cancer cell lines. We investigated the half-maximal inhibitory concentration (IC50) of 5-FU, OXA, XPF-ERCC1 blocker, and XPF-ERCC1 blocker, and 5-FU or OXA combined and analyzed the effect of XPF-ERCC1 blocker on 5-FU-based CRT and oxaliplatin-based CRT. Furthermore, the expression of XPF and γ-H2AX in colorectal cells was analyzed. In animal models, we combined the XPF-ERCC1 blocker with 5-FU and OXA to investigate the effects of RC and finally combined the XPF-ERCC1 blocker with 5-FU- and oxaliplatin-based CRT. In the IC50 analysis of each compound, the cytotoxicity of the XPF-ERCC1 blocker was lower than that of 5-FU and OXA. In addition, the XPF-ERCC1 blocker combined with 5-FU or OXA enhanced the cytotoxicity of the chemotherapy drugs in colorectal cells. Furthermore, the XPF-ERCC1 blocker also increased the cytotoxicity of 5-FU-based CRT and OXA -based CRT by inhibiting the XPF product DNA locus. In vivo, the XPF-ERCC1 blocker was confirmed to enhance the therapeutic efficacy of 5-FU, OXA, 5-FU-based CRT, and OXA CRT. These findings show that XPF-ERCC1 blockers not only increase the toxicity of chemotherapy drugs but also increase the efficacy of combined chemoradiotherapy. In the future, the XPF-ERCC1 blocker may be used to improve the efficacy of 5-FU- and oxaliplatin-based CRT.
Collapse
Grants
- (KMU-DK(B)110005, KMU-S110002 and KMU-M111011, (KMU-DK(B)110006, KMU-DK(B)110006-2, KMU-DK(B)111001-3, KMU-DK(B)112002-1, KMU-DK(B)112002-3, KMU-KI110004, KMU-DK(B)110005, KMU-S110002, KMU-TC111A03-2 and KMU-M111011) Kaohsiung Medical University
- (KMUH-DK(B)110005-1, KMUH-DK(B)110005-2, KMUH-DK(B)110005-3, KMUH-DK(B)110005-4, KMUH110-0R72, KMUH111-1R69) Kaohsiung Medical University Hospital
- (NSYSUKMU 110-I002, KAFGH_D_112023) NSYSU-KMU joint research project
- (802KB109388) Medical Research Fund of Kaohsiung Armed Forces General Hospital
- (110KK004, NK110I02-2, 110E9010BA11) National Kaohsiung Marine University
- (110KK004) National Sun Yat-sen University
- (MOST108-2314-B-037-021-MY3, MOST110-2320-B-037-027-MY3, MOST110-2314-B-037-075-MY2, MOST103-2314-B-037-010-MY3, MOST106-2314-B-037-019, MOST108-2314-B-037-021-MY3, MOST 110-2628-B-037-010, MOST 110-2320-B-037-027-MY3, MOST 111-2628-B-037-010 and MOST 111 Ministry of Science and Technology, Taiwan
- PT111001, PT111002 Kaohsiung Medical University
Collapse
Affiliation(s)
- Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Jung Huang
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wun-Ya Jhang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chih Ke
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Ting Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Hsun Kuo
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Hsiang Huang
- Post-Graduate Year Training, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Hung Chuang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Lu C, Zhang C. Oxaliplatin inhibits colorectal cancer progression by inhibiting CXCL11 secreted by cancer-associated fibroblasts and the CXCR3/PI3K/AKT pathway. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:160-172. [PMID: 36129606 DOI: 10.1007/s12094-022-02922-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/02/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is a malignant tumor. Oxaliplatin (OXA) can inhibit cancer-associated fibroblasts (CAFs)-induced cancer progression. This study sought to explore the mechanism of OXA in CAFs-induced CRC development. METHODS CRC cell lines (Caco-2, SW620), normal fibroblasts (NFs), and CAFs were treated with OXA. NFs and CAFs were cultured. CAFs were treated with/without OXA (0.4 mM), and the supernatant was extracted as the conditioned medium (CM) to culture CRC cells. Cell malignant episodes, E-cadherin and Vimentin levels, CXCL1, CXCL2, CXCL3, CXCL8, and CXCL11 mRNA levels, CXCL11 protein level, and extracellular release were assessed. CAFs were transfected with interfering RNA sh-CXCL11 to silence CXCL11 or transfected with CXCL11 overexpression plasmids and treated with OXA to explore the role of CXCL11 in OXA-mediated CRC cells through CAFs. CXCL11 receptor CXCR3 levels in CRC cells and the PI3K/AKT pathway changes were examined. The xenogeneic tumor was transplanted in nude mice. CXCL11 and CXCR3 levels in tumor tissues, tumor volume, shape, size, weight, and Ki67 positive expressions were assessed. RESULTS CRC cell growths and epithelial-mesenchymal transformation were stimulated after culture with CAFs-CM, while OXA averted these trends. CXCL11 mRNA level was elevated most significantly, and its protein and extracellular secretion levels were raised, while OXA diminished the levels. CXCL11 silencing weakened the effects of CAFs-CM on promoting CRC proliferation and malignant episodes and CXCL11 overexpression averted OXA property on inhibiting CAFs-promoted CRC cell growth. CXCR3 and PI3K and AKT1 phosphorylation levels were raised in the CAFs-CM group but diminished by OXA. CXCL11 overexpression in CAFs averted OXA property on inhibiting CAFs-activated CXCR3/PI3K/AKT in CRC cells. OXA also inhibited the progression of xenograft tumors by limiting CAFs-secreted CXCL11. CONCLUSIONS OXA repressed CRC progression by inhibiting CAFs-secreted CXCL11 and the CXCR3/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Caifu Lu
- Department of Proctology, Aikang Hospital, Huangshi, 435000, Hubei Province, China
| | - Cong Zhang
- Department of Acupuncture, Huangshi Traditional Chinese Medicine Hospital, 6 Square Road, Huangshi, 435000, Hubei Province, China.
| |
Collapse
|
15
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
Catozzi S, Hill R, Li X, Dulong S, Collard E, Ballesta A. Interspecies and in vitro-in vivo scaling for quantitative modeling of whole-body drug pharmacokinetics in patients: Application to the anticancer drug oxaliplatin. CPT Pharmacometrics Syst Pharmacol 2022; 12:221-235. [PMID: 36537068 PMCID: PMC9931436 DOI: 10.1002/psp4.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Quantitative systems pharmacology holds the promises of integrating results from laboratory animals or in vitro human systems into the design of human pharmacokinetic/pharmacodynamic (PK/PD) models allowing for precision and personalized medicine. However, reliable and general in vitro-to-in vivo extrapolation and interspecies scaling methods are still lacking. Here, we developed a translational strategy for the anticancer drug oxaliplatin. Using ex vivo PK data in the whole blood of the mouse, rat, and human, a model representing the amount of platinum (Pt) in the plasma and in the red blood cells was designed and could faithfully fit each dataset independently. A "purely physiologically-based (PB)" scaling approach solely based on preclinical data failed to reproduce human observations, which were then included in the calibration. Investigating approaches in which one parameter was set as species-specific, whereas the others were computed by PB scaling laws, we concluded that allowing the Pt binding rate to plasma proteins to be species-specific permitted to closely fit all data, and guaranteed parameter identifiability. Such a strategy presenting the drawback of including all clinical datasets, we further identified a minimal subset of human data ensuring accurate model calibration. Next, a "whole body" model of oxaliplatin human PK was inferred from the ex vivo study. Its three remaining parameters were estimated, using one third of the available patient data. Remarkably, the model achieved a good fit to the training dataset and successfully reproduced the unseen observations. Such validation endorsed the legitimacy of our scaling methodology calling for its testing with other drugs.
Collapse
Affiliation(s)
- Simona Catozzi
- Institut Curie, Inserm U900, MINES ParisTech, CBIO ‐ Centre for Computational BiologyPSL Research UniversitySaint‐CloudFrance
| | - Roger Hill
- EPSRC and MRC Centre for Doctoral Training in Mathematics for Real‐World SystemsUniversity of WarwickCoventryUK
| | - Xiao‐Mei Li
- UPR “Chronotherapy, Cancers and Transplantation,” Faculty of MedicineUniversité Paris‐SaclayVillejuifFrance
| | - Sandrine Dulong
- Institut Curie, Inserm U900, MINES ParisTech, CBIO ‐ Centre for Computational BiologyPSL Research UniversitySaint‐CloudFrance,UPR “Chronotherapy, Cancers and Transplantation,” Faculty of MedicineUniversité Paris‐SaclayVillejuifFrance
| | - Elodie Collard
- CEA, CNRS, NIMBEUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Annabelle Ballesta
- Institut Curie, Inserm U900, MINES ParisTech, CBIO ‐ Centre for Computational BiologyPSL Research UniversitySaint‐CloudFrance
| |
Collapse
|
17
|
Abstract
Co-crystallization is a technique for modifying physicochemical properties of pharmaceutical ingredients with an aim to enhance the therapeutic efficacy and subsequent reduction in toxicity. The patent describes the development of oxaliplatin co-crystals using flavonoids (baicalein and naringenin) via solvent volatilization technique with an objective to improve solubility and stability in GI tract and reduced side/toxic effects. The co-crystals were characterized via differential scanning calorimetry, thermogravimetric analysis, x-ray diffraction analysis. The co-crystals exhibited slow drug release, delayed hydrolysis, low cytotoxicity and enhanced therapeutic activity on human gastric adenocarcinoma cells. However, suitable solvent for co-crystal production, large scale production and regulatory challenges for continuous manufacturing of co-crystals must be addressed.
Collapse
|
18
|
Antiproliferative Activity of Aminobenzylnaphthols Deriving from the Betti Reaction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two aminobenzylnaphthols, which are representative items of the family of compounds synthesized with the Betti reaction, were investigated as antiproliferative agents against adenocarcinoma human colorectal (Caco-2) and human neuroblastoma (SH-SY5Y) cell lines, using cisplatin as a positive control. A better antiproliferative activity was recorded after 24 h of incubation for the first tested molecule, whereas the other one was more effective after 72 h of incubation. These results support the hypothesis that both of the tested aminobenzylnaphthols could potentially be endowed with a biological activity.
Collapse
|
19
|
Patra SA, Banerjee A, Sahu G, Mohanty M, Lima S, Mohapatra D, Görls H, Plass W, Dinda R. Evaluation of DNA/BSA interaction and in vitro cell cytotoxicity of μ2-oxido bridged divanadium(V) complexes containing ONO donor ligands. J Inorg Biochem 2022; 233:111852. [DOI: 10.1016/j.jinorgbio.2022.111852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
|
20
|
Gawrońska M, Kowalik M, Duch J, Kazimierczuk K, Makowski M. Sulfonamides with hydroxyphenyl moiety: Synthesis, structure, physicochemical properties, and ability to form complexes with Rh(III) ion. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Highlighting Recent Crystalline Engineering Aspects of Luminescent Coordination Polymers Based on F-Elements and Ditopic Aliphatic Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123830. [PMID: 35744946 PMCID: PMC9230055 DOI: 10.3390/molecules27123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Three principal factors may influence the final structure of coordination polymers (CPs): (i) the nature of the ligand, (ii) the type and coordination number of the metal center, and (iii) the reaction conditions. Further, flexible carboxylate aliphatic ligands have been widely employed as building blocks for designing and synthesizing CPs, resulting in a diverse array of materials with exciting architectures, porosities, dimensionalities, and topologies as well as an increasing number of properties and applications. These ligands show different structural features, such as torsion angles, carbon backbone number, and coordination modes, which affect the desired products and so enable the generation of polymorphs or crystalline phases. Additionally, due to their large coordination numbers, using 4f and 5f metals as coordination centers combined with aliphatic ligands increases the possibility of obtaining different crystal phases. Additionally, by varying the synthetic conditions, we may control the production of a specific solid phase by understanding the thermodynamic and kinetic factors that influence the self-assembly process. This revision highlights the relationship between the structural variety of CPs based on flexible carboxylate aliphatic ligands and f-elements (lanthanide and actinides) and their outstanding luminescent properties such as solid-state emissions, sensing, and photocatalysis. In this sense, we present a structural analysis of the CPs reported with the oxalate ligand, as the one rigid ligand of the family, and other flexible dicarboxylate linkers with –CH2– spacers. Additionally, the nature of the luminescence properties of the 4f or 5f-CPs is analyzed, and finally, we present a novel set of CPs using a glutarate-derived ligand and samarium, with the formula [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2]•(2,2′-bipy) (α-Sm) and [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2] (β-Sm).
Collapse
|
22
|
Downregulation of MEIS1 mediated by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and oxaliplatin resistance in colorectal cancer. Signal Transduct Target Ther 2022; 7:87. [PMID: 35351858 PMCID: PMC8964798 DOI: 10.1038/s41392-022-00902-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is widely used in the frontline treatment of colorectal cancer (CRC), but an estimated 50% of patients will eventually stop responding to treatment due to acquired resistance. This study revealed that diminished MEIS1 expression was detected in CRC and harmed the survival of CRC patients. MEIS1 impaired CRC cell viabilities and tumor growth in mice and enhanced CRC cell sensitivity to oxaliplatin by preventing DNA damage repair. Mechanistically, oxaliplatin resistance following MEIS1 suppression was critically dependent on enhanced FEN1 expression. Subsequently, we confirmed that EZH2-DNMT3a was assisted by lncRNA ELFN1-AS1 in locating the promoter of MEIS1 to suppress MEIS1 transcription epigenetically. Based on the above, therapeutics targeting the role of MEIS1 in oxaliplatin resistance were developed and our results suggested that the combination of oxaliplatin with either ELFN1-AS1 ASO or EZH2 inhibitor GSK126 could largely suppress tumor growth and reverse oxaliplatin resistance. This study highlights the potential of therapeutics targeting ELFN1-AS1 and EZH2 in cell survival and oxaliplatin resistance, based on their controlling of MEIS1 expression, which deserve further verification as a prospective therapeutic strategy.
Collapse
|
23
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
24
|
Alavi N, Rezaei M, Maghami P, Fanipakdel A, Avan A. Nanocarrier System for Increasing the Therapeutic Efficacy of Oxaliplatin. Curr Cancer Drug Targets 2022; 22:361-372. [PMID: 35048809 DOI: 10.2174/1568009622666220120115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
The application of Oxaliplatin (OxPt) in different malignancies is reported to be accompanied by several side effects including neuropathy, nausea, vomiting, diarrhea, mouth sores, low blood counts, loss of appetite, etc. The passive or active targeting of different tumors can improve OxPt delivery. Considering the demand for novel systems meant to improve the OxPt efficacy and define the shortcomings, we provided an overview of different approaches regarding the delivery of OxPt. There is an extending body of data that exhibits the value of Liposomes and polymer-based drug delivery systems as the most successful systems among the OxPt drug delivery procedures. Several clinical trials have been carried out to investigate the side effects and dose-limiting toxicity of liposomal oxaliplatin such as the assessment on Safety Study of MBP-426 (Liposomal Oxaliplatin Suspension for Injection) to Treat Advanced or Metastatic Solid Tumors. In addition, several studies indicated the biocompatibility and biodegradability of this product, as well as its option for being fictionalized to derive specialized smart nanosystems for the treatment of cancer. The better delivery of OxPt with weaker side effects could be generated by the exertion of Oxaliplatin, which involves the aggregation of new particles and multifaceted nanocarriers to compose a nanocomposite with both inorganic and organic nanoparticles.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Farinha P, Pinho JO, Matias M, Gaspar MM. Nanomedicines in the treatment of colon cancer: a focus on metallodrugs. Drug Deliv Transl Res 2022; 12:49-66. [PMID: 33616870 DOI: 10.1007/s13346-021-00916-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Worldwide, colon cancer (CC) represents the fourth most common type of cancer and the fifth major cause of cancer-associated deaths. Surgical resection is considered the standard therapeutic choice for CC in early stages. However, in latter stages of the disease, adjuvant chemotherapy is essential for an appropriate management of this pathology. Metal-based complexes displaying cytotoxic properties towards tumor cells emerge as potential chemotherapeutic options. One metallodrug, oxaliplatin, was already approved for clinical use, playing an important role in the treatment of CC patients. Unfortunately, most of the newly designed metal-based complexes exhibit lack of selectivity against cancer cells, low solubility and permeability, high dose-limiting toxicity, and emergence of resistances. Nanodelivery systems enable the incorporation of metallodrugs at adequate payloads, solving the above-referred drawbacks. Moreover, drug delivery systems, depending on their physicochemical properties, are able to release the incorporated material preferentially at affected tissues/organs, enhancing the therapeutic activity in vivo, with concomitant fewer side effects. In this review, the general features and therapeutic management of CC will be addressed, with a special focus on preclinical or clinical studies using metal-based compounds. Furthermore, the use of different nanodelivery systems will also be described as tools to potentiate the therapeutic index of metallodrugs for the management of CC.
Collapse
Affiliation(s)
- Pedro Farinha
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jacinta O Pinho
- Faculty of Pharmacy, Research Institute for Medicines, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Mariana Matias
- Faculty of Pharmacy, Research Institute for Medicines, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| | - M Manuela Gaspar
- Faculty of Pharmacy, Research Institute for Medicines, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
26
|
He XS, Zou SY, Yao JL, Yu W, Deng ZY, Wang JR, Gan WJ, Wan S, Yang XQ, Wu H. Transcriptomic Analysis Identifies Complement Component 3 as a Potential Predictive Biomarker for Chemotherapy Resistance in Colorectal Cancer. Front Mol Biosci 2021; 8:763652. [PMID: 34722636 PMCID: PMC8554154 DOI: 10.3389/fmolb.2021.763652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: 5-fluorouracil- and oxaliplatin-based FOLFOX regimens are mainstay chemotherapeutics for colorectal cancer (CRC) but drug resistance represents a major therapeutic challenge. To improve patient survival, there is a need to identify resistance genes to better understand the mechanisms underlying chemotherapy resistance. Methods: Transcriptomic datasets were retrieved from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and combined with our own microarray data. Weighted gene co-expression network analysis (WGCNA) was used to dissect the functional networks and hub genes associated with FOLFOX resistance and cancer recurrence. We then conducted analysis of prognosis, profiling of tumor infiltrating immune cells, and pathway overrepresentation analysis to comprehensively elucidate the biological impact of the identified hub gene in CRC. Results: WGCNA analysis identified the complement component 3 (C3) gene as the only hub gene associated with both FOLFOX chemotherapy resistance and CRC recurrence after FOLFOX chemotherapy. Subsequent survival analysis confirmed that high C3 expression confers poor progression-free survival, disease-free survival, and recurrence-free survival. Further correlational analysis revealed significant negative association of C3 expression with sensitivity to oxaliplatin, but not 5-fluorouracil. Moreover, in silico analysis of tumor immune cell infiltration suggested the change of C3 expression could affect tumor microenvironment. Finally, gene set enrichment analysis (GSEA) revealed a hyperactivation of pathways contributing to invasion, metastasis, lymph node spread, and oxaliplatin resistance in CRC samples with C3 overexpression. Conclusion: Our results suggest that high C3 expression is a debilitating factor for FOLFOX chemotherapy, especially for oxaliplatin sensitivity, and C3 may represent a novel biomarker for treatment decision of CRC.
Collapse
Affiliation(s)
- Xiao-Shun He
- Department of Pathology, Medical College of Soochow University and The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Sheng-Yi Zou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Jia-Lu Yao
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wangjianfei Yu
- Department of Bioinformatics, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Zhi-Yong Deng
- Department of Pathology, The First People’s Hospital of Kunshan, Kunshan, China
| | - Jing-Ru Wang
- Department of Pathology, Medical College of Soochow University and The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou, China
| | - Shan Wan
- Department of Pathology, Medical College of Soochow University and The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xiao-Qin Yang
- Department of Bioinformatics, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Hua Wu
- Department of Pathology, Medical College of Soochow University and The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
27
|
Gupta S, Portales-Castillo I, Daher A, Kitchlu A. Conventional Chemotherapy Nephrotoxicity. Adv Chronic Kidney Dis 2021; 28:402-414.e1. [PMID: 35190107 DOI: 10.1053/j.ackd.2021.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Conventional chemotherapies remain the mainstay of treatment for many malignancies. Kidney complications of these therapies are not infrequent and may have serious implications for future kidney function, cancer treatment options, eligibility for clinical trials, and overall survival. Kidney adverse effects may include acute kidney injury (via tubular injury, tubulointerstitial nephritis, glomerular disease and thrombotic microangiopathy), long-term kidney function loss and CKD, and electrolyte disturbances. In this review, we summarize the kidney complications of conventional forms of chemotherapy and, where possible, provide estimates of incidence, and identify risk factors and strategies for kidney risk mitigation. In addition, we provide recommendations regarding kidney dose modifications, recognizing that these adjustments may be limited by available supporting pharmacokinetic and clinical outcomes data. We discuss management strategies for kidney adverse effects associated with these therapies with drug-specific recommendations. We focus on frequently used anticancer agents with established kidney complications, including platinum-based chemotherapies (cisplatin, carboplatin, oxaliplatin), cyclophosphamide, gemcitabine, ifosfamide, methotrexate and pemetrexed, among others.
Collapse
|
28
|
Abstract
The aim of this study is, preparing various dendrimeric formulations of oxaliplatin and investigating their properties. First of all, the solubility enhancement capabilities of polyamidoamine (PAMAM) G3.5 and PAMAM G4.5 dendrimers were investigated. The results showed that oxaliplatin solubility mostly increasing linearly with dendrimer concentration. Additionally, the increase was more notable in PAMAM G4.5 dendrimers. Then, drug-dendrimer complexes were prepared in different mediums, since the medium used can affect the amount of drug-loaded to dendrimers. Prepared complexes were examined for loading capacity and loading efficiency. It was found that PAMAM G4.5 dendrimers can complex with 2- to 5-fold more oxaliplatin than PAMAM G3.5. Finally, oxaliplatin was modified to a platinum (IV) compound to prepare chemical drug-dendrimer conjugates. Ester bonds were established by Steglich esterification through the hydroxyl group of modified oxaliplatin and the carboxyl groups of the dendrimers. The formulations were characterized by UV, IR, NMR spectroscopy, and dynamic light scattering techniques. PAMAM G3.5 conjugate was further evaluated for the cytotoxicity test. The IC50 value of PAMAM G3.5 conjugate was found as 0.72 µM. For unmodified oxaliplatin, this value was 14.03 µM. As a result, a dendrimer-based drug delivery system that has been found promising for further improvement has been developed successfully.
Collapse
Affiliation(s)
- Hakan Nazlı
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| | - Gülşah Gedik
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| |
Collapse
|
29
|
Branca JJV, Carrino D, Gulisano M, Ghelardini C, Di Cesare Mannelli L, Pacini A. Oxaliplatin-Induced Neuropathy: Genetic and Epigenetic Profile to Better Understand How to Ameliorate This Side Effect. Front Mol Biosci 2021; 8:643824. [PMID: 34026827 PMCID: PMC8138476 DOI: 10.3389/fmolb.2021.643824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
In the most recent decades, oxaliplatin has been used as a chemotherapeutic agent for colorectal cancer and other malignancies as well. Oxaliplatin interferes with tumor growth predominantly exerting its action in DNA synthesis inhibition by the formation of DNA-platinum adducts that, in turn, leads to cancer cell death. On the other hand, unfortunately, this interaction leads to a plethora of systemic side effects, including those affecting the peripheral and central nervous system. Oxaliplatin therapy has been associated with acute and chronic neuropathic pain that induces physicians to reduce the dose of medication or discontinue treatment. Recently, the capability of oxaliplatin to alter the genetic and epigenetic profiles of the nervous cells has been documented, and the understanding of gene expression and transcriptional changes may help to find new putative treatments for neuropathy. The present article is aimed to review the effects of oxaliplatin on genetic and epigenetic mechanisms to better understand how to ameliorate neuropathic pain in order to enhance the anti-cancer potential and improve patients’ quality of life.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Donatello Carrino
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Massimo Gulisano
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Alessandra Pacini
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
30
|
Lin Q, Luo L, Wang H. A New Oxaliplatin Resistance-Related Gene Signature With Strong Predicting Ability in Colon Cancer Identified by Comprehensive Profiling. Front Oncol 2021; 11:644956. [PMID: 34026619 PMCID: PMC8138443 DOI: 10.3389/fonc.2021.644956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous colon cancer cases are resistant to chemotherapy based on oxaliplatin and suffer from relapse. A number of survival- and prognosis-related biomarkers have been identified based on database mining for patients who develop drug resistance, but the single individual gene biomarker cannot attain high specificity and sensitivity in prognosis prediction. This work was conducted aiming to establish a new gene signature using oxaliplatin resistance-related genes to predict the prognosis for colon cancer. To this end, we downloaded gene expression profile data of cell lines that are resistant and not resistant to oxaliplatin from the Gene Expression Omnibus (GEO) database. Altogether, 495 oxaliplatin resistance-related genes were searched by weighted gene co-expression network analysis (WGCNA) and differential expression analysis. As suggested by functional analysis, the above genes were mostly enriched into cell adhesion and immune processes. Besides, a signature was built based on four oxaliplatin resistance-related genes selected from the training set to predict the overall survival (OS) by stepwise regression and least absolute shrinkage and selection operator (LASSO) Cox analysis. Relative to the low risk score group, the high risk score group had dismal OS (P < 0.0001). Moreover, the area under the curve (AUC) value regarding the 5-year OS was 0.72, indicating that the risk score was accurate in the prediction of OS for colon cancer patients (AUC >0.7). Additionally, multivariate Cox regression suggested that the signature constructed based on four oxaliplatin resistance-related genes predicted the prognosis for colon cancer cases [hazard ratio (HR), 2.77; 95% CI, 2.03–3.78; P < 0.001]. Finally, external test sets were utilized to further validate the stability and accuracy of oxaliplatin resistance-related gene signature for prognosis of colon cancer patients. To sum up, this study establishes a signature based on four oxaliplatin resistance-related genes for predicting the survival of colon cancer patients, which sheds more light on the mechanisms of oxaliplatin resistance and helps identify colon cancer cases with a dismal prognostic outcome.
Collapse
Affiliation(s)
- Qiu Lin
- Department of Colorectal Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Luo
- Department of Colorectal Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Wang
- Department of Colorectal Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Exploration of synthesis, structural aspects, DFT studies and bio-efficacy of some new DHA-benzohydrazide based copper(II) complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Li D, Kou Y, Gao Y, Liu S, Yang P, Hasegawa T, Su R, Guo J, Li M. Oxaliplatin induces the PARP1-mediated parthanatos in oral squamous cell carcinoma by increasing production of ROS. Aging (Albany NY) 2021; 13:4242-4257. [PMID: 33495407 PMCID: PMC7906208 DOI: 10.18632/aging.202386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide, and its prognosis is still not optimistic. Oxaliplatin is a type of platinum chemotherapeutic agent, but its treatment effects on OSCC and molecular mechanisms have not been fully elucidated. Parthanatos, a unique form of cell death, plays an important role in a variety of physiological and pathological processes. This study aims to investigate whether oxaliplatin inhibits OSCC by inducing parthanatos. Our results showed that oxaliplatin inhibited the proliferation and migration of OSCC cells in vitro, and also inhibited the tumorigenesis in vivo. Further experiments proved that oxaliplatin induced parthanatos in OSCC cells, characterized by depolarization of the mitochondrial membrane potential, up-regulation of PARP1, AIF and MIF in the nucleus, as well as the nuclear translocation of AIF. Meanwhile, PARP1 inhibitor rucaparib and siRNA against PARP1 attenuated oxaliplatin-induced parthanatos in OSCC cells. In addition, we found that oxaliplatin caused oxidative stress in OSCC cells, and antioxidant NAC not only relieved oxaliplatin-induced overproduction of reactive oxygen species (ROS) but also reversed parthanatos caused by oxaliplatin. In conclusion, our results indicate that oxaliplatin inhibits OSCC by activating PARP1-mediated parthanatos through increasing the production of ROS.
Collapse
Affiliation(s)
- Dongfang Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yuan Gao
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Rongjian Su
- Life Science Institute of Jinzhou Medical University, College of Basic Medicine of Jinzhou Medical University, Cell Biology and Genetic Department of Jinzhou Medical University, Key Lab of Molecular and Cellular Biology of the Education Department of Liaoning Province, Jinzhou 121001, China
| | - Jie Guo
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
33
|
Oliveira ALL, Santos GGL, Espirito-Santo RF, Silva GSA, Evangelista AF, Silva DN, Soares MBP, Villarreal CF. Reestablishment of Redox Homeostasis in the Nociceptive Primary Afferent as a Mechanism of Antinociception Promoted by Mesenchymal Stem/Stromal Cells in Oxaliplatin-Induced Chronic Peripheral Neuropathy. Stem Cells Int 2021; 2021:8815206. [PMID: 33505472 PMCID: PMC7808808 DOI: 10.1155/2021/8815206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Painful neuropathy is a common adverse effect of oxaliplatin (OXL), a platinum-derivative chemotherapeutic agent. Oxidative stress and mitochondrial dysfunction are key factors contributing to the development of OXL-induced peripheral neuropathy (OIPN). Based on the antioxidant and antinociceptive properties of mesenchymal stem/stromal cells (MSC), the present study tested the hypothesis that MSC induce antinociceptive effects during OIPN by promoting regulation of redox environment and mitochondrial homeostasis in the nociceptive primary afferents. C57Bl/6 mice submitted to the OXL-chronic neuropathy induction protocol by repeated intravenous administration of OXL (1 mg/kg) were evaluated to determine the paw mechanical and thermal nociceptive thresholds using the von Frey filaments and cold plate tests, respectively. Two weeks after the neuropathy induction, mice were treated with bone marrow-derived MSC (1 × 106), vehicle, or gabapentin (GBP, 70 mg/kg). Four weeks later, mitochondrial morphology, gene expression profile, and oxidative stress markers in the sciatic nerve and dorsal root ganglia (DRG) were evaluated by transmission electron microscopy, RT-qPCR, and biochemical assays, respectively. OXL-treated mice presented behavioral signs of sensory neuropathy, such as mechanical allodynia and thermal hyperalgesia. The behavioral painful neuropathy was completely reverted by a single administration of MSC, while the daily treatment with GBP induced only a short-lived antinociceptive effect. The ultrastructural analysis of the sciatic nerve and DRG of OIPN mice revealed a high proportion of atypical mitochondria in both myelinated and unmyelinated fibers. Importantly, this mitochondrial atypia was strongly reduced in MSC-treated neuropathic mice. Moreover, MSC-treated neuropathic mice showed upregulation of Sod and Nrf2 mRNA in the sciatic nerve and DRG. In line with this result, MSC reduced markers of nitrosative stress and lipid peroxidation in the sciatic nerve and DRG from OIPN mice. Our data suggest that the reestablishment of redox homeostasis in the nociceptive primary afferents is a mechanism by which MSC transplantation reverts the OXL-induced chronic painful neuropathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela N. Silva
- SENAI Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, 41650-010, Brazil
| | - Milena B. P. Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 40296-710, Brazil
- SENAI Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, 41650-010, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, RJ, Brazil
| | - Cristiane Flora Villarreal
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 40296-710, Brazil
- College of Pharmacy, Federal University of Bahia, 40170-290, Brazil
| |
Collapse
|
34
|
Yongning Z, Xianguang L, Hengling C, Su C, Fang L, Chenhong L. The hyperpolarization-activated cyclic nucleotide-gated channel currents contribute to oxaliplatin-induced hyperexcitability of DRG neurons. Somatosens Mot Res 2020; 38:11-19. [PMID: 33092457 DOI: 10.1080/08990220.2020.1834376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Humans are likely to experience mechanical allodynia and cold hyperalgesia after oxaliplatin intravenous injection. The mechanism by which oxaliplatin leads to these side effects is unknown. Since the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are involved in the automatic depolarization of action potentials, we speculated that HCN channels are involved in oxaliplatin-induced hyperalgesia through action potentials. Our results showed that the density of HCN channel currents and the excitability of dorsal root ganglion neurons both increased after oxaliplatin perfusion at the cellular level. The neuronal hyperexcitability could be alleviated by ivabradine. Ivabradine inhibited oxaliplatin-induced mechanical allodynia and cold hyperalgesia at the individual rat level. Oxaliplatin enhanced the function of HCN channels, which in turn promoted the automatic depolarization of action potentials. The acceleration of automatic depolarization excited the neurons and caused more rapid firing of action potentials. Therefore, the HCN channel is a potential therapeutic target for the hyperalgesia induced by oxaliplatin.
Collapse
Affiliation(s)
- Zhang Yongning
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| | - Lin Xianguang
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| | - Chen Hengling
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| | - Chen Su
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| | - Luo Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Li Chenhong
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| |
Collapse
|
35
|
Rajpoot K, Jain SK. 99mTc-labelled and pH-awakened microbeads entrapping surface-modified lipid nanoparticles for the augmented effect of oxaliplatin in the therapy of colorectal cancer. J Microencapsul 2020; 37:609-623. [PMID: 32985297 DOI: 10.1080/02652048.2020.1829141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM This study was aimed to develop Eudragit S100-coated, pH-awakened microbeads (MBs) encapsulating folic acid (FA)-modified tristearin solid lipid nanoparticles (SLNs) loaded with oxaliplatin (OP). Afterward, these formulations were evaluated (in vitro and in vivo) for their potential against colorectal cancer (CRC). METHODS The SLNs were synthesised by employing the solvent diffusion technique and then they were entrapped in the MBs. The prepared uncoupled and coupled SLNs (SLN-OP and FA-SLN-OP, respectively) were examined for in vitro cytotoxicity effect against COLO-205. Gamma-scintigraphy study was used for determining biodistribution (in vivo) of drug in different organs through MBs. RESULTS Outcomes for FA-SLN-OP revealed more cytotoxicity (50% inhibitory concentration [IC50] = 6.8 µg/ml) against COLO-205 cells (in vitro) than OP solution (IC50 = 8.0 µg/ml) and SLN-OP (IC50= 7.5 µg/ml). MBs were also investigated in vivo using Gamma-scintigraphy study. After 48 h study, 99mTc-EuB-FA-SLN-OP confirmed an elevated level of drug in the colonic tumour, which was found significantly (p< 0.0001) higher than that of 99mTc-EuB-SLN-OP. CONCLUSIONS In conclusion, developed MBs formulation (99mTc-EuB-FA-SLN-OP) suggested promising results against therapy of CRC using dual targeting (i.e. ligand-directed and pH-awakened) approach.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sunil K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
36
|
Yu T, An Q, Cao XL, Yang H, Cui J, Li ZJ, Xiao G. GOLPH3 inhibition reverses oxaliplatin resistance of colon cancer cells via suppression of PI3K/AKT/mTOR pathway. Life Sci 2020; 260:118294. [PMID: 32818544 DOI: 10.1016/j.lfs.2020.118294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore whether GOLPH3 regulated oxaliplatin (L-OHP) resistance of colon cancer cells via PI3K/AKT/mTOR pathway. METHODS HCT116/L-OHP cells were divided into Blank, Control/GOLPH3 shRNA, BEZ235 (a PI3K/AKT/mTOR inhibitor), and GOLPH3 + BEZ235 groups followed by the detection with MTT, soft agar colony formation, flow cytometry and TUNEL assays. Mice bearing HCT116/L-OHP xenografts were randomized into Control, L-OHP, NC/GOLPH3 shRNA, L-OHP + NC/GOLPH3 shRNA groups. The expressions of Ki67, Caspase-3, and PI3K/AKT/mTOR pathway proteins were examined by immunohistochemistry. RESULTS HCT116/L-OHP cells had increased GOLPH3 expression compared to HCT116 cells, which positively regulated PI3K/AKT/mTOR pathway in HCT116/L-OHP cells. BEZ235 declined IC50 of HCT116/L-OHP cells to L-OHP, decreased the expressions of ABCB1, ABCC1, ABCG2, ATP7A, ATP7B, MATE1, p-gp, MRP1 and BCRP, induced cell apoptosis, reduced cell proliferation, and arrested cells at G0/G1, which was reversed by GOLPH3 overexpression. L-OHP and GOLPH3 shRNA decreased tumor volume and reduced expression of Ki67 in tumor tissues with the increased Caspase-3. Meanwhile, the combined treatment had the better treatment effect. CONCLUSION GOLPH3 inhibition reduced proliferation and promoted apoptosis of HCT116/L-OHP cells, and also reversed the L-OHP resistance of HCT116/L-OHP, which may be associated with the suppression of P13K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Tao Yu
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Qi An
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Xiang-Long Cao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Hua Yang
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Jian Cui
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Zi-Jian Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Gang Xiao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China.
| |
Collapse
|
37
|
Yang XH, Li KG, Wei JB, Wu CH, Liang SX, Mo XW, Chen JS, Tang WZ, Qu S. Retrospective study of preoperative chemoradiotherapy with capecitabine versus capecitabine plus oxaliplatin for locally advanced rectal cancer. Sci Rep 2020; 10:12539. [PMID: 32719436 PMCID: PMC7385078 DOI: 10.1038/s41598-020-69573-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate whether the addition of oxaliplatin to a neoadjuvant chemoradiotherapy (CRT) regimen could improve survival benefit in locally advanced rectal cancer (LARC) patients. We retrospectively analysed 73 LARC patients (cT2-4 and/or cN1-2) who received preoperative CRT with capecitabine followed by surgery (arm A, 43 patients) or capecitabine plus oxaliplatin followed by surgery (arm B, 30 patients). The main endpoints of the study were pathologic complete response (pCR) rate, overall survival (OS) and disease-free survival (DFS). The secondary endpoints included the sphincter preservation rate and safety. The pCR for arms A and B were 28% and 17% (P = 0.267). In arms A and B, the mean OS was 84.287 months (95% CI 68.413-100.160) and 106.333 months (95% CI 99.281-113.386) (P = 0.185); the mean DFS was 72.812 months (95% CI 56.271-89.353) and 95.073 months (95% CI 83.392-106.754) (P = 0.310); and the sphincter preservation rates were 72% and 67%, respectively (P = 0.619). The incidence of grade 3 toxicity was much higher in arm B than in arm A (57% vs. 21%, P = 0.002). Adding oxaliplatin to a preoperative CRT regimen for LARC did not improve the survival benefits of patients or increase toxicity.
Collapse
Affiliation(s)
- Xiao-Hui Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Kai-Guo Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Jun-Bao Wei
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun-Hua Wu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Shi-Xiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Centre for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, People's Republic of China
| | - Xian-Wei Mo
- Guangxi Clinical Research Centre for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, People's Republic of China
| | - Jian-Si Chen
- Guangxi Clinical Research Centre for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, People's Republic of China
| | - Wei-Zhong Tang
- Guangxi Clinical Research Centre for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, People's Republic of China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Clinical Research Centre for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
38
|
van Velzen MJM, Derks S, van Grieken NCT, Haj Mohammad N, van Laarhoven HWM. MSI as a predictive factor for treatment outcome of gastroesophageal adenocarcinoma. Cancer Treat Rev 2020; 86:102024. [PMID: 32388292 DOI: 10.1016/j.ctrv.2020.102024] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Gastroesophageal cancers are a major cause of death worldwide and treatment outcomes remain poor. Adequate predictive biomarkers have not been identified. Microsatellite instability (MSI) as a result of mismatch repair deficiency is present in four to twenty percent of gastroesophageal cancers and has been associated with favorable survival outcomes compared to microsatellite stable tumors. This prognostic advantage may be related to immunosurveillance, which may also explain the favorable response to immune checkpoint inhibition observed in MSI high (MSI-H) tumors. The value of conventional cytotoxic treatment in MSI-H tumors is unclear and results on its efficacy range from detrimental to beneficial effects. Here the recent data on MSI as a predictive factor for outcome of gastroesophageal cancer treatment is reviewed.
Collapse
Affiliation(s)
- M J M van Velzen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - S Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands(1)
| | - N C T van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - N Haj Mohammad
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - H W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Novel nickel(II), palladium(II), and platinum(II) complexes having a pyrrolyl-iminophosphine (PNN) pincer: Synthesis, crystal structures, and cytotoxic activity. J Inorg Biochem 2020; 205:111015. [PMID: 32032825 DOI: 10.1016/j.jinorgbio.2020.111015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Abstract
A pyrrolyl-iminophosphine (PNNH) which would act as a potential terdentate ligand has been prepared by Schiff base reaction. Complexes [M(PNN)X] (M = Ni; X = Cl (1), Pd; X = Cl (2), Br (3), I (4), M = Pt; X = Cl (5)) were prepared. The title complexes were characterized by various spectroscopic (IR, 1H, 13C, and 31P NMR) and elemental analyses. The molecular structures of 1, 2, and 5 have been established by single-crystal X-ray crystallography, demonstrating a distorted square planar geometry comprising two 5-membered metallacyclic rings. Complexes 1 and 2 were found to crystallize in the orthorhombic while complex 5 crystallizes in the monoclinic. Cytotoxicities of the complexes along with PNNH were evaluated against A549 (lung), SK-OV-3 (ovarian), SM-MEL-2 (skin), and HCT15 (colon) human cancer cell lines by sulforhodamine B assay. Notably, the palladium(II) complex (2) shows the highest activity. Apoptosis activity along with the caspase inhibitor Z-VAD (Z-Val-Ala-Asp-fluoromethyl ketone) assay of 2 and 5 against A549 and HCT15 cancer cell lines were investigated to learn a mechanistic pathway for the observed cytotoxicity, practically eliminating an apoptotic cell-death route. Complexes 2 and 5 were studied to DNA cleavage assay and molecular docking simulation. The DNA (pcDNA3.0) cleavage experiment evaluates complex 5 interacting with DNA, more effectively, in comparison to complex 2. Molecular docking simulation of 2 and 5 toward DNA and GRP78 (glucose-regulated protein 78) was performed to predict binding sites of ligand-receptors and a plausible mechanistic aspect of metallodrug-action.
Collapse
|
40
|
Hill RJW, Innominato PF, Lévi F, Ballesta A. Optimizing circadian drug infusion schedules towards personalized cancer chronotherapy. PLoS Comput Biol 2020; 16:e1007218. [PMID: 31986133 PMCID: PMC7004559 DOI: 10.1371/journal.pcbi.1007218] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/06/2020] [Accepted: 11/21/2019] [Indexed: 11/18/2022] Open
Abstract
Precision medicine requires accurate technologies for drug administration and proper systems pharmacology approaches for patient data analysis. Here, plasma pharmacokinetics (PK) data of the OPTILIV trial in which cancer patients received oxaliplatin, 5-fluorouracil and irinotecan via chronomodulated schedules delivered by an infusion pump into the hepatic artery were mathematically investigated. A pump-to-patient model was designed in order to accurately represent the drug solution dynamics from the pump to the patient blood. It was connected to semi-mechanistic PK models to analyse inter-patient variability in PK parameters. Large time delays of up to 1h41 between the actual pump start and the time of drug detection in patient blood was predicted by the model and confirmed by PK data. Sudden delivery spike in the patient artery due to glucose rinse after drug administration accounted for up to 10.7% of the total drug dose. New model-guided delivery profiles were designed to precisely lead to the drug exposure intended by clinicians. Next, the complete mathematical framework achieved a very good fit to individual time-concentration PK profiles and concluded that inter-subject differences in PK parameters was the lowest for irinotecan, intermediate for oxaliplatin and the largest for 5-fluorouracil. Clustering patients according to their PK parameter values revealed patient subgroups for each drug in which inter-patient variability was largely decreased compared to that in the total population. This study provides a complete mathematical framework to optimize drug infusion pumps and inform on inter-patient PK variability, a step towards precise and personalized cancer chronotherapy. Accuracy and safety of infusion pumps remain a critical issue in the clinics and the development of accurate mathematical models to optimize drug administration though such devices has a key part to play in the advancement of precision medicine. Here, PK data from cancer patient receiving irinotecan, oxaliplatin and 5-fluorouracil into the hepatic artery via an infusion pump was mathematically investigated. A pump-to-patient model was designed and revealed significant inconsistencies between intended drug profiles and actual plasma concentrations. This mathematical model was then used to suggest improved profiles in order to minimise error and optimise delivery. Physiologically-based PK models of the three drugs were then linked to the pump-to-patient model. The whole framework achieved a very good fit to data and allowed quantifying inter-patient variability in PK parameters and linking them to potential clinical biomarkers via patient clustering. The developed methodology improves our understanding of patient-specific drug pharmacokinetics towards personalized drug administration.
Collapse
Affiliation(s)
- Roger J W Hill
- EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, Coventry, UK
| | - Pasquale F Innominato
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, UK.,Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Francis Lévi
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver Functions", Campus CNRS, Villejuif, F-94807, France. & Honorary position, University of Warwick, UK
| | - Annabelle Ballesta
- INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver Functions", Campus CNRS, Villejuif, F-94807, France. & Honorary position, University of Warwick, UK
| |
Collapse
|
41
|
Design, Synthesis, and Anticancer Effect Studies of Iridium(III) Polypyridyl Complexes against SGC-7901 Cells. Molecules 2019; 24:molecules24173129. [PMID: 31466318 PMCID: PMC6749586 DOI: 10.3390/molecules24173129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/04/2023] Open
Abstract
Three iridium(III) complexes ([Ir(Hppy)2(L)](PF6) (Hppy = 2-phenylpyridine, L = 5-nitrophenanthroline, NP), 1; 5-nitro-6-amino-phenanthroline (NAP), 2; and 5,6-diamino-phenanthroline (DAP) 3 were synthesized and characterized. The cytotoxicities of Ir(III) complexes 1–3 against cancer cell lines SGC-7901, A549, HeLa, Eca-109, HepG2, BEL-7402, and normal NIH 3T3 cells were investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) method. The results showed that the three iridium(III) complexes had moderate in vitro anti-tumor activity toward SGC-7901 cells with IC50 values of 3.6 ± 0.1 µM for 1, 14.1 ± 0.5 µM for 2, and 11.1 ± 1.3 µM for 3. Further studies showed that 1–3 induce cell apoptosis/death through DNA damage, cell cycle arrest at the S or G0/G1 phase, ROS elevation, increased levels of Ca2+, high mitochondrial membrane depolarization, and cellular ATP depletion. Transwell and Colony-Forming assays revealed that complexes 1–3 can also effectively inhibit the metastasis and proliferation of tumor cells. These results demonstrate that 1–3 induce apoptosis in SGC-7901 cells through ROS-mediated mitochondrial damage and DNA damage pathways, as well as by inhibiting cell invasion, thereby exerting anti-tumor cell proliferation activity in vitro.
Collapse
|
42
|
A new herbal formula BP10A exerted an antitumor effect and enhanced anticancer effect of irinotecan and oxaliplatin in the colon cancer PDTX model. Biomed Pharmacother 2019; 116:108987. [DOI: 10.1016/j.biopha.2019.108987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
|
43
|
Ghanbarian M, Afgar A, Yadegarazari R, Najafi R, Teimoori-Toolabi L. Through oxaliplatin resistance induction in colorectal cancer cells, increasing ABCB1 level accompanies decreasing level of miR-302c-5p, miR-3664-5p and miR-129-5p. Biomed Pharmacother 2018; 108:1070-1080. [PMID: 30372807 DOI: 10.1016/j.biopha.2018.09.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin as a component of (Neo-) adjuvant chemotherapeutic regimens is administered to colorectal cancer patients. Unfortunately, the acquisition of resistance to this drug in nearly 90% of metastatic patients rendered it as an ineffective drug. Therefore, resistance mechanisms to this drug should be elucidated. There are different genes like GSTP1 and ABCB1 which are responsible for oxaliplatin resistance. We hypothesized that miR-129-5p, miR-302c-5p, miR-3664-5p, mir-3714 and miR-513a-3p are targeting ABCB1 gene, while GSTP1 was predicted to be the potential target of miR-3664-5p, mir-3714 and miR-513a-3p. In order to study this hypothesis, resistant colorectal cell lines were generated through intermittent exposure of HCT116, SW480 and HT29 to the increasing doses of oxaliplatin. MTT assays validated this resistance induction. Expression of ABCB1 and GSTP1 in addition to their targeting miRNAs in different cell lines were studied by quantitative real time PCR in the cell lines. Even though in comparison with HCT116 and SW480 cell lines, GSTP1 expression was reduced in resistant cells, ABCB1 expression was upregulated in these cell lines. On the other hand, HT-29 resistant cells showed elevated GSTP1 and unchanged ABCB1 levels. While miR-302c-5p level was downregulated in resistant cell lines, miR-129-5p and miR-3664-5p level showed different pattern of reduction in the resistant SW480 and HCT116 cell lines. GSTP1 level was correlated directly with miR-513a-3p and miR-3664-5p in all SW480 and HCT116 derived cell lines, however in HT-29-OXR1, GSTP1 level was correlated inversely with miR-3664-5p. In conclusion, upregulation of ABCB1 can be considered as the crucial component of poor response to oxaliplatin which is likely controlled by miR-302c-5p.
Collapse
Affiliation(s)
- Marzieh Ghanbarian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Yadegarazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | |
Collapse
|
44
|
Tabeshpour J, Mehri S, Shaebani Behbahani F, Hosseinzadeh H. Protective effects of Vitis vinifera
(grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytother Res 2018; 32:2164-2190. [DOI: 10.1002/ptr.6168] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/12/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
- Neurocognitive Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Fatemeh Shaebani Behbahani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
45
|
Choi TG, Nguyen MN, Kim J, Jo YH, Jang M, Nguyen NNY, Yun HR, Choe W, Kang I, Ha J, Tang DG, Kim SS. Cyclophilin B induces chemoresistance by degrading wild-type p53 via interaction with MDM2 in colorectal cancer. J Pathol 2018; 246:115-126. [PMID: 29876924 DOI: 10.1002/path.5107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Chemoresistance is a major problem for effective therapy in CRC. Here, we investigated the mechanism by which peptidylprolyl isomerase B (PPIB; cyclophilin B, CypB) regulates chemoresistance in CRC. We found that CypB is a novel wild-type p53 (p53WT)-inducible gene but a negative regulator of p53WT in response to oxaliplatin treatment. Overexpression of CypB shortens the half-life of p53WT and inhibits oxaliplatin-induced apoptosis in CRC cells, whereas knockdown of CypB lengthens the half-life of p53WT and stimulates p53WT-dependent apoptosis. CypB interacts directly with MDM2, and enhances MDM2-dependent p53WT ubiquitination and degradation. Furthermore, we firmly validated, using bioinformatics analyses, that overexpression of CypB is associated with poor prognosis in CRC progression and chemoresistance. Hence, we suggest a novel mechanism of chemoresistance caused by overexpressed CypB, which may help to develop new anti-cancer drugs. We also propose that CypB may be utilized as a predictive biomarker in CRC patients. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Minh Nam Nguyen
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jieun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Miran Jang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Wang J, Zhang XS, Tao R, Zhang J, Liu L, Jiang YH, Ma SH, Song LX, Xia LJ. Upregulation of CX3CL1 mediated by NF-κB activation in dorsal root ganglion contributes to peripheral sensitization and chronic pain induced by oxaliplatin administration. Mol Pain 2018; 13:1744806917726256. [PMID: 28849713 PMCID: PMC5580849 DOI: 10.1177/1744806917726256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Painful peripheral neuropathy is a severe side effect in oxaliplatin therapy that compromises cancer patients' quality of life. However, its underlying pathogenic mechanisms remain largely unknown. Here, we found that intraperitoneal consecutive administration of oxaliplatin significantly increased excitability of small diameter dorsal root ganglion neurons and induced thermal hyperalgesia in rats. Furthermore, the CX3CL1 expression was significantly increased after oxaliplatin treatment, and intrathecal injection of a neutralizing antibody against CX3CL1 markedly attenuated the enhanced excitability of dorsal root ganglion neurons and thermal hyperalgesia. Importantly, the upregulated CX3CL1 is mediated by the NF-κB signaling pathway, as inhibition of NF-κB p65 activation with pyrrolidine dithiocarbamate or p65 siRNA inhibited the upregulation of CX3CL1, the enhanced excitability of dorsal root ganglion neurons, and thermal hyperalgesia induced by oxaliplatin. Further studies with chromatin immunoprecipitation found that oxaliplatin treatment increased the recruitment of NF-κB p65 to the CX3Cl1 promoter region. Our results suggest that upregulation of CX3CL1 in dorsal root ganglion mediated by NF-κB activation contributes to the peripheral sensitization and chronic pain induced by oxaliplatin administration.
Collapse
Affiliation(s)
- Jing Wang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Xin-Sheng Zhang
- 2 Department of Orthopaedics, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Rong Tao
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- 3 Department of Rehabilitation Medicine, Guangdong Woman and Children Hospital, Guangzhou, China
| | - Lin Liu
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Ying-Hai Jiang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Song-He Ma
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Lin-Xia Song
- 4 College of Life Science, Shandong University of Technology, Zibo, China
| | - Ling-Jie Xia
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Rapacz A, Obniska J, Koczurkiewicz P, Wójcik-Pszczoła K, Siwek A, Gryboś A, Rybka S, Karcz A, Pękala E, Filipek B. Antiallodynic and antihyperalgesic activity of new 3,3-diphenyl-propionamides with anticonvulsant activity in models of pain in mice. Eur J Pharmacol 2017; 821:39-48. [PMID: 29262297 DOI: 10.1016/j.ejphar.2017.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/06/2023]
Abstract
Anticonvulsant drugs are used to treat a wide range of non-epileptic conditions, including chronic pain. The aim of the present experiments was to examine analgesic activity of three new 3,3-diphenyl-propionamides, which had previously demonstrated anticonvulsant activity in the MES (maximal electroshock seizure), scPTZ (subcutaneous pentylenetetrazole) and/or 6Hz (psychomotor seizure) tests in mice. Antinociceptive activity was examined in mouse models of acute pain (the hot plate test) and tonic pain (the formalin test) in mice. Antiallodynic and antihyperalgesic activity was estimated in the oxaliplatin-induced neuropathic pain model of chemotherapy-induced peripheral neuropathy and in the streptozotocin-induced model of painful diabetic neuropathy in mice. Considering the drug safety evaluation, the influence on locomotor activity was checked. Moreover, using in vitro methods, selected compound was tested for potential hepatotoxicity on human hepatocellular carcinoma cell line and for metabolic stability. To determine the plausible mechanism of anticonvulsant and antinociceptive action, in vitro binding and functional assays were carried out. Among tested molecules two of them JOA 122 (3p) and JOA 123 (3q) revealed significant antinociceptive activity in the model of tonic pain - the formalin test and neuropathic pain models - the oxaliplatin and streptozotocin-induced peripheral neuropathy. In the binding studies JOA 122 (3p) revealed the high affinity to voltage-gated sodium channels (Nav1.2), as well as for 5-HT1A receptors. Metabolism studies in mouse liver microsomes showed a low metabolic stability of this compound.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Sabina Rybka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Aleksandra Karcz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
48
|
Rajpoot K, Jain SK. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1236-1247. [PMID: 28849671 DOI: 10.1080/21691401.2017.1366338] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) ranked second in females and third in males among all type of cancers diagnosed. About 1.4 million cases took place with 693,900 deaths in 2012. It can occur either in colon or rectum. Thus, we aimed to develop and optimize oxaliplatin (OP) loaded solid lipid nanoparticles (SLNs). MATERIALS AND METHODS SLNs containing tristearin, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), Lipoid S75, and Tween 80 was developed. Box-Behnken design was applied for optimization of SLNs and optimized formulation was selected for conjugation with folic acid (FA). Optimized formulations were evaluated for various physiochemical parameters viz., particle size (PS), zeta potential, %entrapment efficiency (EE), morphology, X-ray diffraction (XRD), and differential scanning calorimetry (DSC). RESULTS AND DISCUSSION OP loaded uncoupled SLNs (OPSLNs) and OP loaded FA coupled SLNs (OPSLNFs) formulations revealed good EE, 49.2 ± 0.38% and 43.5 ± 0.59%, respectively and small PS, 146.2 ± 4.4 nm, and 158.8 ± 5.6 nm, respectively. XRD pattern and DSC results confirmed that OP was uniformly distributed in amorphous form within SLNs. In vitro drug release study of OPSLNs and OPSLNFs formulation revealed sustained drug release pattern of OP for up to 6 d. Anticancer activity on HT-29 cell line indicated the highest potency of OPSLNFs as compared to OPSLNs and OP solution. CONCLUSION The present work illustrated the higher sensitivity of HT-29 cells to the drug entrapped in OPSLNFs as compared to OPSLNs and OP solution. Hence, this novel strategy might be a promising approach for the management of CRC.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur (C.G.) , India
| | - Sunil K Jain
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur (C.G.) , India
| |
Collapse
|
49
|
Okazaki S, Schirripa M, Loupakis F, Cao S, Zhang W, Yang D, Ning Y, Berger MD, Miyamoto Y, Suenaga M, Iqubal S, Barzi A, Cremolini C, Falcone A, Battaglin F, Salvatore L, Borelli B, Helentjaris TG, Lenz HJ. Tandem repeat variation near the HIC1 (hypermethylated in cancer 1) promoter predicts outcome of oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Cancer 2017; 123:4506-4514. [PMID: 28708932 DOI: 10.1002/cncr.30880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND The hypermethylated in cancer 1/sirtuin 1 (HIC1/SIRT1) axis plays an important role in regulating the nucleotide excision repair pathway, which is the main oxaliplatin-induced damage-repair system. On the basis of prior evidence that the variable number of tandem repeat (VNTR) sequence located near the promoter lesion of HIC1 is associated with HIC1 gene expression, the authors tested the hypothesis that this VNTR is associated with clinical outcome in patients with metastatic colorectal cancer who receive oxaliplatin-based chemotherapy. METHODS Four independent cohorts were tested. Patients who received oxaliplatin-based chemotherapy served as the training cohort (n = 218), and those who received treatment without oxaliplatin served as the control cohort (n = 215). Two cohorts of patients who received oxaliplatin-based chemotherapy were used for validation studies (n = 176 and n = 73). The VNTR sequence near HIC1 was analyzed by polymerase chain reaction analysis and gel electrophoresis and was tested for associations with the response rate, progression-free survival, and overall survival. RESULTS In the training cohort, patients who harbored at least 5 tandem repeats (TRs) in both alleles had a significantly shorter PFS compared with those who had fewer than 4 TRs in at least 1 allele (9.5 vs 11.6 months; hazard ratio, 1.93; P = .012), and these findings remained statistically significant after multivariate analysis (hazard ratio, 2.00; 95% confidence interval, 1.13-3.54; P = .018). This preliminary association was confirmed in the validation cohort, and patients who had at least 5 TRs in both alleles had a worse PFS compared with the other cohort (7.9 vs 9.8 months; hazard ratio, 1.85; P = .044). CONCLUSIONS The current findings suggest that the VNTR sequence near HIC1 could be a predictive marker for oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Cancer 2017;123:4506-14. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marta Schirripa
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Medical Oncology 1, Veneto Institute of Oncology, Institute for Research and Health Care (IRCCS), Padova, Italy
| | - Fotios Loupakis
- Medical Oncology 1, Veneto Institute of Oncology, Institute for Research and Health Care (IRCCS), Padova, Italy
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Wu Zhang
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yan Ning
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin D Berger
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yuji Miyamoto
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitsukuni Suenaga
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Syma Iqubal
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Afsaneh Barzi
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chiara Cremolini
- Medical Oncology Unit 2, Pisa University Hospital, Tuscan Tumor Institute, Pisa, Italy
| | - Alfredo Falcone
- Medical Oncology Unit 2, Pisa University Hospital, Tuscan Tumor Institute, Pisa, Italy
| | - Francesca Battaglin
- Medical Oncology 1, Veneto Institute of Oncology, Institute for Research and Health Care (IRCCS), Padova, Italy
| | - Lisa Salvatore
- Medical Oncology Unit 2, Pisa University Hospital, Tuscan Tumor Institute, Pisa, Italy
| | - Beatrice Borelli
- Medical Oncology Unit 2, Pisa University Hospital, Tuscan Tumor Institute, Pisa, Italy
| | - Timothy G Helentjaris
- BIO5 Institute, University of Arizona, Tucson, Arizona.,Department of Plant Sciences, University of Arizona, Tucson, Arizona
| | - Heinz-Josef Lenz
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
50
|
Pulvers JN, Marx G. Factors associated with the development and severity of oxaliplatin-induced peripheral neuropathy: a systematic review. Asia Pac J Clin Oncol 2017; 13:345-355. [PMID: 28653815 DOI: 10.1111/ajco.12694] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/27/2017] [Indexed: 11/30/2022]
Abstract
Oxaliplatin is a platinum-derivative chemotherapeutic agent used for colorectal cancer in the adjuvant and metastatic setting in combination with folinic acid and 5-fluorouracil. Oxaliplatin causes an acute cold-induced neurotoxicity and a chronic cumulative neuropathy, which can require dose modification and impact quality of life. To date, no prevention and treatment strategies have proved effective thus reinforcing the importance of identifying at-risk patients in order to maximize therapeutic benefit while minimizing neurotoxicity. Here we reviewed studies on risk and prognostic factors associated with the development and severity of oxaliplatin-induced peripheral neuropathy. A systematic search was conducted in MEDLINE and Embase, and studies investigating clinical and patient-related factors associated with oxaliplatin-induced peripheral neuropathy as their primary focus were identified, and quantitative data were extracted when available. We identified 15 studies, of which only three were prospective. Notable factors were acute neurotoxicity symptoms predicting chronic neuropathy, baseline laboratory findings, patient demographics such as age and gender, comorbidities, and environmental factors. No factor was consistently identified across multiple studies other than the association with oxaliplatin dose. Further investigation into these factors may yield insight into potential neuropathy prevention and treatment strategies.
Collapse
Affiliation(s)
| | - Gavin Marx
- Sydney Medical School, University of Sydney, NSW, Australia.,Sydney Adventist Hospital, Wahroonga, NSW, Australia
| |
Collapse
|