1
|
Perucca E, Taglialatela M. Targeting Kv7 Potassium Channels for Epilepsy. CNS Drugs 2025; 39:263-288. [PMID: 39853501 PMCID: PMC11850491 DOI: 10.1007/s40263-024-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Voltage-gated Kv7 potassium channels, particularly Kv7.2 and Kv.7.3 channels, play a critical role in modulating susceptibility to seizures, and mutations in genes that encode these channels cause heterogeneous epilepsy phenotypes. On the basis of this evidence, activation of Kv7.2 and Kv.7.3 channels has long been considered an attractive target in the search for novel antiseizure medications. Ezogabine (retigabine), the first Kv7.2/3 activator introduced in 2011 for the treatment of focal seizures, was withdrawn from the market in 2017 due to declining use after discovery of its association with pigmentation changes in the retina, skin, and mucosae. A novel formulation of ezogabine for pediatric use (XEN496) has been recently investigated in children with KCNQ2-related developmental and epileptic encephalopathy, but the trial was terminated prematurely for reasons unrelated to safety. Among novel Kv7.2/3 openers in clinical development, azetukalner has shown dose-dependent efficacy against drug-resistant focal seizures with a good tolerability profile and no evidence of pigmentation-related adverse effects in early clinical studies, and it is now under investigation in phase III trials for the treatment of focal seizures, generalized tonic-clonic seizures, and major depressive disorder. Another Kv7.2/3 activator, BHV-7000, has completed phase I studies in healthy subjects, with excellent tolerability at plasma drug concentrations that exceed the median effective concentrations in a preclinical model of anticonvulsant activity, but no efficacy data in patients with epilepsy are available to date. Among other Kv7.2/3 activators in clinical development as potential antiseizure medications, pynegabine and CB-003 have completed phase I safety and pharmacokinetic studies, but results have not been yet reported. Overall, interest in targeting Kv7 channels for the treatment of epilepsy and for other indications remains strong. Future breakthroughs in this area could come from exploitation of mechanistic differences in the action of Kv7 activators, and from the development of molecules that combine Kv7 activation with other mechanisms of action.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), Melbourne Brain Center, The University of Melbourne, 245 Burgundy St., Heidelberg, VIC, 3084, Australia.
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Zahra A, Liu R, Wang J, Wu J. Identifying the mechanism of action of the Kv7 channel opener, retigabine in the treatment of epilepsy. Neurol Sci 2023; 44:3819-3825. [PMID: 37442907 DOI: 10.1007/s10072-023-06955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Epilepsy is characterized by recurrent epileptic seizures caused by high levels of neuronal excitability in the brain. Voltage-sensitive K+ channels (Kv) of the Kv7 (KCNQ) family encoded by the KCNQ gene are involved in a wide range of cellular processes, i.e., KCNQ2 and KCNQ3 channels mediate M-currents to inhibit neuronal excitability and reduce transmitter release throughout the nervous system. Thus, as a positive allosteric modulator (or opener) of KCNQ channels, retigabine has been the only clinically approved anti-seizure medication that acts on the KCNQ channels. This review discusses the biochemical mechanisms about how retigabine acts on Kv7 channels, significance in neuronal pathophysiology, preclinical efficacy, and clinical stage of development. Additional efforts are being made to emphasize the possible benefits and drawbacks of retigabine compared to currently available medications for treatment-resistant epilepsy.
Collapse
Affiliation(s)
- Aqeela Zahra
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
- Department of Zoology, University of Sialkot, Sialkot, 51310, Pakistan
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- National Clinical Research Center for Neurological Disease, Beijing, 100070, China
| | - Jingjing Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- National Clinical Research Center for Neurological Disease, Beijing, 100070, China.
| |
Collapse
|
3
|
Viral vector-mediated expressions of venom peptides as novel gene therapy for anxiety and depression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Lidington D, Wan H, Bolz SS. Cerebral Autoregulation in Subarachnoid Hemorrhage. Front Neurol 2021; 12:688362. [PMID: 34367053 PMCID: PMC8342764 DOI: 10.3389/fneur.2021.688362] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke subtype with a high rate of mortality and morbidity. The poor clinical outcome can be attributed to the biphasic course of the disease: even if the patient survives the initial bleeding emergency, delayed cerebral ischemia (DCI) frequently follows within 2 weeks time and levies additional serious brain injury. Current therapeutic interventions do not specifically target the microvascular dysfunction underlying the ischemic event and as a consequence, provide only modest improvement in clinical outcome. SAH perturbs an extensive number of microvascular processes, including the “automated” control of cerebral perfusion, termed “cerebral autoregulation.” Recent evidence suggests that disrupted cerebral autoregulation is an important aspect of SAH-induced brain injury. This review presents the key clinical aspects of cerebral autoregulation and its disruption in SAH: it provides a mechanistic overview of cerebral autoregulation, describes current clinical methods for measuring autoregulation in SAH patients and reviews current and emerging therapeutic options for SAH patients. Recent advancements should fuel optimism that microvascular dysfunction and cerebral autoregulation can be rectified in SAH patients.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Hoyee Wan
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Wright AB, Sukhanova KY, Elmslie KS. K V7 channels are potential regulators of the exercise pressor reflex. J Neurophysiol 2021; 126:1-10. [PMID: 34038189 DOI: 10.1152/jn.00700.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The exercise pressor reflex (EPR) originates in skeletal muscle and is activated by exercise-induced signals to increase arterial blood pressure and cardiac output. Muscle ischemia can elicit the EPR, which can be inappropriately activated in patients with peripheral vascular disease or heart failure to increase the incidence of myocardial infarction. We seek to better understand the receptor/channels that control excitability of group III and group IV muscle afferent fibers that give rise to the EPR. Bradykinin (BK) is released within contracting muscle and can evoke the EPR. However, the mechanism is incompletely understood. KV7 channels strongly regulate neuronal excitability and are inhibited by BK. We have identified KV7 currents in muscle afferent neurons by their characteristic activation/deactivation kinetics, enhancement by the KV7 activator retigabine, and block by KV7 specific inhibitor XE991. The blocking of KV7 current by different XE991 concentrations suggests that the KV7 current is generated by both KV7.2/7.3 (high affinity) and KV7.5 (low affinity) channels. The KV7 current was inhibited by 300 nM BK in neurons with diameters consistent with both group III and group IV afferents. The inhibition of KV7 by BK could be a mechanism by which this metabolic mediator generates the EPR. Furthermore, our results suggest that KV7 channel activators such as retigabine, could be used to reduce cardiac stress resulting from the exacerbated EPR in patients with cardiovascular disease.NEW & NOTEWORTHY KV7 channels control neuronal excitability. We show that these channels are expressed in muscle afferents and generate currents that are blocked by XE991 and bradykinin (BK). The XE991 block suggests that KV7 current is generated by KV7.2/3 and KV7.5 channels. The BK inhibition of KV7 channels may explain how BK activates the exercise pressor reflex (EPR). Retigabine can enhance KV7 current, which could help control the inappropriately activated EPR in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew B Wright
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Khrystyna Yu Sukhanova
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| |
Collapse
|
6
|
Abstract
Given the distinctive characteristics of both epilepsy and antiepileptic drugs (AEDs), therapeutic drug monitoring (TDM) can make a significant contribution to the field of epilepsy. The measurement and interpretation of serum drug concentrations can be of benefit in the treatment of uncontrollable seizures and in cases of clinical toxicity; it can aid in the individualization of therapy and in adjusting for variable or nonlinear pharmacokinetics; and can be useful in special populations such as pregnancy. This review examines the potential for TDM of newer AEDs such as eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, perampanel, pregabalin, rufinamide, retigabine, stiripentol, tiagabine, topiramate, vigabatrin, and zonisamide. We describe the relationships between serum drug concentration, clinical effect, and adverse drug reactions for each AED as well as the different analytical methods used for serum drug quantification. We discuss retrospective studies and prospective data on the serum drug concentration-efficacy of these drugs and present the pharmacokinetic parameters, oral bioavailability, reference concentration range, and active metabolites of newer AEDs. Limited data are available for recent AEDs, and we discuss the connection between drug concentrations in terms of clinical efficacy and nonresponse. Although we do not propose routine TDM, serum drug measurement can play a beneficial role in patient management and treatment individualization. Standardized studies designed to assess, in particular, concentration-efficacy-toxicity relationships for recent AEDs are urgently required.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutics, College of Pharmacy, Gulf Medical University, University Street, P.O.Box No.4184, Ajman, UAE.
| | - Anroop B Nair
- Department of Pharmaceutics, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
7
|
Abstract
The use of antiepileptic drugs in patients with renal or hepatic disease is common in clinical practice. Since the liver and kidney are the main organs involved in the elimination of most drugs, their dysfunction can have important effects on the disposition of antiepileptic drugs. Renal or hepatic disease can prolong the elimination of the parent drug or an active metabolite leading to accumulation and clinical toxicity. It can also affect the protein binding, distribution, and metabolism of a drug. The protein binding of anionic acidic drugs, such as phenytoin and valproate, can be reduced significantly by renal failure, causing difficulties in the interpretation of total serum concentrations commonly used in clinical practice. Dialysis can further modify the pharmacokinetic parameters or result in significant removal of the antiepileptic drugs. Antiepileptic drugs that are eliminated unchanged by the kidneys or undergo minimal metabolism include gabapentin, pregabalin, vigabatrin, and topiramate when used as monotherapy. Drugs eliminated predominantly by biotransformation include phenytoin, valproate, carbamazepine, tiagabine, and rufinamide. Drugs eliminated by a combination of renal excretion and biotransformation include levetiracetam, lacosamide, zonisamide, primidone, phenobarbital, ezogabine/retigabine, oxcarbazepine, eslicarbazepine, ethosuximide, and felbamate. Drugs in the latter group can be used cautiously in patients with either renal or liver failure. Antiepileptic drugs that are at high risk of being extracted by hemodialysis include ethosuximide, gabapentin, lacosamide, levetiracetam, pregabalin and topiramate. The use of antiepileptic drugs in the presence of hepatic or renal disease is complex and requires great familiarity with the pharmacokinetics of these agents. Closer follow-up of the patients and more frequent monitoring of serum concentrations are required to optimize clinical outcomes.
Collapse
Affiliation(s)
- Jorge J Asconapé
- Department of Neurology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
8
|
Rejdak K, Luszczki JJ, Błaszczyk B, Chwedorowicz R, Czuczwar SJ. Clinical utility of adjunctive retigabine in partial onset seizures in adults. Ther Clin Risk Manag 2012; 8:7-14. [PMID: 22298949 PMCID: PMC3269346 DOI: 10.2147/tcrm.s22605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In ~30% of epileptic patients, full seizure control is not possible, which is why the search for novel antiepileptic drugs continues. Retigabine exhibits a mechanism of action that is not shared by the available antiepileptic drugs. This antiepileptic enhances potassium currents via Kv7.2–7.3 channels, which very likely results from destabilization of a closed conformation or stabilization of the open conformation of the channels. Generally, the pharmacokinetics of retigabine are linear and the drug undergoes glucuronidation and acetylation. Results from clinical trials indicate that, in the form of an add-on therapy, retigabine proves an effective drug in refractory epileptic patients. The major adverse effects of the add-on treatment are dizziness, somnolence, and fatigue. This epileptic drug is also considered for other conditions – neuropathic pain, affective disorders, stroke, or even Alzheimer’s disease.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Barrese V, Miceli F, Soldovieri MV, Ambrosino P, Iannotti FA, Cilio MR, Taglialatela M. Neuronal potassium channel openers in the management of epilepsy: role and potential of retigabine. Clin Pharmacol 2010; 2:225-36. [PMID: 22291509 PMCID: PMC3262367 DOI: 10.2147/cpaa.s15369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite the availability of over 20 antiepileptic drugs, about 30% of epileptic patients do not achieve seizure control. Thus, identification of additional molecules targeting novel molecular mechanisms is a primary effort in today's antiepileptic drug research. This paper reviews the pharmacological development of retigabine, an antiepileptic drug with a novel mechanism of action, namely the activation of voltage-gated potassium channels of the Kv7 subfamily. These channels, which act as widespread regulators of intrinsic neuronal excitability and of neurotransmitter-induced network excitability changes, are currently viewed among the most promising targets for anticonvulsant pharmacotherapy. In particular, the present work reviews the pathophysiological role of Kv7 channels in neuronal function, the molecular mechanisms involved in the Kv7 channel-opening action of retigabine, the activity of retigabine in preclinical in vitro and in vivo studies predictive of anticonvulsant activities, and the clinical status of development for this drug as an add-on treatment for pharmacoresistant epilepsy. Particular efforts are devoted to highlighting the potential advantages and disadvantages of retigabine when compared with currently available compounds, in order to provide a comprehensive assessment of its role in therapy for treatment-resistant epilepsies.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Department of Neuroscience, University of Naples Federico II, Naples
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Randomized, Multicenter, Dose-Ranging Trial of Retigabine for Partial-Onset Seizures. Porter RJ, Partiot A, Sachdeo R, Nohria V, Alves WM; 205 Study Group. Neurology 2007;68(15):1197–1204. OBJECTIVE: To evaluate the efficacy and safety of retigabine 600, 900, and 1,200 mg/day administered three times daily as adjunctive therapy in patients with partial-onset seizures. METHODS: A multicenter, randomized, double-blind, placebo-controlled trial was performed. After an 8-week baseline phase, patients were randomized to a 16-week double-blind treatment period (8-week forced titration and 8-week maintenance) followed by either tapering or entry into an open-label extension study. Primary efficacy was the percentage change from baseline in monthly seizure frequency and compared across treatment arms. Secondary efficacy comparisons included the proportion of patients experiencing 50% reduction in seizure frequency (responder rate), emergence of new seizure types, and physician assessment of global clinical improvement. Safety/tolerability assessments included adverse events (AEs), physical and neurologic examinations, and clinical laboratory evaluations. Efficacy analyses were performed on the intent-to-treat population. RESULTS: Of the 399 randomized patients, 279 (69.9%) completed the double-blind treatment period. The median percent change in monthly total partial seizure frequency from baseline was −23% for 600 mg/day, −29% for 900 mg/day, and −35% for 1,200 mg/day vs −13% for placebo ( p < 0.001 for overall difference across all treatment arms). Responder rates for retigabine were 23% for 600 mg/day, 32% for 900 mg/day ( p = 0.021), and 33% for 1,200 mg/day ( p = 0.016), vs 16% for placebo. The most common treatment-emergent AEs were somnolence, dizziness, confusion, speech disorder, vertigo, tremor, amnesia, abnormal thinking, abnormal gait, paresthesia, and diplopia. CONCLUSION: Adjunctive therapy with retigabine is well tolerated and reduces the frequency of partial-onset seizures in a dose-dependent manner.
Collapse
|
12
|
Abstract
The human genome encodes 40 voltage-gated K(+) channels (K(V)), which are involved in diverse physiological processes ranging from repolarization of neuronal and cardiac action potentials, to regulating Ca(2+) signalling and cell volume, to driving cellular proliferation and migration. K(V) channels offer tremendous opportunities for the development of new drugs to treat cancer, autoimmune diseases and metabolic, neurological and cardiovascular disorders. This Review discusses pharmacological strategies for targeting K(V) channels with venom peptides, antibodies and small molecules, and highlights recent progress in the preclinical and clinical development of drugs targeting the K(V)1 subfamily, the K(V)7 subfamily (also known as KCNQ), K(V)10.1 (also known as EAG1 and KCNH1) and K(V)11.1 (also known as HERG and KCNH2) channels.
Collapse
|
13
|
Dencker D, Dias R, Pedersen ML, Husum H. Effect of the new antiepileptic drug retigabine in a rodent model of mania. Epilepsy Behav 2008; 12:49-53. [PMID: 18086455 DOI: 10.1016/j.yebeh.2007.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/26/2007] [Accepted: 09/30/2007] [Indexed: 02/01/2023]
Abstract
Bipolar spectrum disorders are severe chronic mood disorders that are characterized by episodes of mania or hypomania and depression. Because patients with manic symptoms often experience clinical benefit from treatment with anticonvulsant drugs, it was hypothesized that retigabine, a novel compound with anticonvulsant efficacy, may also possess antimanic activity. The amphetamine (AMPH)+chlordiazepoxide (CDP)-induced hyperactivity model has been proposed as a suitable model for studying antimanic-like activity of novel compounds in mice and rats. The aims of the present study in rats were therefore (1) to confirm previous findings with lithium and lamotrigine, and (2) to evaluate the effect of the novel compound retigabine on AMPH+CDP-induced hyperactivity in rats. In all experiments, co-administration of AMPH and CDP induced a significant increase (191-295%) in locomotor activity. Lithium chloride (0.9 mg/kg) and lamotrigine (20 mg/kg), which are known to effectively stabilize mood in humans, both significantly decreased AMPH+CDP-induced locomotor activity without affecting basal locomotor activity. The results furthermore indicate that retigabine, like lithium and lamotrigine, significantly and dose-dependently attenuates the induced hyperactivity at a lowest effective dose of 1.0 mg/kg, whereas basal locomotor activity is reduced only at doses 4.0 mg/kg. In conclusion, retigabine was found to have an antimanic-like effect in the AMPH+CDP-induced hyperactivity model, suggesting a potential role for retigabine in the treatment of mania and possibly in the management of bipolar disorder.
Collapse
Affiliation(s)
- Ditte Dencker
- Department of Psychopharmacology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | | | | | | |
Collapse
|
14
|
Perucca E, French J, Bialer M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 2007; 6:793-804. [PMID: 17706563 DOI: 10.1016/s1474-4422(07)70215-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Despite the introduction of many second-generation antiepileptic drugs (AEDs) in the past 15 years, a third of patients with epilepsy remain refractory to available treatments, and newer and more effective therapies are needed. Although our understanding of the mechanisms of drug resistance is fragmented, novel AED targets have been identified, and models of refractory epilepsy have been developed that can help to select candidate compounds for development. There are more than 20 compounds with potential antiepileptic activity in various stages of clinical development, and for many of these promising clinical trial results are already available. Several incentives justify further investment into the discovery of newer and more effective AEDs. Moreover, developments in clinical trial methodology enable easier completion of proof-of-concept studies, earlier definition of the therapeutic potential of candidate compounds, and more efficient completion of trials for various epilepsy indications.
Collapse
Affiliation(s)
- Emilio Perucca
- Institute of Neurology, IRCCS C Mondino Foundation, Pavia, Italy
| | | | | |
Collapse
|
15
|
Qiu C, Johnson BN, Tallent MK. K+ M-current regulates the transition to seizures in immature and adult hippocampus. Epilepsia 2007; 48:2047-58. [PMID: 17651418 DOI: 10.1111/j.1528-1167.2007.01193.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE Loss-of-function mutations in Kv7.2 or Kv7.3 K(+) channel subunits underlies the neonatal epilepsy benign familial neonatal convulsions (BFNC). These two subunits interact to form a functional K(+) channel that underlies the M-current (I(M)), a voltage-dependent noninactivating K(+) current. In BFNC, seizures begin shortly after birth, and spontaneously remit in the first few months of life. The nature of this window of vulnerability is unclear. We address this issue using a hippocampal slice model, to study the effects of I(M) blockade or augmentation on epileptiform activity. METHODS We used the Mg(+)(+)-free seizure model in adult and immature (P8-P15) acute rat hippocampal slices. We recorded from both CA1 and CA3 regions using extracellular and intracellular methods. RESULTS When M-channels are blocked pharmacologically, the transition from interictal to ictal bursting becomes much more likely, especially in immature brain. We also show augmentation of I(M) is effective in stopping ictal events in immature brain, at the developmental age that approximates a human newborn in cortical development. I(M) appears to counter the sustained N-methyl-D-aspartate (NMDA) receptor-mediated depolarizations needed to trigger an ictal event. The increased likelihood of ictal bursting by I(M) blockade is not shared by other selective K(+) channel blockers that increase hippocampal excitability. CONCLUSIONS Voltage-dependent M-channels are activated during interictal bursts and contribute to burst termination. When these channels are compromised, interictal burst duration becomes sufficient to trigger the sustained depolarizations that underlie ictal bursts. This transition to ictal bursts upon I(M) blockade is especially likely to occur in immature hippocampus. This selective function of M-channels likely contributes to the transient window of vulnerability to seizures that occurs with BFNC.
Collapse
Affiliation(s)
- Cuie Qiu
- Drexel University College of Medicine, 245 15th Street, Philadelphia, PA 19348, U.S.A
| | | | | |
Collapse
|
16
|
Affiliation(s)
- Gordon Munro
- NeuroSearch A/S, Pederstrupvej 93, DK-2750 Ballerup, Denmark.
| | | |
Collapse
|
17
|
Abstract
BACKGROUND Despite the success of several new antiepileptic drugs, about one third of patients with epilepsy are not seizure free on medication. Improvement in this situation might lie in drugs that are currently in development. RECENT DEVELOPMENTS Some new antiepileptic drugs are modifications of those already available, referred to in this Rapid Review as evolutionary drugs. These modifications of existing drugs are developed to improve effectiveness, often by increasing tolerability. Other drugs work by new mechanisms and are usually discovered through screening of animal models. WHERE NEXT? The large number of drugs currently in clinical trials provides a measure of hope for patients whose epilepsy is not controlled with currently available medication. In the future, this range of antiepileptic drugs will probably increase because of the use of new animal models, discovery of new basic mechanisms of epileptogenesis, acceleration of proof of principle studies in people, and development of new methods of drug delivery.
Collapse
Affiliation(s)
- John R Pollard
- Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
18
|
&NA;. Retigabine in partial seizures: profile report. DRUGS & THERAPY PERSPECTIVES 2006. [DOI: 10.2165/00042310-200622120-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Expression of genes of KCNQ potassium channels in cultured hippocampal inhibitory interneurons, and participation of these channels in the regulation of GABA-ergic transmission. NEUROPHYSIOLOGY+ 2006. [DOI: 10.1007/s11062-006-0066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|